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ABSTRACT
Deep learning applications become increasingly popular in impor-
tant domains such as self-driving systems and facial identity sys-
tems. Defective deep learning applications may lead to catastrophic
consequences. Although recent research e�orts were made on test-
ing and debugging deep learning applications, the characteristics
of deep learning defects have never been studied. To �ll this gap,
we studied deep learning applications built on top of TensorFlow
and collected program bugs related to TensorFlow from StackOver-
�ow QA pages and Github projects. We extracted information from
QA pages, commit messages, pull request messages, and issue dis-
cussions to examine the root causes and symptoms of these bugs.
We also studied the strategies deployed by TensorFlow users for
bug detection and localization. These �ndings help researchers and
TensorFlow users to gain a better understanding of coding defects
in TensorFlow programs and point out a new direction for future
research.
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1 INTRODUCTION
We are entering an era of arti�cial intelligence with deep learning
(DL) applications built on top of multi-layered neural networks.
Various frameworks such as TensorFlow [9], Ca�e [18], MXNet
[5], PyTorch [27] and Theano [36] have been proposed to facilitate
programming of such applications.

The programming paradigm of DL applications di�ers signi�-
cantly from that of traditional applications. In traditional applica-
tions, programs are written to directly encode the model to solve
a target problem. However, programs in DL applications do not
encode the problem-solving model directly. Instead, the programs
of a DL application encode the network structure of a desirable
DL model and the process by which the problem-solving model is
trained using a large corpus of data. Both the network structure
and the training process are subject to the careful setting of hyper-
parameters. The development of DL applications often faces tasks
that are seldom encountered in developing their traditional coun-
terparts, e.g., con�guring a complex network structure (also known
as computation graph) comprising layers of nodes. In addition, the
training process involves intensive looping with computation sensi-
tive to hyper-parameter tunings such as learning rate and dropout
rate.

As DL is increasingly adopted for mission-critical applications,
defective DL applications can lead to catastrophic consequences. For
example, defective self-driving systems may lead to car accidents,
and defective facial identity systems may lead to cracking of bank
accounts. Various research e�orts on the testing [28, 34, 38, 40] and
debugging [17, 23] of DL applications were recently made. Despite
these e�orts, the characteristics of defects in DL applications have
never been systematically studied. In particular, it is still unclear
what new challenges the paradigm shift from traditional program
languages to DL languages bring to fault detection and localization.
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For example, if there is a missing defect in constructing a DL model,
how likely can it be caught when we train the model?

This paper presents the �rst empirical study on detecting and
locating coding mistakes in DL applications programmed on top
of TensorFlow (TF), which is the most popular DL framework on
Github. There are 36,079 Github projects using TensorFlow, which
is 4.8 times of those (7,485 projects) using PyTorch, the second most
popular DL framework on Github. The study aims to provide a
systematic understanding of the coding defects that TensorFlow
users have made in programming DL applications. Please note
that defects in a TensorFlow application may come from its train-
ing data, program code, execution environment or the TensorFlow
framework. Our empirical study focuses on the defects in Tensor-
Flow programs. To ease presentation, we refer to the defects in TF
programs as bugs. We also refer to those who use TensorFlow to
develop DL applications as TensorFlow users (or TF users).

Our study collected 175 TensorFlow coding bugs from GitHub
issues and StackOver�ow questions.We analyzed these bugs quanti-
tatively and qualitatively, and reported (1) their symptoms and root
causes, (2) the challenges in their detection, and (3) the challenges
in their localization.

Our study has led to multiple �ndings. In particular, we identify
four types of symptoms, seven types of root causes, �ve challenges
in detection and fault localization, and �ve strategies that the TF
users have adopted to address the challenges. We highlight the
challenges below.

• Due to the stochastic nature of the learning process, the cor-
rectness criteria is probabilistic and TF users rely on statisti-
cal values to determine test results. New testing techniques
are needed to support such tests.
• Due to the huge computation model of a neural network,
coincidental correctness [7, 10, 16, 25, 31] occurs on a larger
scale but less observable.
• Non-determinism is prevalent in the training process such
that bug reproduction becomes di�cult.
• Due to the densely inter-dependent of a neural network,
traditional debugging techniques such as slicing [41] provide
little help, and new research techniques for debugging is
needed.
• Due to the black-box nature of neural networks, TF users
often cannot examine the states at di�erent program points,
and rely on black-box techniques such as replacing parame-
ters or switching training set.

These �ndings help researchers and TF users to gain a better un-
derstanding of deep learning defects and point out a new direction
for future research.

To summarize, this paper makes the following contributions.

• A dataset of TensorFlow bugs collected from StackOver�ow
and GitHub.
• A study of the symptoms and root causes of the bugs, which
could assist future studies on TensorFlow application testing
and debugging techniques.
• A study of the new challenges in detecting and localizing
the bugs and the current strategies to address them, which
opens new problems for future research.

Figure 1: A faulty TensorFlow example extracted fromStack-
Over�ow #33699174

The rest of the paper is organized as follows. In Section 2, we pro-
vide a background of programming over the TensorFlow framework.
In Section 3, we propose three research questions. In Section 4, we
present how we collected our data. In Section 5, 6, and 7, we answer
these three research questions respectively.

2 BACKGROUND
Deep learning (DL) is an arti�cial intelligence computational par-
adigm that makes classi�cation based on hierarchical layers of
neurons that are interconnected to form a neural network. Each
neuron is a simple processing unit that accepts inputs from neurons
in the preceding layer, applies a non-linear activation function to
these inputs, and passes the resulting value to other connected neu-
rons in the succeeding layer. Each connection edge in the neural
network is augmented by a weight parameter (Wi ) that character-
izes its connection strength. A DLmodel is often trained by gradient
descent using back-propagation before deployment [12], usually
in a non-deterministic way. The training is designed to search for
these weight parameters’ values that collectively minimize a cost
function over the dataset. In supervised learning, the cost function
quanti�es the error, known as “loss"1, between the labeled values
from the training data and the classi�ed values outputted by the
model [12]. For example, a cost function can be stated to calculate
the cross entropy between the two sets of values. In unsupervised
learning, the cost function can quantify the distance between the en-
coded and decoded representations in the underlying autoencoder
neural network.

Figure 1 gives an example of a TensorFlow program2. The pro-
gram consists of two major phases: construction and execution.
First, a computation graph is con�gured at the construction phase

1 https://en.wikipedia.org/wiki/Loss_function. We use “loss" instead of the cost func-
tion to ease presentation.
2 https://github.com/loliverhennigh/All-Convnet-TensorFlow-MNIST-Tutorial/blob
/master/all_conv_mnist.py
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(Lines 2-14). Second, a session object is created to launch the con-
structed computation graph and build a neural network. The execu-
tion phase can be further divided into two sub-phases: training and
testing. In this training phase (Lines 16-21), a set of labeled samples
are used to train the neural network, minimizing the model loss
by means of cross entropy. A gradient descent algorithm is often
deployed to carry out the minimization. In the training phase, the
network will be trained for numerous iterations. After a model is
trained, in the testing phase, it can be applied to classify samples
in a dataset (Line 22).

3 RESEARCH QUESTIONS
Our study aims to answer the following three research questions.
• RQ1: What are the symptoms and root causes of the bugs?
• RQ2: What new challenges exist to detect the bugs and how
do TF users handle them?
• RQ3: What new challenges exist to localize the bugs and
how do TF users handle them?

The �rst research question concerns the characteristics of the bugs.
The symptoms help us understand the consequences of the bugs
and are useful in designing detection method. The root causes help
us understand the nature of the bugs and the connections between
root causes and symptoms are useful in designing fault localization
methods. The second and third research questions concern the
new challenges imposed by the paradigm shift from traditional
program to TF programs, with an emphasis on fault detection and
localization. When answering these questions about challenges, we
are also concerned about the solutions currently used by TF users.
Understanding these solutions helps the development of new fault
detection and localization techniques.

4 DATA COLLECTION
We collected TensorFlow bugs from two sources: StackOver�ow
pages and GitHub commits. StackOver�ow pages contain bugs that
might be di�cult to debug: at least the TF user could not resolve
the bug quickly and has to ask a question for assistance. On the
other hand, GitHub commits contain bugs that might be di�cult to
detect: at least the TF user did not discover it at the �rst place and
committed into the project. Putting the two sources together, we
have a dataset of interest: the bugs those cause problems to the TF
users and those are worth studying.

To collect bugs from StackOver�ow pages, we used a search term
“tensor�ow answers:1 -how -install -build” in StackOver�ow’s search
engine. The parameter “answers:1” ensures that only questions with
at least one answer were considered. And other parameters “-how
-install -build” were used to �lter out discussions about installment
and building of TensorFlow which we do not concern about. Then
we manually reviewed top 500 question returned by StackOver�ow
and found 87 questions related to TensorFlow application bugs.
Please note that StackOver�ow may contain both novices’ and
experts’ posts, and we believe both are important and should be
included in the study. The statistics of the QA pages can be found
in Table 1.

To collect bugs from GitHub commits, we searched for projects
with keyword “tensor�ow” in GitHub’s search engine. Among the
search results, we selected 11 target projects that arewell-maintained

with the highest numbers of commits and stars for further exam-
ination. The statistics of these projects are shown in Table 2. We
take into consideration commits between start date and end date to
collect bugs in each project. Then we searched commit messages
with keywords “bug, �x, wrong, error, nan, inf, issue, fault, fail, crash”
in each project. In addition, we �ltered out “typo” and merged pull
requests to eliminate irrelevant and duplicate commits. We man-
ually inspected the source code, commit messages, pull request
messages, and issue messages to identify coding bugs. As a result,
we found 82 commits which contain 88 bugs related to TensorFlow
application bugs on GitHub. For each commit, we read the commit
and pull request message to see if there were any associated issues,
and included the discussion thread of the issue into consideration.

The subjects were collected between July 2017 and May 2018.
We have calculated the time spending from posting the issues until
its resolving on Github issues and StackOver�ow QA pages. In
Github issues, the mean is 27,845 minutes and the median is 5,122
minutes. In StackOver�ow QA pages, the mean is 33,312 minutes
and the median is 177 minutes. When manual inspections are
involved, two authors performed the inspection separately and
discussed inconsistent issues until agreement. During the process,
one StackOver�ow bug and eight GitHub bugs identi�ed by one
author were removed from the discussion.

Putting together, we got a dataset3 of 175 bugs, including 87 col-
lected from StackOver�ow and 88 collected from GitHub. The scale
of our dataset is similar to other existing studies that require manual
inspection, e.g., Jin et al. conducted a study of performance bugs
and inspected 109 performance bugs [19], and Nasehi et al. con-
ducted a study on what makes a good code example and analyzed
163 StackOver�ow QA pages [26].

5 RQ1: SYMPTOMS AND ROOT CAUSES
5.1 Information Sources for Analysis
To answer the �rst research question, we analyzed each bug in
our dataset to identify its root causes and symptoms. For GitHub
bugs, the root causes can be identi�ed by the changes made in
the commits. We identi�ed the symptoms of bugs by reading the
commit message, pull request messages and the associated issues.
For StackOver�ow bugs, we learnt the root causes of bugs by read-
ing the answers that provide a solution. We identi�ed these bugs’
symptoms from the question description. Besides, we also tried
to reproduce the bugs to further understand their symptoms. We
were able to reproduce 75 out of 88 Github bugs and 76 out of 87
StackOver�ow bugs. The rest of the bugs were not reproducible be-
cause of dead links, missing datasets, or the requirement of speci�c
hardware. We summarized the common root causes and symptoms
of collected bugs into major categories and classi�ed each bug
accordingly. Two authors performed classi�cation separately, no
disagreement was found on StackOver�ow bugs and �ve Github
bugs were classi�ed di�erently.

5.2 Results
The statistics of the symptoms (rows) and root causes (columns)
that we found from our analysis are given in Table 3. We identi�ed
3Our dataset is available at https://github.com/ForeverZyh/TensorFlow-Program-B
ugs.
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Table 1: Statistics of QA pages from StackOver�ow

Bug Count answersmin answersmax answersmean answersmedian

87 1 7 1.53 1

Table 2: Statistics of Projects from Github

Projects Start Date: End Date1 LOC (Python) Commits Issues Id’d Bugs Assocd Issues
tensor�ow/models 2016-02-05: 2018-01-27 112553 1678 1974 40 30
davidsandberg/facenet 2017-01-02: 2018-05-12 6699 566 673 5 1
google/seq2seq 2017-03-02: 2018-01-27 5955 880 228 7 0
chiphuyen/stanford-tensor�ow-tutorials 2016-11-05: 2018-05-12 4799 106 74 1 0
m�gurnov/sact 2017-03-23: 2018-01-27 2783 60 5 1 0
blackecho/Deep-Learning-TensorFlow 2015-08-17: 2018-01-27 2630 245 54 5 1
aymericdamien/TensorFlow-Examples 2015-11-11: 2018-01-27 1620 197 133 1 1
Conchylicultor/DeepQA 2016-07-07: 2018-01-27 1372 181 139 1 1
dennybritz/reinforcement-learning 2016-08-24: 2018-01-27 1181 205 89 5 1
carpedm20/DCGAN-tensor�ow 2015-12-11: 2018-01-27 901 265 192 17 17
bamos/dcgan-completion.tensor�ow 2016-08-09: 2018-01-27 646 68 44 5 0
Total 141139 4451 3605 88 52
1 LOC, commits, and issues are counted at End Date.

Table 3: Bug Causes and Symptoms

IPS1 UT CCM APIC APIM SI Others Total

Error 42 0 12 9 3 0 8 36 22 5 1 0 2 10 52 60
Low E�ectiveness 13 10 3 0 9 1 0 0 1 1 0 0 1 1 27 13
Low E�ciency 0 0 0 0 1 1 0 0 4 0 1 1 1 0 7 2
Unknown 0 11 0 0 1 1 0 0 0 0 0 0 0 1 1 13
Total 17 21 15 9 14 3 8 36 27 6 2 1 4 12 87 88
1 The abbreviation of each bug type can be seen in RQ1. For instance, IPS stands for Incorrect Model Parameter or
Structure.

2 The �rst and second columns of each bug type denote the number of issues from StackOver�ow and Github, respec-
tively.

three common types of symptoms exhibited by 161 (92%) of our
collected bugs. We grouped the remaining 14 (8%) ones that do not
have observable symptoms under “Unknown”.

Symptom 1: Error. A TensorFlow error is analogous to exceptions
or crashes in conventional applications, such as NaN errors. Errors
can be raised by the TensorFlow framework at the construction or
the execution phase.
Symptom 2: Low E�ectiveness. The program exhibits extraordi-
narily poor accuracy, loss, or other unexpected outputs during the
execution phase.
Symptom 3: Low E�ciency. The program executes slowly or
even in�nitely during the construction or the execution phase.
Symptom 4: Unknown. There is no indication in discussions
about the consequences of a bug. Andwewere not able to reproduce
their failures. In particular, a number of bugs are detected by code
review, and their symptoms remain unknown.

Among the bug-inducing root causes, 159 (90.9%) of them are
related to TensorFlow and can be categorized into six major causes.

Figure 2: A recommended �x

The remaining 16 (9.1%) ones are not able to be classi�ed and cate-
gorized as “Others”.

As shown in Table 3, the most common symptom is Error in
our dataset and the most common root cause is APIC. The most
common root causes for every symptoms are APIC, IPS, APIM, and
IPS respectively. Besides, the only bug symptom of APIC is Error,
while bugs of CCM and Others cover all the symptoms.
Cause 1: Incorrect Model Parameter or Structure (IPS). Bugs
related to modeling mistakes arose from either an inappropriate
model parameter like learning rate or an incorrect model struc-
ture like missing nodes or layers. This kind of modeling bugs is

132



An Empirical Study on TensorFlow Program Bugs ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands

(a) A faulty TensorFlow example

(b) A recommended �x

Figure 3: A faulty TensorFlow example extracted fromStack-
Over�ow #34079787 and a recommended �x

a distinctive type in TF programs, leading to anomalous behav-
iors at execution phase. The major symptom of this cause is Low
E�ectiveness such as low accuracy and a huge loss.

We found these three observations hold for most of the bugs in
this root cause.

(1) It usually requires many training cycles to catch the fail-
ure, and the number of cycles required depends on hyper-
parameter settings. Although the faulty statement is reached
in most program executions many times, failures occurred
infrequently.

(2) In our dataset, failures usually occur at the training stage.
Testing a DL model after it has been trained is unlikely to
catch these failures.

(3) When its symptom is Error, the error message is usually con-
fusing. The stacktrace reporting the crash in node does not
pinpoint the faulty code. StackOver�ow discussions suggest
that fault determination for TF programs is non-trivial even
for a small program.

Figure 1 shows the example extracted from a program written
as a programming tutorial by a TensorFlow expert on Github. The
program ran smoothly with the original dataset, but a TF user
found the runtime error when running it using another dataset and
initiated the discussion on StackOver�ow. For some datasets, the
program crashed with a "ReluGrad input is not �nite" error after
around 8,000 training iterations. The crash occurred much sooner
when the value of a hyper-parameter e−4 was replaced by e−3 (Line
14). The error message reporting the crash in node h_fc3 (Line 10)
does not pinpoint the faulty code in the expression (Line 13). When
y_ equals to 0 and the value of y_conv approaches 0, the expression
is evaluated as 0 log 0.

Figure 2 shows the �x recommended in StackOver�ow. The �x
involves a structural change in the model’s computation graph by
inserting a node adding a constant value e−9 to the node of y_conv.
Cause 2: Unaligned Tensor (UT). A bug spotted in computation
graph construction phase when the shape of the input tensor does
not match what it is expected is called an unaligned tensor bug.
The major symptom of this cause is Error, since TensorFlow has
assertions in API to check the shape of input tensors. Compared

Figure 4: A faulty TensorFlow example extracted fromStack-
Over�ow #44676248

with conventional bugs such as unmatched array size, some bugs
involved with TensorFlow tensors are quite unique, since Tensor-
Flow tensors are allowed to have a dynamic shape which can vary
from one iteration to another.

We present an example shown in Figure 3 extracted from a
question from StackOver�ow (#34079787): The program raised a
"ValueError: initial_value must have a shape speci�ed" error at Line
7. Tensor normal_dist has a partially-de�ned static shape, which
means the real shape of normal_dist can be known after w_shape
executed in the execution phase. In the construction phase, Ten-
sorFlow can only infer normal_dist’s shape is [Dimension(None),
Dimension(None)], which means a 2-dimensional matrix with an
unknown number of rows and columns. The �x is shown in Fig-
ure 3(b) provides TensorFlow with a static shape of normal_dist. In
this way, the variable self.w can be constructed correctly.
Cause 3: Confusion with TensorFlow Computation Model
(CCM). Bugs arise when TF users are not familiar with the under-
lying computation model assumed by TensorFlow. A typical case
is that TF users incorrectly constructed TensorFlow computation
graphs using control-�ow instead of data-�ow semantics. Another
typical case is the confusion between the graph construction and
evaluation phases. The major symptom of this kind of bug is the
poor results in accuracy and loss, which is classi�ed under the
category of “Low E�ectiveness”. When TF users make confusion
on the TensorFlow computational semantics, the program does not
encode a valid DL model. As such, the training process based on an
invalid DL model is ine�ective even though it does not necessarily
result in a TensorFlow error. This explains the poor performance
of the trained model in terms of accuracy and loss.

Figure 4 gives an example of this bug type. The user intended
to calculate a Fibonacci sequence using tf.assign. The program
constructed nodes as0, as1, and as2. Since TensorFlow imposes no
sequential order on their computation, they can be computed in an
arbitrary order. However, the questioner mistook that they follow
the conventional control-�ow semantics and would be computed
sequentially.

This type of bugs is more commonly found in StackOver�ow
discussions than Github projects. Since the deviated computation
can mostly be observed when these bugs are triggered, TF users
have usually solved them before committing the code. Indeed, they
can be common mistakes made by TF users and discussed at Stack-
Over�ow seeking advice.
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Figure 5: Two �xes from Github when upgraded to TF 1.0

Figure 6: Three �xes on one changed API because of the in-
correct script

(a) A faulty TensorFlow example

(b) A recommended �x

Figure 7: A faulty TensorFlow example extracted fromStack-
Over�ow #33788989 and a recommended �x

Cause 4: TensorFlow API Change (APIC). Anomalies can be
exhibited by a TF program upon a new release of TensorFlow li-
braries. In our dataset, these anomalies always appear in the form
of TensorFlow Errors analogous to exceptions in conventional ap-
plications. The kind of bugs arises when the new API version is not
backward compatible with its previous version. As compared with
conventional applications, this problem is more serious, accounting
for 36 (40.9%) issues in Github projects.

Studying the code commits of the �xing version, we found that
the bugs can be usually �xed by replacing the name of changed
APIs and/or changing the order of arguments. An example is shown
in Figure 5. Nevertheless, the �x may spread across many �les, and
thus it is important to ensure the changes are applied consistently.
Figure 6 shows an issue collected from Github when the �xes to a
changed TensorFlow API were not consistently applied.
Cause 5: TensorFlow API Misuse (APIM). Like conventional
application framework, TensorFlow supports a rich set of APIs.
Bugs were introduced by TF users who did not fully understand the
assumptions made by the APIs. When these APIs are used without
ful�lling the assumptions, the APIs cannot be successfully executed,
leading to a TensorFlow error, which is the major symptom of this

type of bugs. To support the learning-based DL algorithms, the
assumptions made by TensorFlow APIs can be uncommon to those
occurring in traditional API libraries.

Let us illustrate it using a code snippet extracted from Stack-
Over�ow (shown in Figure 7): the program could work smoothly
using GD optimizer (commented out at Line 4). However, if the TF
user replaced the GD optimizer with Adam optimizer (Line 3), the
program would crash with an error "Attempting to use uninitial-
ized value Variable_21/Adam" (Line 7). Notice that an initializer is
added (Line 2), which will add initializing operators to variables in
the computation graph. The program worked smoothly previously
since the GD optimizer will not add additional variables to the
computation graph. As for Adam-like optimizers (such as Adam,
Adagrad, Adadelta optimizer), it will add additional variables called
"slots", which will not be initialized (Line 6) and cause the crash
(Line 7). A recommended �x is shown in Figure 7(b): moving the
initializer to the line right after Adam optimizer.
Cause 6: Structure Ine�ciency (SI). Amajor di�erence between
SI and IPS is that SI leads to performance ine�ciency while the IPS
leads to functional incorrectness.

The small number of performance ine�ciency issues suggests
either performance issues rarely occur or these issues are di�cult
to detect.
Cause 7: Others. Other bugs that cannot be classi�ed are included
in this type. These bugs are usually programming mistakes unre-
lated to TensorFlow, such as Python programming errors including
unde�ned variables, or data preprocessing. As such, they are not
commonly discussed at StackOver�ow.

We observed that the last category of bug-inducing causes, some
of which are unrelated to TensorFlow, are only accountable for 12
(13.6%) of real issues we found in Github projects. This suggests that
TF-related issues are the main reason for bugs in TF applications,
calling for new testing and debugging techniques to speci�cally
address TF-related bugs.

6 RQ2: CHALLENGES ON FAULT DETECTION
6.1 Setup
To understand the challenges in bug detection, we �rst classi�ed
the bugs by answering two questions: (1) whether the bugs will
be always triggered by any input or not; (2) whether the bugs will
always lead to a crash or not. The �rst question concerns how cer-
tain it is to trigger the bug, and the second question concerns how
certain it is to capture the fault. If the answers to both questions
are “yes”, the bug can be certainly detected. Then, we manually
investigated the bugs where the answer to at least one question is
“no”, and tried to identify new challenges that are di�erent from de-
tecting bugs in traditional programs. For each challenge identi�ed,
we further read the issues and QA pages to �nd out what strategies
have already been used by TF users to deal with these challenges.
Finally, we analyzed the distribution of the challenges among the
six common bug-inducing causes.

6.2 Results
Table 4 shows the distribution of the answers to the two questions.
As we can see from the table, 82 (46.9%) bugs always lead to program
crash and are certain to be detected.
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Table 4: Distribution of the Two Questions

Bug Count Crash Not Crash
Always Trigger 82 31
Not Always Trigger 30 32

Table 5: Statistics of Challenges

Bug Count Challenge 1 Challenge 2 Challenge 3
StackOver�ow 11 1 24
Github 11 3 18

We have identi�ed three new challenges in the detection of
the rest 53.1% of the bugs. The numbers of bugs exhibiting these
challenges are shown in Table 5. We describe the three challenges
one by one below.
Challenge 1: Probabilistic Correctness.

In traditional programs, their input/output relation is usually
well de�ned. The relation accounts for the program correctness.
Given an input, if the program produces a wrong output, the pro-
gram is considered buggy. However, in TF programs, a correctness
with observable e�ects cannot be deterministically de�ned. Given
a trained model and an input, if the program produces an incorrect
classi�cation, it does not necessarily mean the program contains a
bug, as TF programs cannot guarantee 100% correct classi�cations.
Instead, the correctness is often interpreted as a probability: given
an input, the TF program is expected to produce a correct output
with a probability. The traditional testing framework does not work
well in handling probabilistic correctness. In most testing frame-
works, a test is de�ned as a test input to be passed to the program
and a test oracle to determine the correctness of the output, and an
unexpected output of a test indicates a bug. However, when proba-
bilistic correctness is involved, we cannot determine the existence
of a bug by observing an unexpected output of a single test.

By studying the issues and QA pages, we found that the TF
users mainly relied on statistics to address these issues. Though it
is di�cult to determine the probability from a single output, it is
usually a good approximation to perform statistics on many pairs
of input and output. In particular, we found the TF users mainly
relied on two statistical values: the accuracy and the loss of the
program on a training set or on a testing set. Two strategies for
determining correctness are used based on accuracy and loss.
Strategy 1: Comparing overall accuracy and loss with �xed
thresholds

When the trained model does not achieve the expected accu-
racy or loss on the training set or on the testing set, the model is
considered to have a bug.
Strategy 2: Comparing the relative changes of accuracy and
loss between iterations

While the previous strategy is useful in determining the correct-
ness of a model, the test execution may be expensive. The complete
training process of a TensorFlow model usually takes days to per-
form, and only after the training can we know the accuracy and
loss of the model. On the other hand, the training phase consists
of many iterations, and TensorFlow can report the intermediate

accuracy and loss after each iteration. As a result, we observe that
some TF users use the changes in these intermediate values be-
tween iterations to determine correctness. In general, the accuracy
is expected to show an increasing trend across iterations and the
loss is expected to a decreasing trend. If no clear trend of increasing
or decreasing is observed among several iterations, the TF users
consider the model as buggy.

These challenges and strategies call for new testing techniques
and framework. First, most testing frameworks do not support
statistical correctness, and mechanisms for determining statistical
correctness should be developed. Second, traditional test gener-
ation techniques are designed for absolute correctness, and how
to e�ciently trigger bugs characterized by statistical correctness
remains unknown. Third, statistical correctness is only an approxi-
mation of probabilistic correctness, but how we can measure the
con�dence remains unknown. New theories can be developed to
measure con�dence in testing TF programs.
Challenge 2: Coincidental Correctness.

Coincidental correctness indicates the situation where a test
execution triggers a bug, but by coincidence, no failure is detected.
We also observe coincidental correctness in our dataset. Though
bugs are triggered during the training process, the trained model
still achieves desirable accuracy and loss on the testing set. The
bugs were �nally discovered by code review.

Since coincidental correctness already exists in traditional pro-
grams, it is not a new challenge in bug detection. However, we
observed that coincidental correctness can be a new challenge in
terms of scale. A TF program’s computation is driven by tensors,
which are usually modeled by multi-dimensional arrays with large
size. After iterations of computation, the value of an individual
element in an array makes a small contribution to the �nal classi-
�cation results such as whether there is an obstacle before a car.
In addition, most computation adopts a non-linear activation func-
tion, whose output is insensitive to certain input ranges. As such, a
computation mistake is more likely to have unobservable e�ects
on the �nal results. In other words, TF programs tend to be more
tolerant to computational mistakes. So, coincidental correctness
occurs on a larger scale for TF programs as compared with their
traditional counterparts.

However, this does not necessarily mean that coincidental cor-
rectness is not an important issue. The e�ects of computation mis-
takes falling in the transition range of an activation function can
be greatly ampli�ed. Such ampli�ed e�ects can induce incorrect
classi�cation, which can cause serious consequences in mission-
critical applications. Such e�ects are analogous to adversarial at-
tacks [12, 35] in DL models. Since the transition range for some
activation functions such as sigmoid is narrow, �nding training
data that are resistant to coincidental correctness is challenging.
In our dataset, we observe cases that the bugs were identi�ed by
code review, the TF users decided to �x them though they have not
found incorrect results4.
Challenge 3: Stochastic Execution.

Given the stochastic nature of the training phase, it is possible
that two executions exhibit di�erent behavior, which makes it dif-
�cult to reproduce the bugs. An example is the bug presented in

4For example, see in https://github.com/dennybritz/reinforcement-learning/pull/39.
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Figure 1. During training, TF users will evaluate their model in
many iterations to optimize their loss function. The TF user re-
ported on StackOver�ow that the program crashed with an error
after around 8,000 iterations for some datasets. However, which
iteration will raise an error is non-deterministic because of the
stochastic nature such as gradient descending algorithm. In one
run, the error may occur at the 7900th iteration. And in another
run, the error may occur at the 8100th iteration. If the TF user sets
the model to iterate 8000 times, he may detect the bug in the �rst
run, but could not detect it in the second run.

Strictly speaking, non-determinism is not new: many traditional
programs also exhibit non-determinism. However, on TF applica-
tions the problem become much more serious because almost any
execution is a�ected by non-determinism. More studies are needed
to deal with non-determinisms in TF applications.

7 RQ3: CHALLENGES ON FAULT
LOCALIZATION

7.1 Setup
Based on our classi�cation, there are three main types of symp-
toms. Unlike the other two types, the symptom of “Error” provides
additional information for debugging, including a line number to
indicate where the error occurs and an error message to describe
the reason of the fault. To understand the challenges on fault lo-
calization, we use di�erent methods to analyze bugs in the “Error”
type and bugs in the other two types.

For bugs in the “Error” type, we used trace dependency distance
to measure the di�culty of fault localization quantitatively. We
de�ne an execution trace as a sequence of statements executed
during execution. A trace dependency graph is a graph where the
nodes are instances of statement executions in the execution trace
and the edges are dynamic data or control dependency between
the statement execution instances. Trace dependency distance is the
smallest number of nodes on the trace dependency graph from the
reported error location to the root cause of the bug, and was sug-
gested by prior studies to measure the di�culty of fault localization
[30].

Furthermore, to complement the quantitative analysis, we also
read the error messages qualitatively to judge the di�culty of lo-
calizing the bugs. Please note that not all bugs we collected have
error messages in our dataset, and we focus on only the bugs that
have error messages. We analyzed 79 bugs which have error mes-
sages. If the execution trace involves multiple cycles, we will refer
to additional information in discussions about which cycle raised
the error.

For bugs in the other two types, we analyzed these bugs quali-
tatively to understand how di�cult the localization is. Finally, for
those bugs that we considered di�cult to localize, we tried to �nd
out how the TF users localized these bugs and summarized them
into strategies.

7.2 Results
Figure 8 shows dependency distance distribution of bugs collected
from StackOver�ow and Github. Except for 2 bugs whose distance
is more than 8000 (our motivating example in Figure 1 shows one of

Figure 8: Dependency Distance Distribution

them), it can be seen that the rest of distances are less than 8. And
the faulty executions of these two bugs both involve the execution
phase. For the rest of bugs, the mean is 0.99 and the median is 0.

Combining this �gure with our qualitative analysis of the error
messages and the other two types of bugs, we have the following
observation.

(1) When an error is raised during the construction phase, the
bug can usually be localized with certainty. In such cases, trace
dependency distances are short as compared with those within the
execution phase that involves massive iterative and probabilistic
computation. Besides, the information embedded by error messages
help localize the bugs. One can examine the program from the
faulty statement provided by error messages backward via trace
dependency.

(2) When the faulty execution involves the execution phase, the
buggy behavior becomes stochastic, dramatically increasing the
fault localization e�ort. Compared with traditional programs, we
identi�ed the following two major challenges in localizing these
bugs.
Challenge 4: The densely inter-dependent neural network.

Elements in a traditional program are often loosely dependent
on each other. If we dynamically slice from the point where errors
or incorrect outputs occur, the slicing result often contains only a
small portion of coding entities in the program. However, in a neural
network, typically nodes in the current layer mostly depends on the
nodes in the previous layer. Furthermore, during the training phase,
the dependency becomes bidirectional because of backpropagation.
As a result, slicing could provide little assistance in the sense that
the slice usually contains all nodes in the neural network and does
not help debug.
Challenge 5: The unknown behavior of neural networks.

A typical way of debugging traditional program is to examine
the program state at a speci�c program point, by comparing the
values of variables with their expected values. However, in neural
networks, since the program behavior is sensitive to the hyper-
parameters assigned during the training process, it is di�cult for
programmers to predict the expected value at a certain program
point. As a result, though we can access the intermediate states of
a neural network during the training process, it is often di�cult for
TF users to judge its correctness based on these states.
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(a) A faulty TensorFlow example

(b) A recommended �x

Figure 9: A faulty TensorFlow example extracted fromStack-
Over�ow #42821125 and a recommended �x

Since many bugs are di�cult to localize, it would be interesting
to know how TF users deal with them. Our study identi�ed three
strategies that the TF users used to localize the bugs as follows.
Strategy 3: Replacing hyper-parameters in a network.

StackOver�ow question #42821125 (Figure 9) describes an IPS
bug. This task is a binary classi�cation (0-1 classi�cation), and
the input contains about 69% zeros, so it is really strange that
the accuracy of the model could not go beyond 69%. Thus, the
questioner suspected Yhat converged to all zeros.

The questioner said that I’ve tried a lot of things like di�erent
optimizers, loss functions, batch sizes, etc.. but no matter what I do
it converges to 69% and never goes over. I’m guessing there’s a more
fundamental problem with what I’m doing but I can’t seem to �nd it.

It can be inferred that the questioner replaced some parameters
of the network and hoped to seek a better result. If TF users get an
unexpected output from their networks, the very �rst thing they
will do is to replace some parameters like di�erent optimizers, loss
functions, batch sizes, learning rates, etc..

The questioner had an expectation of how loss and accuracy
would change corresponding to di�erent replacements. Neverthe-
less, the output was not in�uenced by these replacements, leading to
questioner’s suspicion that there was a more fundamental problem
in the model structure rather than these model parameters. He was
supposed to use predicates (applying sigmoid on logits to convert
its range from (−∞, +∞) to (0, 1)) to calculate correct_prediction
as shown in Figure 9(b).
Strategy 4: Examining the distribution of variable values.

StackOver�ow question #40166236 (Figure. 10) describes a CCM
bug. The questioner intended to use di�erent batch normalization
parameters based on the tensor mode. It was later found out that
the questioner should use tf.cond rather than if (at Line 2) to choose
the desired branch. Using if, the branch will be chosen during graph
building and will not change.

The questioner localized this fault by examining the distribution
of the variables pop_mean and pop_var using TensorFlow visual-
izing tool and found the values of the two variables have never
changed. Thus, though the questioner cannot predict the exact

Figure 10: A faulty TensorFlow example extracted from
StackOver�ow #40166236

Figure 11: A �x commit on a faulty TensorFlow code snippet
extracted from Github

value of variables, some metamorphic relations between the values
of the variables in di�erent iterations could be speci�ed.
Strategy 5: Switching the training dataset.

In a commit5 found at Github (shown in Figure 11), the bug was
caused by the incorrect order of initializer. The TF user wrote the
initializer after the model loading the pre-trained model. It means
that all the loaded data will be initialized to random values.

Since it is a video prediction model, it does not concern about
accuracy and is only evaluated by its loss. Another (second) TF user
posted an issue6 reporting heavily blurred predicted images and
poor loss performance.

The second TF user commented that I used validation data for
test prediction network. And since I got a similar validation loss curve,
I assume the training process is correct.(I didn’t make any changes in
codes).

It can be seen that the second TF user switched the dataset to
�nd out where the bug is. The training loss curves of two datasets
were similar to each other. Thus, the second TF user suspected that
the bug was not triggered in the training process. Based on the
patch (commit) for a later program version, the suspect was correct.

8 THREATS TO VALIDITY
First, our study involves manual inspections on bugs. These subjec-
tive steps can be biased due to our inference of the code’s intention
in the lack of documentation. In order to reduce this threat, two
authors analyzed the bugs separately and discussed inconsistent
issues until an agreement was reached. Second, our study investi-
gated 175 bugs from StackOver�ow and Github, and it is not clear
how much our �ndings generalize beyond the dataset, especially
considering the fact that TF is growing fast. However, it is not
easy to expand this dataset. First, since TensorFlow is an emerging
framework, there were not many well-maintained popular Github
projects at the time we conducted this empirical study. Second, the
manual e�orts required to analyze the bugs were large. To collect
5 https://github.com/tensorflow/models/commit/34af79db12577f2039c4f88bfae50734d
8ddd2c6
6 https://github.com/tensorflow/models/issues/670
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and analyze the bugs, we spent approximately 400 person-hours,
leading to an average 2.3 person-hours per bug.

9 DISCUSSION
Common Fixing Patterns. Our paper focuses on bug detection
and localization, and leave bug repair for future work. Nevertheless,
we also performed a small pilot analysis on the �xing patterns
of the Tensor�ow bugs from the patches in GitHub projects and
recommended �xes in StackOver�ow QA pages. In general, we
found the �xing patterns are strongly correlated to the root causes
of the bug. For example, APIC andAPIM are both related to API calls,
and the common �xing patterns are changing the parameter orders
(Figures 5 and 6) and changing API calling sequences (Figure 7(b)).
On the other hand, the common �xing pattern for IPS is to change
the model structure (Figure 2). This �nding suggests that analyzing
the root causes could be useful for further developing automated
repair approaches.
Bugs in Other Parts. As mentioned in the introduction, defects
in a TF application may come from its training data, program code,
execution environment or the TensorFlow framework. Our study
focuses on bugs in TF programs but not other types because these
types are di�erent in nature and it is not easy to study in a uni�ed
way. Bugs in the training data are related to the problem of data
quality [14, 33] and require methods such as data cleansing [15,
24, 29] and data augmentation [28, 38] to deal with. Bugs in the
TensorFlow framework is a type of compiler bugs and often requires
speci�c compile testing techniques [3, 4] to deal with. Bugs in the
execution environment are often not controllable and require fault
tolerance techniques [21] to deal with. These types of bugs are
not common in StackOver�ow pages or GitHub commits of TF
programs, and require other data sources such as the history of
training data sets or the commits for the Tensor�ow framework.

10 RELATEDWORK
Empirical Study: Thung et al. [37] surveyed three machine learn-
ing systems, ApacheMahout, Lucene, and OpenNLP. They analyzed
a sample of their bugs and �xes and labeled bugs into various cate-
gories. They also studied bug severities, the time and e�ort needed
to �x the bugs, and bug impacts. Di�erent from them, our study
focus on bugs of deep learning applications built on top of Tensor-
Flow, which are based on hierarchical layers of neurons that are
interconnected to form a neural network.

Seaman et al. [32] investigated 81 projects with NASA and con-
structed a new set of defect categories at a slightly higher level
of abstraction than the historical ones. Thung et al. made use of
defect categories provided by Seaman et al. in their empirical study
on machine learning system. Di�erent from their categories, we
proposed categories on deep learning application bugs at a lower
level of abstraction.

Some empirical studies focused on certain types of bugs. Jin et
al. [19] and Zaman et al. [42, 43] conducted studies of performance
bugs. Gunawi et al. [13] conducted a study of development and
deployment issues of cloud systems. Xiao et al. [39] studied non-
commutative reduce functions bugs in MapReduce programs. Chen
et al. [6] studied dormant bugs from Apache foundation software
systems. A number of studies [2, 8, 20, 22] focused on bugs from

API changes. Our study focused on TF bugs, which are di�erent
from most the above bugs. The only exception is the bugs from
API changes, which appear both in TF programs and traditional
programs. Our observation on these bugs is consistent with existing
studies and we did not observe new challenges in detecting and
localizing these bugs.
Machine Learning Testing: Xie et al. [40] proposed a technique
based on metamorphic testing to address the test oracle problem for
the implementations of machine learning classi�cation algorithms:
k-nearest neighbors and Naive Bayes Classi�er.

DeepXplore designed by Pei et al. [28] is a whitebox di�erential
testing system that can �nd inputs that can trigger inconsistencies
between multiple DNNs and identify erroneous behaviors. They
introduced neuron coverage as a systematic metric for measuring
how much of the internal logic of a DNNs have been tested.

Tian et al. [38] proposed DeepTest, a tool for automated testing
of DNN-driven autonomous cars. DeepTest can use test images
that generated by di�erent realistic transformations to maximize
the neuron coverage of a DNN. They leveraged domain-speci�c
metamorphic relations to �nd erroneous behaviors of the DNN.

Srisakaokul et al. [34] proposed an approach of multiple im-
plementation testing for supervised learning softwares: k-nearest
neighbor and Naive Bayes.
Big dataDebugging: Interlandi et al. [17] built Titian, a data prove-
nance library that integrates directly with the Spark runtime and
programming interface. Ma et al. [23] proposed LAMP, a data prove-
nance computation technique for graph-based machine learning
algorithms.
Probabilistic Testing: Barr et al. [1] studied test oracles in soft-
ware testing including probabilistic test oracle. Gerhold et al. [11]
designed an executable model-based testing framework for proba-
bilistic systems with non-determinism.

Our work di�ers from these studies on testing and debugging
approaches in that it is the �rst empirical study on coding mistakes
in DL programs built on TensorFlow by collecting related discus-
sions at StackOver�ow and bugs that have been �xed in Github
projects.

11 CONCLUSION AND IMPLICATION
We studied 175 TensorFlow application bugs collected from Stack-
Over�ow QA pages and Github projects. We examined the root
causes and symptoms of these bugs according to QA pages, commit
messages, pull request messages, and issue discussions. We also
studied the strategies deployed by TF users for bug detection and
localization.

Two groups of people can bene�t from this study. For TF users,
we summarized �ve strategies used by other TF users to detect
and debug the bugs in TF programs. For software engineering
researchers, we pointed out �ve new challenges which call for
more research e�orts. Our classi�cation of causes and symptoms
o�ers both TF users and software engineering researchers a better
understanding of deep learning program bugs.
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