
Shaping Program Repair Space with Existing Patches and
Similar Code∗

Jiajun Jiang
†∗
, Yingfei Xiong

†∗
, Hongyu Zhang

§
, Qing Gao

‡∗
, Xiangqun Chen

†∗

†
Key Laboratory of High Confidence Software Technologies (Peking University), MoE, Beijing, PR China

∗
School of Electronics Engineering and Computer Science, Peking University, Beijing, PR China

§
School of Electrical Engineering and Computing, The University of Newcastle, Callaghan NSW, Australia

‡
National Engineering Research Center for Software Engineering, Peking University, Beijing, PR China

∗
{jiajun.jiang, xiongyf, gaoqing, cherry}@pku.edu.cn,

§
hongyu.zhang@newcastle.edu.au

ABSTRACT
Automated program repair (APR) has great potential to reduce bug-

fixing effort and many approaches have been proposed in recent

years. APRs are often treated as a search problem where the search

space consists of all the possible patches and the goal is to identify

the correct patch in the space. Many techniques take a data-driven

approach and analyze data sources such as existing patches and

similar source code to help identify the correct patch. However,

while existing patches and similar code provide complementary

information, existing techniques analyze only a single source and

cannot be easily extended to analyze both.

In this paper, we propose a novel automatic program repair

approach that utilizes both existing patches and similar code. Our

approach mines an abstract search space from existing patches and

obtains a concrete search space by differencing with similar code

snippets. Then we search within the intersection of the two search

spaces. We have implemented our approach as a tool called SimFix ,
and evaluated it on the Defects4J benchmark. Our tool successfully

fixed 34 bugs. To our best knowledge, this is the largest number

of bugs fixed by a single technology on the Defects4J benchmark.

Furthermore, as far as we know, 13 bugs fixed by our approach

have never been fixed by the current approaches.

CCS CONCEPTS
• Software and its engineering → Search-based software en-
gineering;

KEYWORDS
Automated program repair, code differencing, code adaptation

∗
This work is supported by the National Key Research and Development Program

under Grant No. 2016YFB1000105, National Natural Science Foundation of China

under Grant No. 61672045, 61332010, UON Faculty Strategic Pilot and SEEC Research

Incentive grants, Beijing Natural Science Foundation under Grant No. 4182024, the

China Postdoctoral Science Foundation under Grant No. 2017M620524. Yingfei Xiong

is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5699-2/18/07. . . $15.00

https://doi.org/10.1145/3213846.3213871

ACM Reference Format:
Jiajun Jiang

†∗
, Yingfei Xiong

†∗
, Hongyu Zhang

§
, Qing Gao

‡∗
, Xiangqun

Chen
†∗
. 2018. Shaping Program Repair Space with Existing Patches and

Similar Code. In Proceedings of 27th ACM SIGSOFT International Symposium
on Software Testing and Analysis (ISSTA’18). ACM, New York, NY, USA,

12 pages. https://doi.org/10.1145/3213846.3213871

1 INTRODUCTION
Automated program repair (APR) aims at reducing bug-fixing effort

by automatically generating patches that satisfy a specification,

which is a step forward to software automation [41]. In recent

years, many automated program repair techniques have been pro-

posed [11, 14, 22, 32, 36, 40, 45, 59, 60, 65, 68]. A typical APR ap-

proach takes a faulty program and a set of test cases as input (where

the program fails at least one test case), and produces a patch to

repair the fault (where the patched program at least passes all the

tests).

APR is often treated as a search program where the space con-

sists of all possible patches and the goal is to identify the correct

patch from the space. The problem is challenging because the space

is usually huge, and contains a lot of plausible (patches that pass

all the tests) but incorrect patches [35]. Test cases cannot distin-

guish between correct and plausible but incorrect patches. An APR

approach not only needs to locate the correct patch from a huge

space, but also needs to avoid the plausible but incorrect patches.

To solve this problem, many APR techniques take a data-driven

approach to estimate the likelihood of patches and confine/priori-

tize the search space so that the patches that are more likely to be

correct are tried first. One of the commonly-used data sources is

existing patches. Analyzing the existing patches gives us the (po-

tentially conditional) distribution of bug-fixing modifications, thus

we can pick the patches that make the most likely modifications.

Typical approaches include PAR [25], Genesis [34], QAFix [12] and

SOFix [33], which confine the search space based on repair pat-

terns, and Prophet [36] and HDRepair [28] that rank the patches

by learned models. Another commonly-used data source is source

code. Analyzing the source code helps us understand the internal

structures of the program to be repaired (including the common and

context-specific code), thus we can select the patches that fit the lo-

cal programming context. Typical approaches include GenProg [30]

and its variants [17, 71], which combine statements from (similar)

code snippets in the same project, as well as SearchRepair [24] that

https://doi.org/10.1145/3213846.3213871
https://doi.org/10.1145/3213846.3213871

ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands Jiajun Jiang, Yingfei Xiong, Hongyu Zhang, Qing Gao, Xiangqun Chen

performs semantic search in a code base and ACS [67] that ranks

patch ingredients based on statistical results from GitHub.

However, both data sources have their limitations. On the one

hand, while existing patches provide comprehensive characteriza-

tion of the bug-fixing modifications, they are often not abundant

enough to cover different situations. In particular, the bug-fixing

modifications for local elements in the current projects, for exam-

ple, adding boundary check for a user-defined method or removing

redundant initialization of a user-defined object, often cannot be

found in existing patches as there usually exist only a limited num-

ber of patches from the history of current project. On the other

hand, the source code does not characterize the likelihood of a

bug-fixing modification, i.e., how likely the developer can make

the mistake. For example, it is usually more likely to change “>”

into “>=” than to insert a loop statement, but the source code alone

cannot tell us this information.

In this paper, we propose to combine the two data sources to

better guide automated program repair. Our basic idea is to charac-

terize a search space using each source, and take the intersection

of the two spaces. In more detail, our approach contains two stages:

mining and repairing. The two stages share a search space defini-

tion S that contains all possible patches. In the mining stage, given

a corpus of existing patches, the system produces a confined space

S1 ⊆ S by analyzing the corpus. The patches can come from dif-

ferent projects, and once mined, the space S1 can be used to repair

defects in different projects. In the repairing stage, given a faulty

code snippet, the system identifies the similar code snippets in the

same project and produces another confined space S2 ⊆ S . Then
the system takes the intersection of the two spaces to get the final

search space S1 ∩ S2. Within the final space, the system searches

patches using basic heuristics such as syntactic distance [39, 40].

To realize this approach, we need methods to produce a search

space from patches and from source code, respectively. To enable

cross-project mining, we define an abstract search space on AST

node types, where each abstract patch in the abstract search space is

an abstraction of concrete patches that modify the AST node types.

Then the space is defined by the frequent abstract patches. This

abstract space definition abstracts away project-specific details and

thus is likely to generalize from a small set of patches. Furthermore,

this space can be mined automatically and efficiently.

To obtain a search space from source code, we follow existing

approaches that reuse repair ingredients from similar code [17, 24,

30, 71]: first locate the code snippets that are similar to the faulty

snippet, and then combine the ingredients in the similar code snip-

pets to form candidate patches. However, it is hard to find a proper

granularity for the ingredients. If we use a coarse-grained granu-

larity, such as statements, many bugs cannot be repaired. If we use

a fine-grained granularity, such as AST nodes, their combinations

may form a large space that cannot be explored efficiently. To over-

come this problem, we propose a novel differencing-based approach

to reduce the search space for fine-grained granularities. More con-

cretely, we first define a set of features to calculate the syntactic

distance between the faulty code snippet and other code snippets.

For a similar code snippet that has a shorter distance (called a

donor), we compare the two code snippets and obtain modifications

from the faulty snippet to the donor snippet. Finally, the actual

search space is formed by the combinations of the modifications.

Since variable names at different snippets are often different, we

also build a mapping between variable names and take the mapping

into consideration when extracting and applying the modifications.

We have implemented our approach as an automated program

repair tool called SimFix , and evaluated it on the Defects4J bench-

mark [21]. Our tool successfully fixed 34 defects. To our best knowl-

edge, this is the largest number of bugs fixed by a single technology

on the Defects4J benchmark. Furthermore, 13 defects that fixed

by our approach have never been correctly fixed by the related

techniques as far as we know.

In summary, this paper makes the following contributions:

• An automated program repair approach based on the inter-

section of two search spaces: the search space from existing

patches and the search space from similar code.

• A method to obtain a search space from existing patches,

based on an abstract space definition on AST types.

• A method to obtain a search space from similar code based

on code differencing.

• An experiment on Defects4J that shows the effectiveness of

our approach.

The remainder of the paper is organized as follows. Section 2 mo-

tivates our approach by examples. Section 3 illustrates our method-

ology in detail. Section 4 evaluates the effectiveness of our approach

on Defects4J, while Section 5 and 6 discuss the limitations and re-

lated work, respectively. Finally, Section 7 concludes the paper.

2 MOTIVATING EXAMPLE
This section motivates our approach using a real-world example

from our experiment. Listing 1 shows a defect, Closure-57, in De-

fects4J benchmark [21]. Note that in this paper, a line of code start-

ing with “+” denotes a newly added line and lines starting with “-”

denote lines to be deleted.� �
1 +if(target != null && target.getType ()==Token.STRING){
2 -if(target != null){
3 className = target.getString ();
4 }
� �

Listing 1: The faulty code snippet from Closure-57� �
1 if(last != null && last.getType () == Token.STRING){
2 String propName = last.getString ();
3 return (propName.equals(methodName));
4 }
� �

Listing 2: A similar code snippet to the faulty one

In this example, the condition in the if statement is not complete.

Before accessing the getString() method of the target object, we

need to check the type of the object and onlywhen it is Token.STRING

could we assign its String value to the variable className. In a typi-

cal program repair process, the system first uses a fault localization

algorithm to locate this snippet, and then finds a set of modifica-

tions on the snippet (i.e., a patch) in the search space that can make

all tests pass.

If we allow all possible modifications, the search space is infinite

and it is not easy to quickly identify the correct patch within the

space. To enable efficient search, we need to shrink the search space

such that only the most probable patches are included in the space.

Shaping Program Repair Space with Existing Patches and Similar Code ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands

Let us first consider how to use similar code to shrink the space.

Based on existing studies [17, 24, 71], code snippets that are similar

to the faulty snippet is more likely to contain ingredients for the

patch. Therefore, we can confine the search space to contain only

ingredients from similar code snippets. In our example, given a

faulty code snippet, we find a donor code snippet (Listing 2) that

is similar to the faulty code shown in Listing 1. They have similar

code structures in terms of abstract syntax tree - both have an

IfStatement surrounding a same MethodInvocation (getString()).

As mentioned in the Introduction, if we directly combine the

ingredients in the donor snippet, it is difficult to find a proper gran-

ularity. For example, several existing studies [17, 24, 30, 71] use the

statement granularity, i.e., inserting or replacing with statements

in the donor snippet. In this example, the whole snippet is an i f
statement, and directly replacing the faulty statement with the

donor statement would not repair the bug as the donor snippet

uses different variable names and contains a different body. On the

other hand, if we use a fine-grained level, such as AST node level,

there are many possible ways to combine the AST nodes and the

search space is still large.

To deal with this problem, we combine variable matching and

code differencing to generate the search space. First, we introduce

an algorithm that maps the variables in the two snippets based on

their usages, types and names. Based on the mapping, we replace

the variables in the donor code snippet with the mapped variables

in the faulty snippet. In this example, last would be replaced by

target because they share the same type and are both used in the !=

comparison and in the method invocation of getString(). Similarly,

propName would be replaced by className.

Second, we utilize a fine-grained code differencing algorithm

to compare the two snippets and extract modifications from the

faulty snippet to the donor snippet. Our algorithm is adapted from

GumTree [9] and can extract modifications at the level of AST

subtree. In the example, our algorithm extracts the following two

modifications.

• Modification 1: replace the condition “target!=null” with

“target!=null && target.getType()==Token.STRING”.

• Modification 2: insert the statement “return (className.equals

(methodName))” at the end of the if body.

Then the search space contains the combinations of all modifi-

cations. In this example, the search space includes three patches:

Modification 1, Modification 2, and both of the two modifications.

Though using similar code we greatly reduce the search space,

the space may still contain many plausible but incorrect patches.

For instance, the example in Listing 3 comes from the Time-24
bug in Defects4J benchmark, which was incorrectly repaired in a

comparative experiment in our evaluation (Section 4).� �
1 // donor code
2 if(instant >=0){
3 return (int)(instant%DateTimeConst.MILLI_PER_DAY);
4 }
5 // incorrect patch on a correct snippet
6 if(instant <firstWeekMillis1){
7 - return getWeeksInYear(year -1);
8 + return (int)(instant%DateTimeConst.MILLI_PER_DAY);
9 }
� �

Listing 3: A pausible but incorrect repair of Time-24

In this example, the fault localization algorithm mistakenly rec-

ognizes a correct snippet as faulty. From this snippet we can find

a donor snippet (lines 2-4) which leads to a patch that replaces a

method call with a cast expression (lines 7-8), and this patch hap-

pens to pass all the tests. However, in fact it is quite rare that a

developer would mix up a cast expression with a method call, and

thus this patch is uncommon and less likely to be correct. In other

words, if we derive a search space from existing patches to cover

only common repair patterns, we could exclude this patch from the

space.

To obtain a space from a corpus of patches, we define abstract

modifications that include only AST node types. For example, one

of the abstract modifications could be “replacing a method call with

a cast expression”, which contains the patch mentioned above. Then

we count the frequencies of the abstract modifications in the corpus,

and define the search space as the combinations of the abstract

modifications whose frequencies are higher than a threshold. In

this example, the frequency of the above abstract modification is

lower than the threshold, thus after we take intersection between

the two search spaces, the incorrect patch would be excluded. Please

note that we obtain the space from existing patches in the offline

mining phase, and this space is used to repair many different bugs

in the online repairing phase.

After we obtained the final search space, we sort the patches

in the space according to three sorting rules (Section 3.4.5). e.g.,

patches with simpler modifications are sorted first. In our example

(Listing 1), we first try the Modification 1 and the Modification

2, before we consider the combination of the two. Whenever a

patch passes all the tests, we output the result. In this way, we will

produce the correct patch for the first example (Listing 1) and will

not produce the incorrect patch for the second example (Listing 3)

3 APPROACH
Figure 1 shows an overview of our approach. Our approach con-

sists of an offline mining stage and an online repairing stage. In the

mining stage (Section 3.3), a set of patches are analyzed to obtain

the search space S1. In the repairing stage (Section 3.4) consists of

five phases. Given a faulty program, the first phase (Section 3.4.1)

identifies an ordered list of suspicious faulty statements using stan-

dard fault localization approaches. For each faulty location, the

second phase (Section 3.4.2) locates donor snippets that are sim-

ilar to the faulty code in the same project. For each donor code

snippet, the third phase (Section 3.4.3) maps variables between the

donor snippet and the faulty snippet and replaces all variables in

the donor snippet with the corresponding variables. The fourth

phase (Section 3.4.4) diffs the two snippets, obtains the search space

S2, and computes S1 ∩ S2. Finally, the final phase (Section 3.4.5)

generates a list of patches within the intersection and validates

them using the test suite. Both stages share the same search space

definition (Section 3.1) and the same code differencing algorithm

(Section 3.2), which we will introduce first in this section.

3.1 Search Space
In this section we give the definitions of search space and abstract

search space. Before defining the search space, we need to be more

formal about the Abstract Syntax Trees (ASTs). We define an AST

ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands Jiajun Jiang, Yingfei Xiong, Hongyu Zhang, Qing Gao, Xiangqun Chen

Faulty Project
(source code and

test suites)

Fault Localization

Patch Generation
& Validation

Combination

diff --git xxxx/A.java
--- a/xxx/A.java
+++ b/xxx/A.java
@@ -349,7 +349,7
@@ public class A{
- if (a||b) {
+ if (a | b && c) {

diff --git xxxx/A.java
--- a/xxx/A.java
+++ b/xxx/A.java
@@ -349,7 +349,7
@@ public class A{
- if (a||b) {
+ if (a | b && c) {

diff --git xxxx/A.java
--- a/xxx/A.java
+++ b/xxx/A.java
@@ -349,7 +349,7
@@ public class A{
- if (a||b) {
+ if (a | b && c) {

diff --git xxxx/A.java
--- a/xxx/A.java
+++ b/xxx/A.java
@@ -349,7 +349,7
@@ public class A{
- if (a||b) {
+ if (a | b && c) {

diff --git xxxx/A.java
--- a/xxx/A.java
+++ b/xxx/A.java
@@ -349,7 +349,7
@@ public class A{
- if (a||b) {
+ if (a||b&&c) {

... Frequent
Modifications

String qualifiedName = callee.getQualifiedName();
if(functionName.equals(qualifiedName)) {

Node target = callee.getNext();
if(target != null) {

className = target.getString();
}

}

Similar Code Snippet

if(isGet(functionIndentifyingExpression)) {
Node last = functionIndentifyingExpression.getLastChild();
if(last != null && last.getType == Token.STRING) {

propName = last.getString();
return (propName.equals(methodName));

}
}

Faulty Code Snippet

source target
last

(Node)
target

(Node)
propName

(String)
className

(String)
... ...

AST for
similar code
snippet

AST for buggy
code snippet

matc
h

Extract modifications by differencing with similar code snippet

Collect modifications from existing patches

Search Space
Instersection

!"

!# ∩ !"

!#
Repairing Stage:

Mining Stage:

Existing
Projects

Variable Mapping

1

2

3

5

4

(abstract)

(concrete)

Figure 1: The overall workflow of the proposed approach.

as an order tree, i.e., the children of a node is ordered as a sequence,

and denotes the set of all ASTs as AST . To avoid confusion, we

directly use node to refer the location of a node in the AST tree.

We use parent (n) to denote the parent of the node n, children(n)
to denote the children sequence of node n, index (n) to denote the

index of n in the children list, and root (t) to denote the root node

of an AST tree t . We further assume that there exists a function

type(n) that assigns each node n with a node type. Also, we assume

the node types fall into two distinct categories. The first category

is tuple, which has a fixed number of children. For example, a node

of type MethodInvocation must have three children: the receiver

expression, the method name, and the arguments. The second cat-

egory is sequence, whose children list is not fixed. For example,

a Block node can have a sequence of statements as children, and

the number of statements is not predetermined. We use isTuple(n)
or isTuple(T) to denote that node n has a tuple type or type T is a

tuple type. Finally, some leaf nodes have an associated value, e.g.,

SimpleName has the associated name. We use value(n) to denote the
value associated with n, and value(n) is ⊥ for the node with no

associated value. Strictly, all these operations rely on an additional

parameter: the AST tree itself. For example, parent (n) should be

parent (n, t) where t is the AST tree containing the node n. We make

this additional parameter as implicit for clarity.

Based on the above definitions, we define modifications over an

AST t as follows.

Definition 3.1. A (concrete) modification over an AST t is one of
the following operations:

• Insert (n, t ′, i): insert AST t ′ under node n at index i .
• Replace(n, t ′): replace the subtree rooted at node n with AST

t ′.

Then a search space is a combination of modification operations.

Definition 3.2. Let t be an AST tree andM be a set of modifica-

tions over t . The (concrete) search space defined byM is a powerset

2
M
.

Please note that our search space definition does not include

deletions. As argued by existing studies [50, 57], deleting code often

leads to incorrect patches, so we do not consider deletion in our

search space. RQ 4 in Section 4 evaluates the effect of this decision.

Based on this definition, the modifications produced by a dif-

ferencing algorithm naturally form a search space. However, this

definition depends on an AST, and is not suitable for analyzing

patches over different ASTs. To support the analysis of patches, we

define abstract modifications and abstract search spaces as follows.

Definition 3.3. An abstract modification is one of the following

operations.

• INSERT (T): insert an AST of root type T .
• REPLACE(T1,T2): replace a subtree of root type T1 with an-

other AST of root type T2.

Definition 3.4. Let MA
be a set of abstract modifications. The

abstract search space defined byMA
is a powerset 2

MA
.

It is easy to see that each concrete modification corresponds to

an abstract modification, and we use function abs to perform this

conversion.

abs(Insert (n, t , i)) = INSERT (type(root (t)))
abs(Replace(n, t)) = REPLACE(type(n), type(root (t)))

Finally, after we obtain an abstract space from patches and a

concrete space from similar code, we need to get the intersection

of them. Let SC be a concrete space and SA be an abstract space,

their intersection is defined as follows.

SC ∩ SA = {m |m ∈ SC ∧ abs(m) ∈ SA}

3.2 Modification Extraction
There are two places in our approach that we need to extract modi-

fication. First, when analyzing patches, we need to get the modifi-

cations performed by each patch. Second, when analyzing similar

code, we need to get the modifications from the faulty snippet

to the donor snippet. We use the same differencing algorithm for

both places. This algorithm takes two ASTs a and b as input, and

produces a set of concrete modifications from a to b.
Our algorithm shares the same skeleton as GumTree [9] but

is specifically tailored for our search space. We first match nodes

between the two ASTs, and extract the modifications along the

matching process. Intuitively, two nodes are matched, if (1) they

have the same node type, and (2) all their ancestors are matched,

or (3) the previous two conditions can be satisfied by inserting

some nodes from the target AST to the source AST. Algorithm 1

Shaping Program Repair Space with Existing Patches and Similar Code ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands

Algorithm 1:Matching AST Nodes

1 func match(a : ASTNode, b : ASTNode)
2 if type(a) = type(b) then
3 return {⟨a,b⟩} ∪matchChildren(a,b)
4 else
5 for each b ′ ∈ children(b) do
6 if match(a,b ′) , ∅ then return match(a,b ′);
7 return ∅

8 func matchChildren(a : ASTNode, b : ASTNode)
9 if isTuple(a) then

10 return matchTuple(children(a), children(b))
11 else
12 return matchSet (children(a), children(b))

13 func matchTuple(as : Seq[ASTNode], bs : Seq[ASTNode])
14 return match(as .head,bs .head) ∪

matchTuple(as .tail ,bs .tail)

15 func matchSet (as : Seq[ASTNode], bs : Seq[ASTNode])
16 result ← ∅

17 toMatch ← as × bs

18 while toMatch.size > 0 do
19 ⟨a,b⟩ ← a pair in toMatch

20 result = result ∪match(a,b)
21 if match(a,b) is not empty then
22 remove all pairs containing a or b from toMatch

23 toMatch ← toMatch − ⟨a,b⟩

24 return result

shows the details of the matching process between two ASTs, which

basically performs a top-down search to locate matched nodes

satisfying the above conditions. The algorithm starts from match
function with the roots of the two ASTs. If the two nodes can be

matched (lines 2-3), we recursively check their children. Otherwise,

we check whether the nodes can be matched by inserting some

parent nodes in the referenced AST to the faulty AST (lines 4-

6). After two nodes are matched, we check their children. Here

we distinguish the two types of nodes. For tuple nodes, only the

children at the corresponding positions are matched (lines 13-14).

For sequence nodes, their children can be freely matched (lines

15-24).

After we match the nodes, deriving the modifications becomes

direct. We check the following four conditions in the matched ASTs,

and each generates a modification. In the following, we use a ↔ b
to denote that a and b are matched, where a is from the source AST

and b is from the target snippet. We also use tree(a) to denote the

subtree rooted at a.

Condition: a ↔ b ∧ type(a) = type(b) ∧ value(a) , value(b)
Modification: Replace(a, tree(b))
When two leaf nodes are matched but have different values, we

replace the source node with the target one.

Condition: parent (a) ↔ parent (b)∧isTuple(parent (a))∧index (a) =
index (b)∧ a does not match any node

Modification: Replace(a, tree(b))
When two tuple nodes are matched but a pair of children at the

corresponding position are not matched, we replace the source

child with the target child.

Condition: parent (a) ↔ parent (b)∧¬isTuple(parent (a))∧a ↔ b
Modification: {Insert (parent (a),b ′, i) | b ′ is an unmatched sib-

ling of b ∧ i = index (b ′) − index (b) + index (a)}
When two sequence nodes are matched, we identify at least a

pair of matched children, and insert all unmatched children in

the target into the source based on the relative position of the

matched children.

Condition: a ↔ b ∧ parent (a) ↔ b ′ ∧ b ′ , parent (b)
Modification: Replace(parent (a), t), where t is obtained by ap-

plying Replace(b, tree(a)) to tree(b ′).
When a source node matches a target node in a lower level, we

generate a replacement that effectively inserts the nodes above

the matched target node.

3.3 Mining Stage
The input of the mining stage is a corpus of patches, where each

patch includes a pair of the unpatched version and the patched

version. For each patch, we use our differencing algorithm to obtain

the concrete modifications, and use the abs function (as described

in Section 3.1) to convert them into the abstract modifications. Then

we count the occurrence frequency of each abstract modification.

Finally, we select the abstract modifications whose occurrence fre-

quencies are large than a threshold k to form the search space S1.
In our experiment, we set k to a value where the search space can

cover 80% of the patches according to the Pareto principle [7].

3.4 Repairing Stage
3.4.1 Fault Localization

In theory, any fault localization approaches producing an ordered

list of suspicious statements can be used with our approach. In our

experiment on Java, we chose the Ochiai [5] algorithm implemented

by Person et al. [47]. Furthermore, we use test purification [69] to

preprocess the test cases to improve fault localization accuracy.

3.4.2 Donor Snippet Identification

Given a potentially faulty location, we expand it into a faulty code

snippet and then locate a set of similar code snippets as donors for

comparison and adaptation.

We start by defining code snippets. Given two line numbers, x
and y, in a source file, a code snippet between [x ,y] is the longest
sequence of statements that are included between line x and line

y. Here “statements” refer to the Statement AST nodes defined in

Java grammar [15]. For example, in Listing 2, the code snippet

between line 1 and line 4 contains a whole if statement, while the

code snippet between line 1 and line 2 includes only the statement

initializing propName, as the whole if statement is not fully included

in the first two lines.

To identify donor code snippets, we need to measure the simi-

larity between two code snippets. Here we define three similarity

metrics and the final similarity is the sum of the three similarities.

Structure Similarity Structure similarity concerns the structure

of the ASTs. Following DECKARD [19], we extract a vector from

each code snippet, where each element in the vector represents

ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands Jiajun Jiang, Yingfei Xiong, Hongyu Zhang, Qing Gao, Xiangqun Chen

a feature of AST nodes. For example, one element could be the

number of for statements in the code snippet, and the other

element could be the number of arithmetic operators (+, -, *, /, %)

in the code snippet. Then we calculate the cosine similarity [55]

between the two vectors.

Variable Name Similarity Variable name similarity concerns how

similar the names of the variables in the two code snippets are.

We first tokenize the variable names, i.e., splitting a variable

name into a set of tokens based on the CamelCase
1
. For exam-

ple, the variable className is split into two words class and

name. From the two code snippets, we can obtain two sets of

tokenized variable names. Then we calculate the similarity of

the two sets using Dice’s coefficient
2
.

Method Name Similarity Method name similarity concerns how

similar the names of the methods used in the two code snippets

are. Method name similarity is calculated in the same way as

the variable name similarity except that we consider method

names instead of variable names.

Based on the definition of code snippets, we can identify the

faulty code snippet and the donor code snippets. Given a potentially

faulty line, we expand it into a code snippet of size N . Assume the

faulty line is n, we extract the code snippet between [n − N /2,n +
N /2 − 1] as the faulty snippet.

Next we identify the donor snippets. We slide a window of size N
on all source files, extract the code snippet within the window, and

remove the duplicate ones. In this way, we extract all possible code

snippets within N lines of code. Next we calculate the similarity

between faulty snippet and each donor snippet, and select the top

100 donor snippets. In our experiments we empirically set N to 10.

3.4.3 Variable Mapping

In this phase, we match variables in the faulty and donor code

snippets, and build a variable mapping table for code adaptation.

To do this, we leverage three kinds of similarity information, i.e.,

usage similarity, type similarity, and name similarity.

Usage similarity: Usage similarity captures how a variable is

used within the code snippet. We first use a usage sequence to

represent how a variable is used. Given a variable, we perform a

post-order traversal of the AST tree, and print the parent node

type for each occurrence of the variable. The result is a sequence

representing the expressions that the variable has been used in.

In our motivating example listed in Listing 1 and 2, the variables

target and last have the following usage sequences:

target: [INFIX_EXP, METHOD_EXP]

last: [INFIX_EXP, METHOD_EXP, METHOD_EXP]

Then we calculate the similarity of two usage sequences based

on the longest common subsequences (LCS)
3
.

Type similarity: When we reuse a code fragment from the

donor code snippet, we need to replace the variables with the target

variables. Consequently, it is important to ensure the mapped vari-

ables have compatible types. When a variable is used as left-value

in the donor code snippet, we need to ensure the type of the target

1
https://en.wikipedia.org/wiki/Camel_case

2
https://en.wikipedia.org/wiki/S%C3%B8rensen%E2%80%93Dice_coefficient

3
https://en.wikipedia.org/wiki/Longest_common_subsequence_problem

variable is a super type of the original variable. When a variable is

used as right-value in the donor code snippet, we need to ensure

the type of the target variable is a sub type of the original variable.

Ideally, the above two conditions should be enforced when we

build variable mapping. However, since at the current stage we

do not know which code fragment will be reused from the code

snippet, we simply use type similarity to measure the degree of

compatibility of their types. Concretely, we define type similarity

as a binary value. When one variable is the sub/super type of the

other variable, their similarity is 1, otherwise is 0.

In Java, the primitive types do not have explicit subtyping rela-

tion. Given two primitive types T and T ′, we consider T is a sub

type of T ′ if any value in type T can be losslessly converted into

values in type T ′.
Name similarity: The name similarity of two variables is cal-

culated in the same way as the variable name similarity used for

identifying donor code snippets, except that here we consider only

two variables instead of all variables in the snippets.

The final similarity score is a weighted sum of the above three

scores. After we calculate the similarities between each pair of

variables, we greedily select the pairs with the highest similarities

until there is no pair left. For example, the matching variables

derived from Listing 1 and 2 are last and target, and propName and

className. Then, we replace all variables in the donor code snippet

with the corresponding mapping variables to obtain an adapted

donor code snippet using shared variables with the faulty one. Later,

we will refer to the donor code snippet as the adapted one without

further explaining.

3.4.4 Modification Extraction and Intersection

In the forth phase, given the donor code snippets, we compare

them with the faulty code snippet one by one in the descending

order of similarity and extract concrete modifications using the

code differencing algorithm introduced in Section 3.2. Then we

identify the intersection between this set of modifications and those

extracted by analyzing existing patches (Section 3.3). After which

we obtain a set of concrete modifications for patch generation.

3.4.5 Patch Generation and Validation

The set of modifications obtained in the previous phase defines a

reduced search space. The goal of this phase is to locate a patch

in the space that passes all tests. As mentioned before, we sort the

patches in the space and validate them one by one. We perform

a multi-level sorting on the patches according to the following

rules, in the order of their appearance in the sequence: earlier ruler

indicates a higher level.

(1) Patches that contain consistent modifications are ranked

higher. Consistent modifications (changes) [16, 31] are those

modifications that require the same changes to a variable at

different locations at the same time.

(2) Patches with fewer modifications are ranked higher.

(3) Patches with more replacements are ranked higher than

patches with more insertions.

The first rule handles a special case. When a variable is replaced

with the other variable, it should be replaced by the same variable

Shaping Program Repair Space with Existing Patches and Similar Code ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands

at other occurrences consistently. The second and the third rules

are inspired by syntactic distance [29, 39]: the patches with fewer,

simpler modifications are ranked higher.

Having obtained an ordered list of candidate patches, we validate

patches one by one with the tests, and return the first patch that

passes all the tests.

4 EVALUATION
To evaluate the effectiveness of our approach, we have developed a

prototype tool called SimFix . The tool is implemented in Java and

is publicly available at our project website [18].

4.1 Experiment Setup
Weevaluated SimFix onDefects4J [21] v1.0.04, which is a commonly-

used benchmark for automatic program repair research. Table 1

shows statistics about the projects.

Table 1: Details of the experiment benchmark.

Project Bugs kLoC Tests

JFreechart (Chart) 26 96 2,205

Closure compiler (Closure) 133 90 7,927

Apache commons-math (Math) 106 85 3,602

Apache commons-lang (Lang) 65 22 2,245

Joda-Time (Time) 27 28 4,130

Total 357 321 20,109

In the table, column“Bugs” denotes the total number of bugs in Defects4J benchmark,

column“kLoC” denotes the number of thousands of lines of code, and column “Tests”
denotes the total number of test cases for each project.

Executing SimFix requires a set of patches such from which an

abstract search space can be obtained. To obtain the set of patches,

we selected three large open source projects, i.e., Ant [1], Groovy [2]

and Hadoop [3]. A statistics of the three projects can be found

in Table 2. Following the existing approaches [20, 46], we first

developed a script to automatically analyze each commit message

in the version control system and used keywords (e.g., “fix” and

“repair") to select the commits that are related to bug fixing. Then

we manually analyzed the remaining commit messages to further

exclude unrelated commits, such as “fix doc” or “repair format”, etc.

In this way, 925 commit records were identified. For each commit,

we extract all changed files before and after the repair.

Table 2: Projects for abstract modification extraction.

Project kLoC Commits Identified Patches

Ant 138 13,731 270

Groovy 181 14,532 402

Hadoop 997 17,539 253

Total 1,316 45,802 925

In the table, column“kLoC” denotes the number of thousands of lines of code, column

“Commits” denotes the number of commits in the version control system, and column

“Identified Patches” denotes the number of patches related to bug repair.

Our experiment was conducted on a 64-bit Linux server with two

Intel(R) Xeon CPUs and 128GB RAM. For each bug, we assigned two

4
https://github.com/rjust/defects4j/releases/tag/v1.0.0

CPU cores and 8GBRAMand the repair processwill terminatewhen

a patch passes all test cases or the execution exceeds five hours.

Finally, we manually examine the patches generated by SimFix
and consider a patch correct if it is the same with or semantically

equivalent to the standard patch provided by Defects4J.

4.2 Research Questions and Results
RQ 1. What are the frequent abstract modifications?

We invoked the mining stage on the set of patches to obtain

an abstract search space, and then we checked the result. Table 3

shows the frequent abstract modifications defining the abstract

search space. As we can see from the table, the top 3 most frequent

modifications are to insert an if statement, to replace a method

invocation, and to insert a method call. This result is consistent

with the results in existing studies [25, 38, 61]. For example, the

top 5 most frequent insertions/updates identified by Martinez and

Monperrus [38] are included in our space as well, such as inserting

method invocations and if statements. These modifications form

a small abstract space. There are in total 1640 kinds of abstract

modifications formed by around 40 kinds of AST node types for Java

(40× 40 kinds of replacements and 40 kinds of insertions). However,

from existing patches, there are only 16 frequent modifications

shown in the table, which achieved a 102.5x reduction in the space

of abstract modifications.

Table 3: Percentage of frequent operations in existing
patches from open source projects listed in Table 2.

Replacement Insertion
(MI, MI) 21.62% IFSTMT 22.05%

(INFIXE, INFIXE) 8.54% ESTMT(MI) 14.70%

(NAME, NAME) 5.40% VDSTMT 11.67%

(NAME, MI) 3.89% ESTMT(A) 5.73%

(INFOP, INFOP) 2.05% TRYSTMT 2.49%

(TYPE, TYPE) 1.84% RETSTMT 1.51%

(SLIT, SLIT) 1.84% TRSTMT 1.19%

(BLIT, BLIT) 1.18%

(NULIT, NAME) 1.08%

MI : MethodInvocation IFSTMT : IfStatement
NAME : Name ESTMT(MI) : ExpressionStatement(MethodInvocation)
INFIXE : InfixExpression ESTMT(A) : ExpressionStatement(Assignment)
TYPE : Type VDSTMT : VariableDeclarationStatement
SLIT : StringLiteral INFOP : InfixExpression.Operator
NULIT : NumberLiteral RETSTMT : ReturnStatement
BLIT : BooleanLiteral TRYSTMT : TryStatement
TRSTMT : ThrowStatement

To further understand whether our set of patches is large enough

to cover a representative set of changes, we analyzed the change

distributions with different number of projects. Then we compared

the result space with the original space to see how many abstract

modifications have changed. We enumerated all the three combina-

tions of two projects and found the abstract spaces are all identical

to the original one. To further understand the differences between

different patch sets, we compared the percentages of frequent ab-

stract modifications in the patches, as shown in Figure 2. As we can

see from the Figure, the percentages from different patch sets are

quite close. These results indicate that our dataset is large enough.

Also, our abstract space can be mined from a small set of patches,

and generalizes well among projects.

RQ 2. How effective is SimFix on Defects4J?

ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands Jiajun Jiang, Yingfei Xiong, Hongyu Zhang, Qing Gao, Xiangqun Chen

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

(M
I,

M
I)

(IN
FIX

, I
NFIX

)

(N
AM

E, N
AM

E)

(N
AM

E, M
I)

(T
YPE, T

YPE)

(IN
FOP, I

NFOP)

(S
LIT

, S
LIT

)

(N
ULIT

, N
AM

E)

(B
LIT

, B
LIT

)

IN
S IF

STM
T

IN
S E

STM
T(M

I)

IN
S V

DSTM
T

IN
S E

STM
T(A

)

IN
S T

RYSTM
T

IN
S R

ETSTM
T

IN
S T

RSTM
T

Hadoop&Ant Hadoop&Groovy Ant&Groovy All

Figure 2: Percentages of operations for different combina-
tions of open source projects listed in Table 2.

This RQ evaluates the performance of SimFix on Defects4J. We

shall use the abstract search space we obtained in RQ-1. The result

is compared with eight state-of-the-art automated program repair

techniques. We chose the eight techniques because they were also

evaluated on Defects4J and the results can be directly compared.

The header of Table 4 lists the eight comparative techniques.

The evaluation results are shown in Table 4, where each cell

denotes the number of bugs fixed by the corresponding repair

technique on each project. Besides, for each project, we highlighted

the corresponding techniques with the most number of bugs fixed.

Please note that some papers only report bugs fixed by the first

patch, while some reports the bugs fixed by any patch regardless

of the rank. The numbers outside the parentheses indicate the

bugs fixed by the first patch while the numbers inside parentheses

indicate the bugs fixed by any patch. The missing numbers are

marked with “-” or directly omitted.

From the table we can see that SimFix successfully fixed 34
bugs with the first patch in the Defects4J benchmark, achieving the

most number of correct patches against all the other comparative

approaches. Besides, for four projects, SimFix repairs the highest

numbers of bugs with the first plausible patch.

Table 4: Correct patches generated by different techniques.

Proj. SimFix jGP jKali Nopol ACS HDR ssFix ELIXIR JAID

Chart 4 0 0 1 2 -(2) 3 4 2(4)

Closure 6 0 0 0 0 -(7) 2 0 5(9)

Math 14 5 1 1 12 -(7) 10 12 1(7)

Lang 9 0 0 3 3 -(6) 5 8 1(5)

Time 1 0 0 0 1 -(1) 0 2 0(0)

Total 34 5 1 5 18 13(23) 20 26 9(25)

We adopted the experimental results for jGenProg (jGP), jKali and Nopol reported by

Martinez et al. [37]. The results of other approaches come from the corresponding

research papers, i.e., ACS [67], HDRepair (HDR) [28], ssFix [64], ELIXIR [53] and

JAID [8].

To further understand the distribution of correct and incorrect

patches, we have presented the experimental results in detail for

each approach in Figure 3
5
. From the figure we can see that, the

portion of incorrect patches SimFix generated is relatively small in

5
There is noHDRepair because the number of incorrect patches generated byHDRepair

are not reported in the paper [28].

general. In total, SimFix generated 22 incorrect patches along with

34 correct patches, leading to a precision of 60.7%. The precision

is significantly higher than most approaches (4.5%-33.3%), is close

to EXILIR(63.4%), and is noticeably lower than ACS (78.3%). Please

note that ACS is a technique specifically designed for precision.

In addition, several approaches [63, 66, 70] have been proposed to

classify patches to increase precision, and SimFix can potentially

be combined with these approaches to gain a better precision.

Moreover, to understand how many bugs fixed by our approach

can also be fixed by the existing techniques, we have summarized

the overlaps among the results of the comparative techniques in

a Venn diagram, as shown in Figure 4. Here we consider the bugs

fixed by any patch, not just the first one. From the figure we can see

that 13 bugs repaired by SimFix were never reported as correctly

fixed by any other techniques. Combining Figure 4 and Table 4, we

can see that SimFix is an effective approach complementary to the

existing techniques.

RQ 3. How effective is the space reduction based on exist-
ing patches?

In our approach, we first obtain a concrete space from similar

code, and thenwe reduce it by using the abstract space from existing

patches. To understand how effective this step is, we implemented

a variant of SimFix , called SimFix-A. It repairs programs using all

candidate modifications extracted from similar code differencing

even though they are not in the abstract space of existing patches.

The experimental result is shown in Table 5. From the table we

can see that without the abstract space mined from existing patches,

12 less bugs were repaired. Two major factors contributed to this

reduction. (1) The space contains more plausible patches that may

be generated before the correct patch. From Figure 3 we can see that

more plausible but incorrect patches were generated by SimFix-
A. We have already seen the example of Time-24 demonstrated in

Section 2. (2)With a large space, more time is needed to generate and

validate the patches, and the correct patch may not be generated

within the time limit. In our experiment, SimFix-A on average

explored about 2.3x more candidate modifications than SimFix for

those faults successfully repaired by both of them, causing SimFix-
A spent around 2.0x as much time as SimFix to produce a correct

patch. Therefore, the reduction of our abstract search space to the

concrete search space is significant.

Table 5: Comparison among variants of SimFix .

Approach. Chart Closure Math Lang Time Total

SimFix 4 6 14 9 1 34

SimFix-A 2 2 11 7 0 22

SimFix-D 3 6 11 9 0 29

RQ 4. How do deletion operations affect automatic pro-
gram repair?

As explained in Section 3.1 that we excluded deletions from

our space. In this research question, we explore the effect of this

design decision. We implemented another variant of SimFix , called
SimFix-D, where we include deletions into the search space and

modify the differencing algorithm such that deletions are generated.

The final result is listed in Table 5 and Figure 3. SimFix-D repaired

Shaping Program Repair Space with Existing Patches and Similar Code ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands

0
5

10
15
20
25
30

Si
m

Fi
x-

A

Si
m

Fi
x-

D

Si
m

Fi
x

jG
en

Pr
og

jK
al

i

N
op

ol

A
C

S

ss
Fi

x

E
L

IX
IR

JA
ID

Si
m

Fi
x-

A

Si
m

Fi
x-

D

Si
m

Fi
x

jG
en

Pr
og

jK
al

i

N
op

ol

A
C

S

ss
Fi

x

E
L

IX
IR

JA
ID

Si
m

Fi
x-

A

Si
m

Fi
x-

D

Si
m

Fi
x

jG
en

Pr
og

jK
al

i

N
op

ol

A
C

S

ss
Fi

x

E
L

IX
IR

JA
ID

Si
m

Fi
x-

A

Si
m

Fi
x-

D

Si
m

Fi
x

jG
en

Pr
og

jK
al

i

N
op

ol

A
C

S

ss
Fi

x

E
L

IX
IR

JA
ID

Si
m

Fi
x-

A

Si
m

Fi
x-

D

Si
m

Fi
x

jG
en

Pr
og

jK
al

i

N
op

ol

A
C

S

ss
Fi

x

E
L

IX
IR

JA
ID

Chart Closure Math Lang Time

correct patch incorrect patch

SimFix-A : 37.9% Nopol : 14.3%
SimFix-D : 46.0% ACS : 78.3%

SimFix : 60.7% ssFix : 33.3%
jGenProg : 18.5% ELIXIR : 63.4%

jKali : 4.5% JAID : 29.0%

Figure 3: Statistics of the repair results for different techniques on Defects4J benchmark.

SimFix

HDRepair

ACS OTHERS 13
Chart(C)-3,7
Lang(L)-16,27,39,41,50,60
Math(M)-63,71,98
Closure(Cl)-57
Time(T)-7

ELIXIR

C-20
L-58
M-41,79
Cl-63,115

6

L-33
M-33,57,59

4

M-751

M-5
1 C-1

M-50,70
L-43

M-53
Cl-14,73

Cl-62

M-35
1

4

3

1

For simplicity, the diagram only shows some of the approaches listed in Table 4, and

the OTHERS category includes the remaining. Besides, the Venn diagram only includes

those bugs that has been successfully fixed by SimFix , for the whole repaired bugs

for each technique, please refer to Table 4.

Figure 4: The overlaps among different techniques.

5 less bugs and its precision decreases 14 percentage points. The

reason of the performance loss is similar to SimFix-A: the enlarged
search space contains more patches and more plausible patches.

RQ 5. How effective is the fine-grained granularity?
Different from most existing approaches [24, 30, 48, 49, 59, 71]

that reuse similar code at the statement granularity, our approach

utilizes a fine-grained differencing algorithm to reuse similar code at

the AST subtree granularity. To investigate how important this fine-

grained granularity is, we manually analyzed the patches produced

by our approach to see how many bugs can still be repaired if only

permitting Statement level code reusing like existing approaches.

After examining all the patches, we found that 17 less bugs would be

repaired. The result suggests that the fine-grained code differencing

and reusing contributed significantly to the effectiveness of our

approach.

5 DISCUSSION
Size of the patches. Due to the exponential increase of the search
space, program repair techniques seldom repair bugs that require

large patches, i.e., patches that contains many modifications. How-

ever, when examining the patches generated by SimFix , we found
that some large and correct patches were generated. For example,

the listing below (Listing 4) shows a patch for Math-71 in Defects4J

benchmark. This patch inserts four statements to fix the bug. This

observation suggests that utilizing similar code with fine-grained

differencing is effective in reducing the search space and has the

potential to scale up patch size. Future work is needed to better

understand its potential.

� �
if(Math.abs(dt) <= Math.ulp(stepStart)){

+ interpolator.storeTime(stepStart);
+ System.arraycopy(y, 0, yTmp , 0, y0.length);
+ hNew = 0;
+ stepSize = 0;

loop = false;
} else {...}
� �

Listing 4: The correct patch ofMath-71 generated by SimFix

Generalizability of the results. Our experiment was only con-

ducted on the Defects4J benchmark, which is a widely-used dataset

in automatic program repair research. Defects4J consists of five

large projects developed by different developers and contains 357

bugs in total. Though in general Defects4J is a very high quality

framework, most of the projects are either compilers or program-

ming libraries, and it is not clear that the defects on these projects

could represent the defects on, for example, small client applica-

tions. In particular, when the project size shrinks, it is yet unknown

how many similar snippets exist for defect repair. These problems

remain as future work to be explored.

Incorporating richer information. Our current implementa-

tion mainly relies on program original syntactic information with-

out code normalization [26, 51, 58]. Especially, we treat code as

ASTs and derive changes by performing tree-based differencing.

This design ignores other potentially useful information, such as

the dependency between variables and statements, more precise

type information based on type inference, or the alias information

between variables. Such richer informationmay be utilized to create

better heuristics for code differencing and adaptation, or to filter

patches earlier to avoid the heavy validation from test cases.

6 RELATEDWORK
6.1 Automatic Program Repair
In recent years, automated program repair has been an active re-

search field. Many promising approaches have been proposed and

evaluated. In this section, we will compare our approach with some

existing techniques that are most related to our approach. For a

more complete survey of automated program repair techniques,

readers are redirected to recent surveys [13, 44].

The work of ssFix [64] is in parallel with ours and is very re-

lated. The ssFix approach also uses a differencing algorithm to reuse

similar code in a fine-grained granularity. Different from SimFix ,
ssFix does not utilize existing patches to reduce the search space,

ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands Jiajun Jiang, Yingfei Xiong, Hongyu Zhang, Qing Gao, Xiangqun Chen

which, as RQ-3 shows, leaded to 12 (54.5%) more repaired bugs

in our experiments. Furthermore, though both approaches apply

differencing to reuse similar code, the processes are different on

multiple aspects. First, ssFix searches similar code from a code base,

while SimFix searches within the same project and does not require

a code base. Second, ssFix depends on the Apache Lucene search en-

gine [4] to collect similar code snippets, which is designed for plain

text search but programs. On the contrary, our approach utilizes

a feature-vector based similar code identification, and can flexibly

capture different aspects. Third, ssFix only permits one modification

in a patch, while SimFix allows the combinations of modifications.

We believe these differences leaded to the performance difference

between the two approaches in our evaluation (14 more repaired

bugs and 27.4% increase in precision from ssFix to SimFix).
Another related work is GenProg [30, 60], which applies genetic

programming to mutate existing source code for patch generation.

However, it is significantly different with ours as GenProg only

utilizes existing code without the guidance of history patches. More-

over, the method of reusing existing code is quite different with ours

in several aspects: (1) it does not identify the similarity between

different code snippets; (2) it mutates existing program elements at

statement level; and (3) it does not perform adaptation when utiliz-

ing existing code snippets. As presented in RQ-5, code adaptation

and fine-grained AST matching are necessary for reusing existing

code snippets. RSRepair [48] changed the genetic algorithm of Gen-

Prog to random search and then Ji et al. [17] improved RSRepair by

leveraging code similarity when searching inserted code snippets.

Yokoyama et all. [71] adopted a similar idea that selects code lines in

code regions similar to the faulty code regions for patch generation.

However, all of them reuse similar code snippet at Statement level,

which is coarse-grained. Besides, neither of them performs code

adaptation when generating patches. On the contrary, our approach

not only permits more flexible and fine-grained program element

reuse but also performs code adaptation. Moreover, besides similar

code, our approach combines existing patches to further reduce the

search space.

SearchRepair [24] considers existing code reusing as well and

it performs variable renaming with constraint solving, which is

difficult to scale to complex programs. Besides, it does not utilize

existing patches. Recently, White et al. [62] proposed an automatic

program repair approach with deep learning, DeepRepair, which

depends on a neural network model to identify similarity between

code snippets. However, DeepRepair only replaces variables that

are out of scope at the buggy location but not a thorough replace-

ment and similarly, it does not incorporate external information,

i.e., existing patches, to guide patch generation either. Besides, the

experiment result shows that it did not find significantly more

patches than the jGenProg baseline. Similarly, Prophet [36] learns

a patch ranking model using machine learning algorithm based

on existing patches. On the contrary, SimFix learns an abstract

search space. Moreover, Prophet does not utilize similar code. Code-

Phage [56] utilizes exiting code to repair missing if-condition faults,

which is different with SimFix that targets to general faults. Besides,

CodePhage requires the donor program to accept the same input

as the faulty program while SimFix does not. Recently, Barr et

al. [6] proposed µScalpel to autotransplant code from one system

into another. However, it concerns the problem of inserting the

whole donor snippet while SimFix concerns about the changing

of faulty snippet based on the donor. Also, µScalpel requires the
donor snippet to be specified but SimFix does not. Furthermore,

both CodePhage and µScalpel do not utilize within-project code

like SimFix .
PAR [25] and Anti-pattern [57] manually define a set of patterns

for patch generating or filtering based on repair history. Similarly,

HDR [28] and ELIXIR [53] defined a set of repair operations or

expressions based on existing bug fixes as well, and furthermore,

they use a learnt model to prioritize candidate patches. All these

approaches are different with ours since our approach automatically

extracts modifications based on existing patches and similar code

and then intersects these two spaces for precise candidate patch

exploring.

6.2 Similar Code Analysis
Our approach depends on the search of similar code in a project,

which is related to the work on code clone detection [23, 27, 31,

54]. In particular, the structure similarity used in our approach is

inspired by DECKARD [19], a fast clone detection approach.

Many existing techniques dedicate to the identification of the

differences between two code snippets and the generation of the

transformations from one to the other. ChangeDistiller [10] is a

widely-used approach for source code transformation at AST level.

GumTree [9] improves ChangeDistiller by removing the assump-

tion that leaf nodes contains a significant amount of text. In our

approach we implemented a tree matching algorithm that is similar

to those approaches, but nevertheless is designed for the modifica-

tions we considered.

6.3 Extracting Transformations from Patches
A number of existing approaches [12, 34, 42, 43, 52] aim to auto-

matically extract transformations from existing patches. The goal

of these approaches is to extract actionable repair patterns in these

patches so that the repair patterns can be applied in different places

to repair the same type of bugs. On the other hand, the main goal

of our abstract space design is to exclude the unlikely patches by

analyzing a small set of patches. As a result, our abstract space def-

inition is more coarse-grained and is not actionable. Nevertheless,

our abstract space can generalize from a small set of patches and

plays an important role to the overall performance as shown by

RQ-3 in the evaluation.

7 CONCLUSION
In this paper, we propose a novel automatic program repair ap-

proach, which is based on fine-gained code differencing and uti-

lizes both existing patches and similar code. More concretely, by

analyzing existing patches, we obtain a set of frequent abstract

modifications, which form an abstract space for program repair. By

analyzing similar code snippets in the same programwe extract con-

crete modifications, which forms a concrete space. Finally, we use

the intersections between the two spaces and perform fine-grained

code adaptation for patch generation. We have implemented a pro-

totype of our approach, called SimFix , and evaluated it on Defects4J.
SimFix successfully fixed 34 bugs in total, where 13 has never been

fixed by existing techniques. SimFix are publicly available at [18].

Shaping Program Repair Space with Existing Patches and Similar Code ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands

REFERENCES
[1] 2017. Apache Ant. https://github.com/apache/ant. (2017).

[2] 2017. Apache Groovy. https://github.com/apache/groovy. (2017).

[3] 2017. Apache Hadoop. https://github.com/apache/hadoop. (2017).

[4] 2017. Apache Lucene. https://lucene.apache.org. (2017).

[5] Rui Abreu, Peter Zoeteweij, and Arjan J. C. van Gemund. 2006. An Evaluation of

Similarity Coefficients for Software Fault Localization (PRDC). IEEE Computer

Society, Washington, DC, USA, 39–46. https://doi.org/10.1109/PRDC.2006.18

[6] Earl T. Barr, Mark Harman, Yue Jia, Alexandru Marginean, and Justyna Petke.

2015. Automated Software Transplantation (ISSTA). ACM, New York, NY, USA,

257–269. https://doi.org/10.1145/2771783.2771796

[7] George EP Box and R Daniel Meyer. 1986. An analysis for unreplicated fractional

factorials. Technometrics 28, 1 (1986), 11–18.
[8] Liushan Chen, Yu Pei, and Carlo A. Furia. 2017. Contract-based program repair

without the contracts. In ASE. https://doi.org/10.1109/ASE.2017.8115674
[9] Jean-Rémy Falleri, Floréal Morandat, Xavier Blanc, Matias Martinez, and Martin

Monperrus. 2014. Fine-grained and accurate source code differencing. In ASE.
313–324. https://doi.org/10.1145/2642937.2642982

[10] B. Fluri, M. Wuersch, M. PInzger, and H. Gall. 2007. Change Distilling:Tree

Differencing for Fine-Grained Source Code Change Extraction. IEEE Transactions
on Software Engineering (Nov 2007), 725–743.

[11] Qing Gao, Yingfei Xiong, Yaqing Mi, Lu Zhang, Weikun Yang, Zhaoping Zhou,

Bing Xie, and Hong Mei. 2015. Safe Memory-Leak Fixing for C Programs. In

ICSE.
[12] Qing Gao, Hansheng Zhang, Jie Wang, and Yingfei Xiong. 2015. Fixing Recurring

Crash Bugs via Analyzing Q&A Sites. In ASE. 307–318.
[13] Daniela Micucci Gazzola, Luca and Leonardo Mariani. 2017. Automatic Software

Repair: A Survey. TSE PP, 99 (2017), 1–1. https://doi.org/10.1109/TSE.2017.2755013
[14] Divya Gopinath, Muhammad Zubair Malik, and Sarfraz Khurshid. 2011.

Specification-based Program Repair Using SAT (TACAS’11/ETAPS’11). 173–188.
[15] James Gosling. 2000. The Java language specification. Addison-Wesley Profes-

sional.

[16] Patricia Jablonski and Daqing Hou. 2007. CReN: A Tool for Tracking Copy-

and-paste Code Clones and Renaming Identifiers Consistently in the IDE. In

Proceedings of the 2007 OOPSLA Workshop on Eclipse Technology eXchange (eclipse
’07). ACM, New York, NY, USA, 16–20. https://doi.org/10.1145/1328279.1328283

[17] T. Ji, L. Chen, X. Mao, and X. Yi. 2016. Automated Program Repair by Using

Similar Code Containing Fix Ingredients. In COMPSAC, Vol. 1. 197–202.
[18] Jiajun Jiang. 2017. SimFix. https://github.com/xgdsmileboy/SimFix. (2017).

[19] Lingxiao Jiang, Ghassan Misherghi, Zhendong Su, and Stephane Glondu. 2007.

DECKARD: Scalable and Accurate Tree-Based Detection of Code Clones (ICSE
’07). 96–105.

[20] Guoliang Jin, Linhai Song, Xiaoming Shi, Joel Scherpelz, and Shan Lu. 2012.

Understanding and Detecting Real-world Performance Bugs. In PLDI. ACM.

https://doi.org/10.1145/2254064.2254075

[21] René Just, Darioush Jalali, and Michael D Ernst. 2014. Defects4J: A database of

existing faults to enable controlled testing studies for Java programs. In ISSTA.
437–440.

[22] Shalini Kaleeswaran, Varun Tulsian, Aditya Kanade, and Alessandro Orso. 2014.

MintHint: Automated Synthesis of Repair Hints. In ICSE. 266–276. https://doi.
org/10.1145/2568225.2568258

[23] T. Kamiya, S. Kusumoto, and K. Inoue. 2002. CCFinder: a multilinguistic token-

based code clone detection system for large scale source code. IEEE Transactions
on Software Engineering 28 (Jul 2002), 654–670.

[24] Y. Ke, K. T. Stolee, C. L. Goues, and Y. Brun. 2015. Repairing Programs with

Semantic Code Search (T). In ASE. 295–306. https://doi.org/10.1109/ASE.2015.60
[25] Dongsun Kim, Jaechang Nam, Jaewoo Song, and Sunghun Kim. 2013. Automatic

patch generation learned from human-written patches. In ICSE. 802–811.
[26] Raghavan Komondoor and Susan Horwitz. 2000. Semantics-preserving procedure

extraction. In POPL. ACM, 155–169.

[27] R. Koschke, R. Falke, and P. Frenzel. 2006. Clone Detection Using Abstract Syntax

Suffix Trees. In 2006 13th Working Conference on Reverse Engineering. 253–262.
[28] Xuan-Bach D Le, David Lo, and Claire Le Goues. 2016. History Driven Program

Repair. In SANER. 213–224. https://doi.org/10.1109/SANER.2016.76
[29] Xuan-Bach D. Le, Duc-Hiep Chu, David Lo, Claire Le Goues, and Willem Visser.

2017. S3: syntax- and semantic-guided repair synthesis via programming by

examples. In ESEC/FSE. 593–604. https://doi.org/10.1145/3106237.3106309
[30] C. Le Goues, ThanhVu Nguyen, S. Forrest, and W. Weimer. 2012. GenProg: A

Generic Method for Automatic Software Repair. TSE 38, 1 (Jan 2012), 54–72.

[31] Z. Li, S. Lu, S. Myagmar, and Y. Zhou. 2006. CP-Miner: finding copy-paste and

related bugs in large-scale software code. TSE 32 (March 2006), 176–192.

[32] Chen Liu, Jinqiu Yang, Lin Tan, and Munawar Hafiz. 2013. R2Fix: Automatically

Generating Bug Fixes from Bug Reports. In ICST. https://doi.org/10.1109/ICST.
2013.24

[33] Xuliang Liu and Hao Zhong. 2018. Mining StackOverflow for Program Repair.

In 2018 IEEE 25th International Conference on Software Analysis, Evolution and
Reengineering. 118–129. https://doi.org/10.1109/SANER.2018.8330202

[34] Fan Long, Peter Amidon, and Martin Rinard. 2017. Automatic Inference of Code

Transforms for Patch Generation. In ESEC/FSE. 727–739. https://doi.org/10.1145/
3106237.3106253

[35] Fan Long and Martin Rinard. 2016. An Analysis of the Search Spaces for Generate

and Validate Patch Generation Systems. In ICSE. 702–713. https://doi.org/10.

1145/2884781.2884872

[36] Fan Long and Martin Rinard. 2016. Automatic patch generation by learning

correct code. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages. 298–312. https://doi.org/10.1145/2837614.
2837617

[37] Matias Martinez, Thomas Durieux, Romain Sommerard, Jifeng Xuan, and Martin

Monperrus. 2017. Automatic repair of real bugs in java: a large-scale experiment

on the defects4j dataset. Empirical Software Engineering 22, 4 (01 Aug 2017),

1936–1964.

[38] Matias Martinez and Martin Monperrus. 2015. Mining Software Repair Models

for Reasoning on the Search Space of Automated Program Fixing. Empirical
Softw. Engg. (2015), 176–205. https://doi.org/10.1007/s10664-013-9282-8

[39] SergeyMechtaev, Jooyong Yi, and Abhik Roychoudhury. 2015. DirectFix: Looking

for Simple Program Repairs. In ICSE. 448–458. https://doi.org/10.1109/ICSE.2015.
63

[40] Sergey Mechtaev, Jooyong Yi, and Abhik Roychoudhury. 2016. Angelix: Scalable

Multiline Program Patch Synthesis via Symbolic Analysis. In ICSE.
[41] Hong Mei and Lu Zhang. 2018. Can big data bring a breakthrough for software

automation? Science China Information Sciences 61(5), 056101 (2018). https:

//doi.org/10.1007/s11432-017-9355-3

[42] Na Meng, Miryung Kim, and Kathryn S. McKinley. 2011. Sydit: Creating and

Applying a Program Transformation from an Example (ESEC/FSE ’11). 440–443.
https://doi.org/10.1145/2025113.2025185

[43] Na Meng, Miryung Kim, and Kathryn S. McKinley. 2013. LASE: Locating and

Applying Systematic Edits by Learning from Examples (ICSE ’13). 502–511.
[44] Martin Monperrus. 2017. Automatic Software Repair: a Bibliography. Technical

Report. 1–24 pages. https://doi.org/10.1145/3105906

[45] Tung Thanh Nguyen, Hoan Anh Nguyen, Nam H. Pham, Jafar Al-Kofahi, and

Tien N. Nguyen. 2010. Recurring Bug Fixes in Object-oriented Programs (ICSE).
315–324.

[46] Thanaporn Ongkosit and Shingo Takada. 2014. Responsiveness Analysis Tool

for Android Application. In Proceedings of the 2Nd International Workshop on
Software Development Lifecycle for Mobile (DeMobile 2014). ACM. https://doi.org/

10.1145/2661694.2661695

[47] Spencer Pearson, José Campos, René Just, Gordon Fraser, Rui Abreu, Michael D.

Ernst, Deric Pang, and Benjamin Keller. 2017. Evaluating and Improving Fault

Localization (ICSE ’17). 609–620.
[48] Yuhua Qi, Xiaoguang Mao, Yan Lei, Ziying Dai, and Chengsong Wang. 2014. The

Strength of Random Search on Automated Program Repair. In ICSE. 254–265.
https://doi.org/10.1145/2568225.2568254

[49] Yuhua Qi, Xiaoguang Mao, Yanjun Wen, Ziying Dai, and Bin Gu. 2012. More

efficient automatic repair of large-scale programs using weak recompilation.

SCIENCE CHINA Information Sciences 55, 12 (2012), 2785–2799.
[50] Zichao Qi, Fan Long, Sara Achour, and Martin Rinard. 2015. An analysis of patch

plausibility and correctness for generate-and-validate patch generation systems.

In ISSTA. 257–269.
[51] Donald B Roberts. 1999. Practical Analysis for Refactoring. Technical Report.

Champaign, IL, USA.

[52] Reudismam Rolim, Gustavo Soares, Loris D’Antoni, Oleksandr Polozov, Sumit

Gulwani, Rohit Gheyi, Ryo Suzuki, and Björn Hartmann. 2017. Learning syntactic

program transformations from examples. In ICSE. 404–415.
[53] Ripon K. Saha, Yingjun Lyu, Hiroaki Yoshida, and Mukul R. Prasad. 2017. ELIXIR:

Effective Object Oriented Program Repair. In ASE. IEEE Press. http://dl.acm.org/

citation.cfm?id=3155562.3155643

[54] Hitesh Sajnani, Vaibhav Saini, Jeffrey Svajlenko, Chanchal K. Roy, and Cristina V.

Lopes. 2016. SourcererCC: Scaling Code Clone Detection to Big-code. In ICSE.
ACM, New York, NY, USA, 1157–1168. https://doi.org/10.1145/2884781.2884877

[55] Gerald Salton (Ed.). 1988. Automatic Text Processing. Addison-Wesley Longman

Publishing Co., Inc., Boston, MA, USA.

[56] Stelios Sidiroglou-Douskos, Eric Lahtinen, Fan Long, and Martin Rinard. 2015.

Automatic Error Elimination by Horizontal Code Transfer Across Multiple Ap-

plications (PLDI ’15). 43–54.
[57] Shin Hwei Tan, Hiroaki Yoshida, Mukul R Prasad, and Abhik Roychoudhury.

2016. Anti-patterns in Search-Based Program Repair. In FSE. https://doi.org/10.
1145/2950290.2950295

[58] ChenglongWang, Jiajun Jiang, Jun Li, Yingfei Xiong, Xiangyu Luo, Lu Zhang, and

Zhenjiang Hu. 2016. Transforming Programs between APIs with Many-to-Many

Mappings. In ECOOP. 25:1–25:26.
[59] W. Weimer, Z.P. Fry, and S. Forrest. 2013. Leveraging program equivalence

for adaptive program repair: Models and first results. In ASE. 356–366. https:
//doi.org/10.1109/ASE.2013.6693094

[60] Westley Weimer, ThanhVu Nguyen, Claire Le Goues, and Stephanie Forrest. 2009.

Automatically finding patches using genetic programming. In ICSE. 364–374.

https://doi.org/10.1109/PRDC.2006.18
https://doi.org/10.1145/2771783.2771796
https://doi.org/10.1109/ASE.2017.8115674
https://doi.org/10.1145/2642937.2642982
https://doi.org/10.1109/TSE.2017.2755013
https://doi.org/10.1145/1328279.1328283
https://doi.org/10.1145/2254064.2254075
https://doi.org/10.1145/2568225.2568258
https://doi.org/10.1145/2568225.2568258
https://doi.org/10.1109/ASE.2015.60
https://doi.org/10.1109/SANER.2016.76
https://doi.org/10.1145/3106237.3106309
https://doi.org/10.1109/ICST.2013.24
https://doi.org/10.1109/ICST.2013.24
https://doi.org/10.1109/SANER.2018.8330202
https://doi.org/10.1145/3106237.3106253
https://doi.org/10.1145/3106237.3106253
https://doi.org/10.1145/2884781.2884872
https://doi.org/10.1145/2884781.2884872
https://doi.org/10.1145/2837614.2837617
https://doi.org/10.1145/2837614.2837617
https://doi.org/10.1007/s10664-013-9282-8
https://doi.org/10.1109/ICSE.2015.63
https://doi.org/10.1109/ICSE.2015.63
https://doi.org/10.1007/s11432-017-9355-3
https://doi.org/10.1007/s11432-017-9355-3
https://doi.org/10.1145/2025113.2025185
https://doi.org/10.1145/3105906
https://doi.org/10.1145/2661694.2661695
https://doi.org/10.1145/2661694.2661695
https://doi.org/10.1145/2568225.2568254
http://dl.acm.org/citation.cfm?id=3155562.3155643
http://dl.acm.org/citation.cfm?id=3155562.3155643
https://doi.org/10.1145/2884781.2884877
https://doi.org/10.1145/2950290.2950295
https://doi.org/10.1145/2950290.2950295
https://doi.org/10.1109/ASE.2013.6693094
https://doi.org/10.1109/ASE.2013.6693094

ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands Jiajun Jiang, Yingfei Xiong, Hongyu Zhang, Qing Gao, Xiangqun Chen

https://doi.org/10.1109/ICSE.2009.5070536

[61] Ming Wen, Junjie Chen, Rongxin Wu, Dan Hao, and Shing-Chi Cheung. 2018.

Context-Aware Patch Generation for Better Automated Program Repair. In ICSE.
[62] M. White, M. Tufano, M. Martinez, M. Monperrus, and D. Poshyvanyk. 2017.

Sorting and Transforming Program Repair Ingredients via Deep Learning Code

Similarities. ArXiv e-prints (July 2017). arXiv:cs.SE/1707.04742

[63] Qi Xin and Steven Reiss. 2017. Identifying Test-Suite-Overfitted Patches through

Test Case Generation. In ISSTA. 226–236. https://doi.org/10.1145/3092703.3092718
[64] Qi Xin and Steven P. Reiss. 2017. Leveraging Syntax-related Code for Automated

Program Repair (ASE). http://dl.acm.org/citation.cfm?id=3155562.3155644

[65] Yingfei Xiong, Zhenjiang Hu, Haiyan Zhao, Hui Song, Masato Takeichi, and

Hong Mei. 2009. Supporting automatic model inconsistency fixing. In ESEC/FSE.
315–324.

[66] Yingfei Xiong, Xinyuan Liu, Muhan Zeng, Lu Zhang, and Gang Huang. 2018.

Identifying Patch Correctness in Test-Based Program Repair. In ICSE.
[67] Yingfei Xiong, Jie Wang, Runfa Yan, Jiachen Zhang, Shi Han, Gang Huang,

and Lu Zhang. 2017. Precise Condition Synthesis for Program Repair. In ICSE.

https://doi.org/10.1109/ICSE.2017.45

[68] Yingfei Xiong, Hansheng Zhang, Arnaud Hubaux, Steven She, Jie Wang, and

Krzysztof Czarnecki. 2015. Range fixes: Interactive error resolution for software

configuration. Software Engineering, IEEE Transactions on 41, 6 (2015), 603–619.

[69] Jifeng Xuan and Martin Monperrus. 2014. Test Case Purification for Improving

Fault Localization. In FSE. New York, NY, USA, 52–63. https://doi.org/10.1145/

2635868.2635906

[70] Jinqiu Yang, Alexey Zhikhartsev, Yuefei Liu, and Lin Tan. 2017. Better Test Cases

for Better Automated Program Repair. In FSE. 831–841. https://doi.org/10.1145/
3106237.3106274

[71] Haruki Yokoyama, Yoshiki Higo, Keisuke Hotta, Takafumi Ohta, Kozo Okano, and

Shinji Kusumoto. 2016. Toward Improving Ability to Repair Bugs Automatically:

A Patch Candidate Location Mechanism Using Code Similarity (SAC ’16). 1364–
1370.

https://doi.org/10.1109/ICSE.2009.5070536
http://arxiv.org/abs/cs.SE/1707.04742
https://doi.org/10.1145/3092703.3092718
http://dl.acm.org/citation.cfm?id=3155562.3155644
https://doi.org/10.1109/ICSE.2017.45
https://doi.org/10.1145/2635868.2635906
https://doi.org/10.1145/2635868.2635906
https://doi.org/10.1145/3106237.3106274
https://doi.org/10.1145/3106237.3106274

	Abstract
	1 Introduction
	2 Motivating Example
	3 Approach
	3.1 Search Space
	3.2 Modification Extraction
	3.3 Mining Stage
	3.4 Repairing Stage

	4 Evaluation
	4.1 Experiment Setup
	4.2 Research Questions and Results

	5 Discussion
	6 Related Work
	6.1 Automatic Program Repair
	6.2 Similar Code Analysis
	6.3 Extracting Transformations from Patches

	7 Conclusion
	References

