
日本ソフトウェア科学会第 25回大会（2008年度）論文集 1

On-Site Synchronizers for Multi-View Applications∗

Yingfei Xiong1, Zhenjiang Hu1,3, Song Hui2, Masato Takeichi1, Haiyan Zhao2, Hong Mei2

1Department of Mathematical Informatics

University of Tokyo, Tokyo, Japan

xiong@ipl.t.u-tokyo.ac.jp

{hu,takeichi}@mist.i.u-tokyo.ac.jp

2Key Laboratory of High Confidence

Software Technologies (Peking University)

Ministry of Education, Beijing, 100871, China

{songhui06,zhhy,meih}@sei.pku.edu.cn

3Information Systems Architecture Research Division / GRACE Center

National Institute of Informatics

Many applications use multiple editable views to represent data in different formats. When users modify

one view or change several views simultaneously, we need to synchronize the views by propagating these

changes across all views. Different from existing studies on off-site synchronization which synchronizes

data between applications, this kind of on-site synchronization has a strict requirement on response

time, and usually has no predefined propagation direction.

In this paper we propose a new approach to on-site synchronization, which takes modifications on

all data and produces new modifications to make them consistent. We deduce the propagation direction

from the modifications, and achieve incremental synchronization by only computing the modified part.

We have applied our approach to construct an EJB modeling tool and our experiments show that our

synchronizers are hundred times faster than existing off-site synchronizers.

1 Introduction

It is common that one software application uses dif-
ferent views to represent its data. For example, a
programming source code editor may show an out-
line of the code and some features [AC06] of the
code as well as the code itself; a UML editor may
use a class diagram to show the static structure of
the system and use a sequence diagram to show the
dynamic behavior.

In many cases, not only one view are editable.

∗The research was supported in part by a grant from
Japan Society for the Promotion of Science (JSPS) Grant-in-
aid for Scientific Research (A) 19200002, the National Natu-
ral Science Foundation of China under Grant No. 60528006
and the National High Technology Research and Develop-
ment Program of China (863 Program) under Grant No. of
2006AA01Z156.

Since these views are representing shared informa-
tion, when users modify one view, we need to trans-
form and propagate the modification to other views
to make all views consistent. Furthermore, multi-
ple views may be modified at the same time, e.g.,
a group of designers are working one UML design
models and a group of programmers are working on
the implementing code simultaneously. In such sit-
uations, we need to synchronize the modifications
on different views and detect possible conflicts.

For a concrete example, let us consider a sim-
ple Enterprise JavaBeans (EJBs) modeling tool, as
shown in Figure 1. The tool provides two editable
views: The deployment view and the the persis-
tent view. The deployment view shows three EJBs:

日本ソフトウェア科学会第 25回大会（2008年度）論文集 2

SignOnEJB, UserEJB, and DepartmentEJB, all of
which belong to a module SignOn. The persistent
attributes of UserEJB and DepartmentEJB are true,
and these persistent EJBs, called entity beans, are
listed in the persistent view. Some of the informa-
tion is shared between the two views, such as the
module name and the EJB name, while some of
the information is independently displayed on each
view, such as the module description just below the
module name and the primary keys of the entity
beans. When users modify an element related to
shared information, for instance, the EJB name of
an entity bean on the persistent view, the system
should dynamically modify the EJB name of the
corresponding EJB on the deployment view. The
process of propagating changes between data in dif-
ferent formats is called heterogeneous synchroniza-
tion and the software component to perform such
synchronization is called synchronizers [ACar].

Figure 1. An EJB Modeling Tool

Existing synchronizers focus on off-site syn-
chronization. That is, they synchronize data be-
tween off-the-shelf applications where these appli-
cations export their data in some intermediate for-
mats like XML, and the synchronizers produce new
XML files containing synchronized data. However,
off-site synchronizers cannot well support synchro-
nization in multi-view applications like the EJB
modeling tool, where the data are synchronized on-
site within one application. Not only exporting and
importing the internal data requires extra program-
ming work, but also the process takes too much
time which is intolerable in most cases. We need
new synchronizers to support this kind of on-site
synchronization.

Compared to off-site synchronization, on-site

synchronization imposes many new challenges.
Here we highlight two challenges. The first one is
response time. While off-site synchronization is of-
ten not sensitive to response time, on-site synchro-
nization has a strict requirement on response time.
When users modify one view, they are expected to
see the modification of other views immediately.

The other one is about the direction of synchro-
nization. Off-site synchronization often takes place
between two applications, and the synchronization
are performed with an explicit direction, i.e., change
the data of one application according to the other
or vice versa. However, in on-site synchronization
the data are often mutually related and it is dif-
ficult to divide the data into two groups. For ex-
ample, in the EJB application, when the attributes
of an entity bean is modified by user, the applica-
tion has to modify corresponding attributes of EJBs
and modules. When a module is deleted by user,
the application need to delete all EJBs and entity
beans belonging to that module. It is not possi-
ble to divide the three types of objects into two
groups where synchronization only takes place be-
tween groups but not inside a group.

In this paper, we made our first attempt of
defining a set of on-site synchronizers to support
on-site synchronization. Our synchronizers are in-
cremental, ensuring a short response time, and are
symmetric, treating every domain of data equally
and assuming no specific direction in modification
propagation.

The key factor in our design is modifications.
When users modify the application data, the ap-
plication capture users’ modifications as an input
to our synchronizers and our synchronizers produce
new modifications which can make all data consis-
tent. As no specific propagation direction is defined,
the synchronizers use modifications as an indication
and propagate the modification from modified parts
to unmodified parts. Furthermore, because our syn-
chronizers know users’ modification, the synchro-
nizers can perform an incremental synchronization
where the modified part is treated carefully to avoid
recomputing on the unmodified parts, ensuring a
short response time.

日本ソフトウェア科学会第 25回大会（2008年度）論文集 3

EJBNameEqual = graph(ejb , entityBean) {

vars = name;

SGet <key="Name">(ejb , name);

SGet <key="EJBName">(entityBean , name);

}

Figure 2. ejb.Name = entityBean.EJBName

To give a first taste of on-site synchronizers, let
us consider a simple synchronizer which relates the
name attribute of an EJB and the EJB name at-
tribute of an entity bean. The code for the syn-
chronizer is listed in Figure 2.

The SGet<key="Name"> is a primitive synchro-
nizer which synchronizes an object (the first ar-
gument) and a value (the second argument), en-
suring the Name attribute of the object is equal
to the value. Similarly, SGet<key="EJBName"> en-
sures the EJBName attribute of its first argument is
equal to the second argument. The two primitive
synchronizers are combined into EJBNameEqual by
a graph combinator which connects them through
variables. The variables ejb and entityBean are
external variables and name is an internal variable.
The external variables are visible to the client of the
synchronizer while the internal variables are invisi-
ble to the client. The Name attribute of ejb is en-
sured to be equal to name and the EJBName attribute
of entityBean is ensured to be equal to name.

When users modify, say, the Name attribute
of the ejb object to "UserEJB", an input of
〈{Name->"UserEJB"}, nomod〉 will be passed
to EJBNameEqual. The first component de-
scribes the modification on ejb while the second
component nomod indicates entityBean is not
modified. EJBNameEqual will notice that ejb

is modified, and will invoke SGet<key="Name">

with 〈{Name->"UserEJB"}, nomod〉 where the
second nomod indicates name is not modified.
SGet<key="Name"> will propagate modifications
from modified part to unmodified part, and pro-
duce 〈{Name->"UserEJB"}, "UserEJB"〉. Then
EJBNameEqual will notice that name is modified
and invoke SGet<key="EJBName"> to further prop-
agate a modification {EJBName->"UserEJB"}

to entityBean. Finally, EJBNameEqual

will produce the synchronized modifications
〈{Name->"UserEJB"}, {EJBName->"UserEJB"}〉
on ejb and entityBean.

If users modify the EJBName attribute of the
entityBean object, the modification will be prop-
agated in the reverse direction. If both objects
are modified, the synchronizer will check if the two
modifications are consistent, and report a failure if
they conflict.

We start our definition of on-site synchronizers
by giving a precise requirement for on-site synchro-
nization (Section 2). A fundamental difficulty of de-
signing synchronizers concerns the balance between
expressiveness and robustness [FGM+07, Ste07]. In
this work we choose to stick to only a reason-
able subset of robustness properties to gain the
expressiveness for most common synchronization
tasks. Specifically, our on-site synchronizers sat-
isfy the stability, preservation, propagation proper-
ties [XLH+07] – they are ensured to produce consis-
tent result and make no unnecessary modifications
– but not total [FGM+07] – on-site synchronizers
are not ensured to find out all possible solutions for
a specific input. We hope our work could serve as
a foundation upon which others can build domain-
specific synchronization language that is total.

We then proceed to the definition of concrete
synchronizers. To simplify and generalize our def-
initions, we use a small set of data types to rep-
resent in-memory objects and define modification
types on the data types (Section 3). Based on the
data types and modification types we define a set
of primitive synchronizers and a set of combinators
(Section 4), where the combinators are used to com-
bine primitive synchronizers into bigger synchroniz-
ers for more complex consistency relations, such as
the graph combinator we have seen.

We have applied our work to actually construct
the EJB modeling tool to see how our synchronizer
work in practice (Section 5). The result is satis-
factory and moreover, we also discovered an extra
benefit of using on-site synchronizers: we can get
rid of the key attributes used in off-site synchroniza-
tions. In off-site synchronization, users often need
to designate some key attributes [Obj05, FGM+07]

日本ソフトウェア科学会第 25回大会（2008年度）論文集 4

which uniquely identify each data item. However,
based on our experience, many application data do
not have a suitable candidate to be a key attribute
[YKW+08]. Because on-site synchronizer is tightly
integrated into the application, we can make use of
in-memory addresses to identify items and get rid
of key attributes.

We evaluate the performance of our synchroniz-
ers through a set of experiments (Section 6). The
result shows that our synchronizers are hundreds
times faster than medini QVT [ikv], an implemen-
tation of an off-site synchronization language. We
also compare our work with a variety of related work
(Section 7). Finally, we discuss the remaining prob-
lems of current work and point out possible future
directions (Section 8).

2 On-site Synchronization

Before defining concrete synchronizers, we discuss
generally about on-site synchronization without
targeting any particular data types. Later we will
define specific data types and define synchronizers
on those data types. We use ~v to denote a n-tuple
〈v1, v2, . . . , vn〉. We assume no nested structure in
tuples, that is, 〈v1, 〈v2, v3〉〉 = 〈v1, v2, v3〉.

We assume a data type is collection of values. A
modification defined on the data type D is a idem-
potent function where m ∈ D → D and m◦m = m.
The idempotent property of a synchronizer can be
used to check whether a modification has been ap-
plied or not. If we apply a modification to a data
item and we get the same data item, the modifica-
tion has been applied to the data item. A special
modification nomod is used to denote that the data
item is not modified, where nomod(d) = d.

Users usually do not apply only one modifica-
tion on the data, but a sequence of modifications.
In many cases, a sequence of modifications has the
same effect of one modification. To avoid a com-
plex model involving both single modifications and
sequences, we introduce the concept of modifica-
tion set. A modification set M defined on the data
type D is a set of modification operation closed on
composition, that is, for any m1,m2 ∈ M we have
m1 ◦m2 ∈ M . To be simple, we assume each data

type D has a corresponding modification set, de-
noted by MD, and nomod ∈MD.

If two modification operations affect different
parts of an artifact, we say the two operations are
distinct. Formally, we say m1,m2 are distinct if and
only if they are commutative: m1 ◦m2 = m2 ◦m1.
We write m1	m2 if m1 and m2 are distinct. If two
modifications are not distinct, we say they conflict
with each other.

Another important relation over modifications
is the sub modification relation, which indicates one
modification is included in another modification. If
m1 ◦m2 = m2, we say m1 is a sub modification of
m2, denoted by m1 v m2.

A synchronizer synchronizes n data items that
are defined in data types D1, D2, . . . , Dn is denoted
as s ∈ D1 ↔ D2 ↔ · · · ↔ Dn. We write s ∈↔ D1

when n = 1. A synchronizer consists of four com-
ponents. The first one is a consistency relation
s.R ⊆ D1 ×D2 × · · · ×Dn which the synchronizer
tries to establish over the data items. The second
component is a state set s.Θ. To perform incre-
mental synchronization, a synchronizer may need
to keep some information like trace information,
and update the information after synchronization.
This kind of information is called states of the syn-
chronizer and is defined by s.Θ. The third com-
ponent is an incremental synchronization function
s.sync ∈ MD1 × · · · ×MDn × s.Θ → MD1 × · · · ×
MDn×s.Θ. This function takes a sequence of mod-
ifications on the data items, produces a new se-
quence of modifications, and updates the state of
the synchronizer at the same time. The forth com-
ponent is a non-incremental synchronization func-
tion s.sync ∈MD1 × · · · ×MDn ×D1 × · · · ×Dn →
MD1 × · · · ×MDn × s.Θ. This function is used at
the initial stage when we do not have a state of
the synchronizer, and it takes a sequence of data
items instead of the state and constructs a state af-
ter synchronization. If the input modifications are
conflicting or the synchronizer has failed to synchro-
nize with the modifications, the s.sync and s.resync
will return ⊥.

To ensure synchronizers behave in a sen-
sible way, researchers have proposed different

日本ソフトウェア科学会第 25回大会（2008年度）論文集 5

kinds of properties to constrain the behavior of
synchronizers. Here we adopt three properties
we proposed in our previous work for off-site
synchronization[XLH+07] and adapt them for on-
site synchronization.

Suppose s is a synchronizer of the type s ∈
D1 ↔ D2 ↔ · · · ↔ Dn. The first property, stabil-
ity, is to prevent synchronizers making unnecessary
modifications. It requires that when users modify
no data items, the synchronizer will also modify no
data items.

Property 1 (Stability) ∀θ ∈ s.Θ :
s.sync(nomod, . . . , nomod, θ)= 〈nomod, . . . , nomod, θ〉

The second property, preservation, requires all
user modifications should be kept. Each input mod-
ification should be a sub modification of the cor-
responding output. Here we write ~v.i for the ith
component of the tuple ~v.

Property 2 (Preservation) s.sync(~m, θ) =
〈~m′, θ′〉 =⇒ ∀i ∈ {1, 2, . . . , n} : ~m.i ◦ ~m′.i = ~m′.i

The third property, propagation, requires that
the synchronizer should correctly propagate the
modification to make all data consistent. Suppose
~m1 and ~m2 are two tuples of modifications, we write
~m1◦~m2 for 〈~m1.1◦~m2.1, . . . , ~m1.n◦~m2.n〉. Similarly,
we write ~m(~d) for a tuple constructed by applying
each item of the modification tuple ~m to each item
of the data sequence ~d.

Property 3 (Propagation) For any sequence of
invocations:
s.resync(~m0, ~d) = 〈~m′0, θ0〉,
s.sync(~m1, θ0) = 〈~m′1, θ1〉,

· · ·
s.sync(~mn, θn−1) = 〈~m′n, θn〉;

we have:
∀i ∈ {0, . . . , n} : (~m′i ◦ ~m′i−1 ◦ · · · ◦ ~m′0)(~d) ∈ s.R.

3 Data and Modification Types

To simplify our definition of synchronizers, in this
section we define a small set of data types. We try
to make this set of data types general so that other
data types can be mapped to our data type and

be synchronized by our synchronizers. When f is
a partial function, we write f(a) = ⊥ to mean f is
undefined on a.

We treat booleans, integers, strings and ⊥ as
unstructured primitive values, denoted by Prim.
For modifications on Prim, we consider only replac-
ing a value by a new value. If v ∈ Prim, we write !v
for a modification on Prim, where !v(a) = v. The
modification set on Prim is MPrim = {nomod}∪{!v |
v ∈ Prim}. We sometimes ignore the ! symbol if no
confusion will be caused.

The only structured data type we consider is
dictionaries. A dictionary in type Dict < T > maps
keys in Prim to values in T , where T can be prim-
itive values or other dictionary types. If we use
a universal type Object to denote all primitive val-
ues and dictionaries, the typing rule for a dictionary
type is as follows.

T ⊆ U, f ∈ Prim→ T and the domain of f is finite

f ∈ Dict < T >

The modifications on dictionaries are also struc-
tured. A dictionary modification on dictionary ap-
plies different modifications to values mapped by
different keys. Formally, if ω ∈ Prim → MT is a
function mapping keys to modifications, a dictio-
nary modification &ω is defined as: &ω(d) = d′

where ∀k ∈ Prim : d′(k) = ω(k)(d(k)) The modi-
fication set on a dictionary type Dict < T > is de-
fined as MDict<T> = {nomod} ∪ {&ω | ω ∈ Prim →
MT }. We sometimes ignore the & symbol if no con-
fusion will be caused.

A lot of other data structures can be mapped
to this dictionary-based data types. For example,
a set can be mapped to a dictionary by giving each
value a random key or using the in-memory ad-
dress of each value as its key. A sequence can
be mapped to a dictionary by using the index as
key, that is, 〈"a", "b", "c"〉 can be represented as
{1->"a", 2->"b", 3->"c"}.

For the in-memory objects, we can also map
them to the data types. For all instance of a class,
we represent them as a dictionary mapping from
the in-memory addresses to the instances. Each
instance object is represented as a dictionary map-
ping from attribute names to attribute values. If

日本ソフトウェア科学会第 25回大会（2008年度）論文集 6

the attribute value is a primitive value, we use the
primitive value. If the attribute value is a reference
to another object, we use the corresponding key of
the referenced object.

As an example, the deployment view of the EJB
tool can be represented by the following two dictio-
naries. In a practical system, the keys of the dictio-
naries can be replaced by in-memory addresses.

{1->{Name ->"SignOnEJB",

Persistent ->false ,

Module ->1},

2->{Name ->"UserEJB",

Persistent ->true ,

Module ->1},

3->{Name ->"DepartmentEJB",

Persistent ->true ,

Module ->1}

},

{1->{Name ->"SignOn",

Description ->"This module is for ..."

}

4 Synchronizers

Based on the data and modification types, we are
ready to define some concrete synchronizers and
combinators. For the sake of brevity, we will only
give the formal definitions of some synchronizers,
and introduce the rest synchronizers and combina-
tors informally. For all formal definitions, please
refer to [XHT+08].

4.1 Basic Synchronizers

Identity We start from a simple synchronizer
Id<v1OverV2=true> ∈ Object ↔ Object that
keeps two data items identical. This synchronizer
is parameterized on a boolean parameter v1OverV2,
where a different assignment to the parameter leads
to a different synchronization behavior. The value
true after the equal sign is a default assignment
to the parameter. Here the parameter v1OverV2

defines the behavior of the resync function, and is
explained below.

The Id synchronizer keeps no information in its
state. Its sync function composites the two input
modifications, and produce a pair of the compos-
ite result when the two input modifications are dis-
tinct. When the two inputs conflict, the function
will fail (returning ⊥). The resync acts accord-

ing to the parameter v1OverV2. When two differ-
ent values with no modification are inputted to the
resync function, Id has to modify one data item
according to the value of the other. The param-
eter v1OverV2 determines whether we modify the
second according to the first (v1 is over v2) or we
modify the first according to the second (v2 is over
v1). When v1OverV2=true, the function first apply
the input modifications on the first data item, and
use a function findmod to find the smallest modi-
fication that can change the second data item into
the first. The result of findmod is composited with
the original modifications and is returned. When
v1OverV2=false, resync will try to modify the sec-
ond data item into the first instead.

Id<v1OverV2=opt> ∈ Object↔ Object

R = {〈a, b〉 | a = b}
Θ = {ε}
sync(m1,m2, ε) =

{
〈m1 ◦m2,m1 ◦m2, ε〉 m1 	m2

⊥ else

resync(m1,m2, v1, v2) =

{
〈m,m, ε〉 m1 	m2

⊥ else

where m ={
findmod(v2, (m1 ◦m2)(v1)) ◦m1 ◦m2 opt = true

findmod(v1, (m1 ◦m2)(v2)) ◦m1 ◦m2 opt = false

SetMember, Equality and NotNull The sec-
ond synchronizer SetMember<tester, default>

∈↔ Object is used to ensure a data item is be-
longing to a specific set or not. The first parameter
is a function tester ∈ Object → Boolean which
defines the set. If a data item is in the set, tester
returns true, otherwise tester returns false. The
second parameter default is a value in the set,
which is used to produce a value in resync when
the input value is not in the set.

The SetMember synchronizer keeps the current
value of the data item in its state. Its sync function
applies the modification to its state, and report a
failure if the new state is not in the set. Its resync
function tries to modify the input value to the de-
fault if the input is not in the set, and report a
failure when the modification found conflicts with
the input. The definition of SetMember is as follows.

日本ソフトウェア科学会第 25回大会（2008年度）論文集 7

SetMember<tester=f, default=v0> ∈↔ Object

R = {a | f(a) = true}
Θ = Object

sync(m, v) =

{
〈m,m(v)〉 f(m(v)) = true
⊥ else

resync(m, v) =

〈m,m(v)〉 f(m(v)) = true

〈findmod(v, v0) ◦m, v0〉 f(m(v)) = false∧
findmod(v, v0)	m

⊥ else

By using SetMember, we can construct several
useful synchronizers. For example, if we define a
function equal<v> as

equal < v >(a) =

{
true a = v

false else
,

We can define a synchronizer Equal that ensures a
data item is equal to a specific value.

Equal <v>=

SetMember <tester=equal <v>, default=v>

Similarly, we can define a NotNull synchronizer
that ensures a data item is not null.

notNull(a) =

{
true a 6= null

false else

NotNull <default >=

SetMember <tester=notNull , default=default >

4.2 Synchronizers on Dictionaries

We define two primitive synchronizers on dictio-
naries. The two synchronizers both synchronize a
dictionary and a data item, and ensure the data
item is equal to the value mapped by a key in the
dictionary. The difference is that the key of the
static get synchronizer is statically determined at
programming time and the key of the dynamic get
synchronizer is dynamically obtained from a third
data item.

Static Get The static get synchro-
nizer SGet<key, dictOverValue=true>∈
Dict < T > ↔ T synchronizes a dictionary
with a data item and ensures the data item is equal
to the value mapped by key in the dictionary. The
second parameter dictOverValue is similar to
v1OverV2 in Id: in the resync function, whether
the synchronizer try to modify the dictionary
according to the data item or try to modify the
data item according to the dictionary.

The implementation of SGet is similar to ID,
except that it synchronizes an item in a dictionary
with the other item. Because the modification on
dictionaries is a function mapping keys to modifi-
cations, we can get the inner modification mapped
by key and proceed as Id.

Dynamic Get The dynamic get synchronizer
DGet<dictOverValue=true, changeKey=false,

keyFactory=null>∈ Prim ↔ Dict < T > ↔ T

ensures the third data item is equal to the value
mapped by the first data item in the second
data item, a dictionary. The first parameter
dictOverValue has the same meaning as the
dictOverValue parameter of the static get syn-
chronizer: whether we modify dictionary according
to the third data item or we modify the data item
according to the dictionary.

The parameter changeKey is also a boolean
value. If changeKey=false, then the dynamic get
synchronizer will act the same behavior as the static
get dictionary. Suppose the current values of the
three data items are 〈1, {1->"a", 2->"b"}, "a"〉
and the input modifications are 〈nomod, nomod,

"b"〉, the synchronizer will produce 〈{1->"b"},
nomod, "b"〉.

If changeKey=true and the first modification is
nomod, the dynamic get synchronizer will first ap-
ply the input modifications to the dictionary and
the data item, and then try to find a value in
the changed dictionary whose value is equal to the
changed data item. If there is such a value, the dy-
namic get will change the first data item to the key
mapping to the value. If there is no such a value
and keyFactory=null, or if the first modification is
not nomod, the synchronzier acts the same behavior
as changeKey=false.

For example, if the current values of the data
items and the input modifications are the same as
the above, but changeKey=true, the result will be
〈nomod, 2, "b"〉.

The third parameter keyFactory is effective
only when changeKey=true. It is a function
keyFactoyr ∈ Dict < T > → Prim used to gener-
ate a new key that is different from all existing keys
in the dictionary. When keyFactory is not null,

日本ソフトウェア科学会第 25回大会（2008年度）論文集 8

the synchronizer will create a new key if it cannot
find a proper value in the dictionary. This parame-
ter is useful when the dictionary is a set of objects
and sometimes we want to create new objects from
other modifications.

4.3 Combinators

We have seen a set of primitive synchronizers.
In practice, the consistency relationship over data
are often much more complex than the primi-
tive synchronizers can cover. To specify these re-
lationships, we adopt the compositional method
used in many off-site synchronization approaches
[FGM+07, LHT07]. These approaches define a set
of combinators where a combinator can combine
synchronizers into new a synchronizer to synchro-
nize artifacts according to a new relation that is
combined from the consistency relations of the in-
ner synchronizers. In this way users can combine
the consistency relationships as they needed.

Graph Combinator We have seen graph com-
binator in the introduction. The synchronizer
in Figure 2 ensures the Name attribute of ejb is
equal to the EJBName attribute of entityBean.
The graph combinator combines synchronizers us-
ing a graph. The nodes of the graph are vari-
ables (ejb, entitybean, and name), and the edges
of the graph are synchronizers (the two SGet

synchronizers). For example, the statement of
SGet<key="Name">(ejb, name) connects the SGet

synchronizer to the variable ejb and the variable
name, enforcing the consistency relationship SGet.R

over ejb and name. Variables are further classified
into external variables and internal variables. Only
external variables are expose to the synchronizers
outside the graph. Input/output modifications are
assumed to be applied on the external variables in
the same order where the external variables appear.

The sync function of the graph combinator first
puts the input modifications on the external vari-
ables, and invokes the inner synchronizers connect-
ing to the external variables whose modifications
are not nomod. Once an inner synchronizer is in-
voked, the output modification of the inner syn-

chronizer will be put on the variables, and the sync
function further invokes all synchronizers connect-
ing to a variable whose modification is changed af-
ter the invocation. The resync function is similar
to the sync function, except that sync invokes the
sync function of inner synchronizers, while resync
invokes the resync function of inner synchronizers.

It is possible that more than one inner synchro-
nizers can be invoked at the same time. For ex-
ample, a changed external variable is connected to
more than one synchronizers. In such situations,
the graph combinator will invoke the inner synchro-
nizers in the order that they appear in the declara-
tion of the synchronizer. For example, if both ejb

and entityBean are changed, EJBNameEqual will
invoke SGet<key="Name"> first.

Switch Combinator The switch combinator
represents the union of relations. The follow-
ing code shows a synchronizer constructed using a
switch combinator:
switch {

graph{moduleRef , modules }{

var=module;

DGet(moduleRef , modules , module);

NotNull <defaultValue =0>(module);

};

graph(moduleRef , modules){

Equal <value=null >(moduleRef);

};

}

This synchronizer ensures a reference to a mod-
ule being valid. It contains two inner synchronizers,
both of which are constructed using the graph com-
binator. The first synchronizer ensures that if we
query the dictionary modules with moduleRef, we
are ensured to get a module object which is not
null. The second synchronizer ensures moduleRef

is null. The union of the two synchronize ensures
the reference moduleRef is always valid, that is,
either moduleRef is null or moduleRef exists in
modules.

The switch combinator works by invoking the
inner synchronizers one by one. The state of the
switch synchronizer includes the current values of
the data items and the index of the synchronizer
invoked the last time. The sync function of the
switch combinator first find the synchronizer used
in the last time and invokes its sync function. If

日本ソフトウェア科学会第 25回大会（2008年度）論文集 9

the function succeeds, the switch combinator re-
turns. Otherwise it will invoke the resync functions
of the other inner synchronizers in the order they
appear in the declaration, and return the result of
the first succeeded function. If all inner synchro-
nizer fails, the function returns ⊥ to report a fail-
ure. The resync function of the switch combinator
just invokes the resync functions of the inner syn-
chronizers one by one and return the result of the
first succeeded function.

For example, suppose the current value of
moduleRef is 1, and the input modification is
〈nomod, {1->null}, nomod〉. That is, the refer-
ence is no longer in the dictionary and is invalid.
The switch combinator first invokes sync function
of the first inner synchronizer, which is the syn-
chronizer used in the last synchronization. This in-
ner synchronizer first invokes DGet to propagate a
!null modification to module, and then fails be-
cause NotNull fails. After that, the resync func-
tion of the second inner synchronizer is invoked, and
moduleRef is set to null.

In MOF [OMG02] there is a special reference
called containment reference, which indicates one
object is contained in another object respect to the
reference. When the referenced object is deleted, we
should also delete the contained object. This kind
of reference can be simulated using the following
synchronizer.

ContainmentReference <attribute > = switch {

graph(childObj , parentObjs) {

var=ref , parentObj;

SGet <key=attribute >(childObj , ref);

DGet(ref , parentObjs , parentObj);

NotNull <default =0>(parentObj);

};

graph(childObj , parentObjs) {

Equal <value=null >(childObj);

};

}

Map Combinators The combinators we have
seen so far are static, which means the data items
to be synchronized by inner synchronizers are stat-
ically determined. Sometimes we need to dynam-
ically synchronize newly created data items or re-
move existing items according to modifications on
the data items. For instance, we may want to syn-
chronize two dictionaries by using an inner synchro-

nizer s to synchronize every two items in the two
dictionaries. We introduce two map combinators
for this task.

The two map combinators synchronize a se-
quence of dictionaries both by matching the items
in the dictionaries and synchronizing the matched
tuple with an inner synchronizer. The difference
is how they match the items. The emap combina-
tor matches items by key. Items are matched only
if they are mapped by the same key in the dictio-
naries. This is suitable for dictionaries whose keys
containing significant information, like sequences.
The smap combinator matches two dictionaries by
the inner synchronizer s. Two items are matched
if they are successfully synchronized by s. This is
suitable for dictionaries whose keys containing in-
significant information, like sets.

For example, the following code construct syn-
chronizers using emap and smap, respectively.

s1=emap <sync=Id, dicts=2>

s2=smap <sync=Id, factories =[f1, f2]>

The inner synchronizers for both combinators are
Id. The combinator emap also takes a parameter
to specify the number of dictionaries to synchronize.
The combinator smap also takes a list of key facto-
ries in case that it need to create new keys when a
suitable match cannot be found for some keys. The
combinator emap does not need a factory list be-
cause it just copies keys from one dictionary to the
other and does not create new keys.

Suppose the current values for the
two dictionaries are both empty dictio-
naries. With an input modifications of
{1->"a"}, {2->"a", 3->"b"}, synchronizer
s1 will produce {1->"a", 2->"a", 3->"b"},

{1->"a", 2->"a", 3->"b"} where the value
mapped by the same key are made identical.
Synchronizer s2 will produce {1->"a", 2->"b"},

{2->"a", 3->"b"}, where the keys 1 and 2 are
matched because they are modified to the same
value, and a new key 2 is created in the first
dictionary because no proper match can be found
for the key 3 in the second dictionary.

Sometimes the inner synchronizer may need
some shared data items that cannot be obtained

日本ソフトウェア科学会第 25回大会（2008年度）論文集 10

from the two dictionaries. For example, when we
are synchronizing an EJB and an entity bean, we
need the module dictionary to obtain information
for the moduleName attribute. In this case, we
resynchronize all data items whenever the shared
data items are modified by an inner synchroniza-
tion, so that all items in the dictionaries are consis-
tent with the shared data item.

For example, the following synchronizer main-
tains a containment reference between two dictio-
naries using the ContainmentReference synchro-
nizer we have created:

ReferenceMaintainer <attribute > = emap {

sync = ContainmentReference

<attribute=attribute >;

dicts = 1;

}

The dicts parameter is set to 1, which
means the first data item synchronized by
ContainmentReference is a dictionary to be
iterated and the second data item is a shared data
item. All objects in the first dictionary should
have a valid containment reference, or the objects
is deleted from the dictionary by being set to null.

4.4 The Synchronizer for the EJB Model-

ing Tool

Now we have seen all the primitive synchronizers
and the combinators. Let us construct the synchro-
nizer for the EJB Modeling Tool. The code for the
synchronizer is shown in Figure 3.

The final synchronizer is Main, which synchro-
nizes the three dictionaries of EJBs, modules and
entity beans using three inner synchronizers. The
first inner synchronizer ModulesAndNames mapped
the modules dictionary into a dictionary of module
names to be used by TwoViewMaintainer. The
second inner synchronizer ReferenceMaintainer

maintains the containment reference Module

of the EJB objects. The last synchronizer
TwoViewMaintainer maintains the mappings
between the two views. This synchronizer maps
between the EJB dictionary and the entity bean
dictionary while the module name dictionary is
used as a shared item. The inner synchronizer is
further a switch between three synchronizers.

Persistent deals with persistent EJBs. The
Persistent attribute of the EJB object is re-
quired to be true while other attributes are mapped
between the EJB object and the entity bean.
NonPersistent deals with non-persistent EJBs.
The Persistent attribute of the EJB object is
ensured to be false while the entity bean is en-
sured to be null. That is, no entity bean is cre-
ated for non-persistent EJBs. Deletion deals with
deleted objects. Both the EJB object and the en-
tity bean are ensured to be equal to null. Note
in the switch synchronizer NonPersistent appears
before Deletion, which means when an entity bean
is deleted, we first try to change the EJB into a non-
persistent one, rather than deleting the EJB.

The synchronization behavior can be easily
changed by changing the composition of synchro-
nizers and the parameters on synchronizers. For
example, if we want the synchronizer to delete
an EJB when an entity bean is deleted, we just
put Deletion before NonPersistent in the switch

combinator. For another example, when users
change the ModuleName attribute of an entity bean,
the current synchronizer will try to find a module
whose name is equal to the modified name and move
the corresponding EJB to that module. If we want
the synchronizer instead to change the name of the
original module, we can just set the changeKey pa-
rameter of the DGet synchronizer to false.

5 Case Study

As we have constructed the synchronizer for the
EJB modeling tool, we would like to see how the
synchronizer works in actions. In this section, we
use Eclipse Graphics Modeling Framework (GMF)
and on-site synchronizers to actually construct the
EJB modeling tool. The result interface of the ed-
itor has been shown in Figure 1. Besides the two
views in Figure 1 there is also a “synchronize” but-
ton. When users press the button, the modifications
on the two views are synchronized.

GMF is a framework for generating graphical
editors. In GMF, users define a meta model and a
set of shapes, together with a mapping between ele-
ments of the meta model and the shapes, and GMF

日本ソフトウェア科学会第 25回大会（2008年度）論文集 11

Persistent = graph(ejb , entitybean , modules) {

var = moduleRef , ejbName , moduleName , persistent;

SGet <key="Persistent", dictOverValue=false >(ejb , persistent);

Equal <value=true >(persistent);

SGet <key="Name">(ejb , ejbName);

SGet <key="EJBName", dictOverValue=false >(entitybean , ejbName);

SGet <key="ModuleName", dictOverValue=false >(entitybean , moduleName);

SGet <key="Module" >(ejb , moduleRef);

DGet <changeKey=true , dictOverValue=false , keyFactory=MaxInteger >

(moduleRef , modules , moduleName);

}

NonPersistent = graph(ejb , entitybean , modules) {

var = persistent;

SGet <key="Persistent", dictOverValue=false >(ejb , persistent);

Equal <value=false >(persistent);

Equal <value=null >(entitybean);

}

Deletion = graph(ejb , entitybean , modules) {

Equal <value=null >(ejb);

Equal <value=null >(entitybean);

}

TwoViewMaintainer = smap <

sync = switch{

Persistent;

NonPersistent;

Deletion;

},

factories = [MaxInteger , MaxInteger]

>

ModulesAndNames = emap <

sync = switch {

SGet <key = "Name", dictOverVal=dictOverVal >;

graph(a, b){Equal <value=null >(a);Equal <value=null >(b);};

},

dicts = 2

>

Main = graph(ejbs , modules , entitybeans) {

var = modulenames;

ModulesAndNames(modules , modulenames);

ReferenceMaintainer <attribute="Module" >(ejbs , modules);

TwoViewMaintainer(ejbs , entitybeans , modulenames);

}

Figure 3. The Synchronizer for the EJB Modeling Tool

日本ソフトウェア科学会第 25回大会（2008年度）論文集 12

generates a graphical editor that uses the shapes to
edit models defined by the meta model. A simpli-
fied structure of GMF-generated editors is shown in
Figure 4. The model is responsible for maintaining
the data defined by the meta model and the view
is responsible for displaying the data using the pre-
defined shapes. When users make modifications on
the view, the view modifies the model, and when
model is modified, it updates the view.

M o d e l

V i e w

u p d a t e m o d i f y

Figure 4. The Structure of a GMF Editor

GMF requires the mappings between meta
model elements and shapes to be of one-to-one map-
ping, that is, the graphical view and the model can-
not be heterogeneous. As a result, although we can
generate multiple heterogeneous views using GMF,
the data of these views cannot be synchronized.

We fill the missing synchronization part using
on-site synchronizers, and the structure of our edi-
tor is shown in Figure 5. We define different mod-
els for different views, and uses GMF to generate
multiple independently running single-view appli-
cations. The synchronization part is shared among
all these applications. When a view is modifying
its model, the modification is captured by a model
listener. This can be achieved through the notifi-
cation mechanism provided by GMF. When users
press the “synchronize” button, the modifications
recorded in the model listener will be inputted into
the synchronizer, and the synchronizer will produce
the synchronized modifications. Finally, the syn-
chronized modifications are applied to the models
through a modification applier.

As mentioned in Section 1, the synchronization
part can directly use the internal addresses of ob-
jects to interact with other part, rather than defin-
ing key attributes for objects. Here we have two
choices to convert objects into dictionaries. The
first one is that we directly use the addresses of

M o d e l 1

V i e w 1

u p d a t e

m o d i f y

M o d e l 2

V i e w 2

u p d a t e

m o d i f y

M o d e l L i s t e n e r

S y n c h r o n i z e r

M o d i f i c a t i o n A p p l i e r

[m o d i f i c a t i o n s]

[s y n c h r o n i z e d m o d i f i c a t i o n s]

a p p l y
a p p l y

Figure 5. Synchronizing Multiple Views in GMF
Editors

objects as keys of the objects in the dictionaries.
The second one is that we use integers as the keys
for objects, and keep a bijective mapping between
the integers and the addresses of objects. The first
method is more efficient, but it requires the objects
and the states of synchronizers be serialized in the
same way when we save the file. Because GMF uses
XMI to store objects, we choose the second method
in our construction of the EJB tool.

The EJB editor is constructed using the struc-
ture in Figure 5. A deployment view editor and a
persistent view editor are generated from two sets of
definitions using GMF. The synchronizer between
the two views is constructed using the code in Fig-
ure 3, and the model listener and the modification
applier are manually constructed from 340 lines of
Java code. The whole development takes no more
than ten hours.

To test our synchronizers work correctly, we
have performed dozens of experiments on the ed-
itor, and all experiments gave desirable results. In
the following we describe a few experiments related
to the important properties of on-site synchronizers.

In the first experiment, we created an entity
bean on the persistent view with EJBName="User"

and ModuleName="SignOn". After synchroniza-
tion, an EJB named "User" and a module named
"SignOn" was added to the deployment view. The
EJB belongs to the module and its Persistent at-
tribute is set to "true". The two views are now
consistent, embodying the propagation property.

In the second experiment, we pressed the syn-
chronization button without modifying anything.

日本ソフトウェア科学会第 25回大会（2008年度）論文集 13

The two views remained the same, satisfying the
stability property.

In the third experiment, we modified the de-
scription text of the SignOn module. After syn-
chronization, the modified text, together with other
parts of the views, remained the same, satisfying the
preservation property.

In the forth experiment we tested the ability
of handling conflicting modifications. We modified
the EJBName attribute of the entity bean to "x" and
renamed the EJB to "y". When we synchronized,
we got a message saying that there were conflicting
modifications. We solved the conflict by renaming
the EJB to "x", and synchronized again. This time
the synchronization passed without errors.

6 Performance Evaluation

We evaluate the performance of our approach by ex-
perimenting with the synchronizer for the EJB de-
sign tool. We also compare our results with an off-
site incremental synchronizer, medini QVT v1.1.2
[ikv], which is a state-of-art implementation of the
model transformation standard [Obj05]. Our ex-
periments are carried out on a laptop with an 1.70
GHz Intel(R) Pentium(R) M processor and 1.25 GB
RAM.

Before carrying out the experiments, we prepare
some common data. We first construct a large num-
ber of EJBs and modules, where every 100 EJBs be-
long to a module and the attributes are randomly
assigned. Then we synchronize to get a consistent
set of entity beans.

In the first set of experiments we randomly
choose a set of EJBs, set their Name attributes to
new values, and record the synchronization time.
The result is shown in Table 1. The third column
shows the time our tool takes and the forth column
shows the time medini QVT takes. To be fair, we
exclude the time during which medini QVT loads
and saves XMI files, and only use the in-memory
evaluation time reported by medini QVT.

From the table we can see, the synchronization
time of our tool is a linear function of the modi-
fication size. The time remains constant when we
increase the number of EJBs and increases linearly

Table 1. Modifying the Name Attribute
Mod.
Size

Number
of EJBs

Time(ms)
(Synchronizers)

Time(ms)
(QVT)

500 1000 20 901
500 2000 20 2083
500 3000 20 6048
500 4000 20 10155
500 5000 20 16594
500 6000 20 23785
1000 6000 40 23894
1500 6000 60 24706
2000 6000 90 24575
2500 6000 130 25427

when we increase the size of modifications.
The time of medini QVT is much longer than

our approach and is mainly related to the number
of EJBs. This is probably because QVT works off-
site. When synchronizing, medini QVT has to re-
check whether all applied rules are still valid and
the number of rules is related to the number of EJB
objects.

However, the synchronization time cannot al-
ways be a linear function of modification opera-
tions. In the second set of experiments we first
changes the changeKey parameter of the DGet syn-
chronizer to false, that is, when we modify the
ModuleName attribute of an entity bean, the name
of the corresponding module will be changed. Then
we randomly choose an entity bean object and mod-
ify its ModuleName attribute to a new value. Be-
cause more than one entity bean can belong to the
same module, to synchronize we have to iterate all
EntityBean objects to find the objects in the same
module for modifying their ModuleName attributes,
and the time of the iteration is related to the num-
ber of objects. The result of the experiment is
shown in Table 2. Note medini QVT cannot syn-
chronize this modification because it does not prop-
agate modifications within one model.

Table 2. Modifying the ModuleName Attribute

Number of EJB objects Time(ms)

1000 50
2000 80
3000 101
4000 190
5000 250

From the table we can see that the synchroniza-

日本ソフトウェア科学会第 25回大会（2008年度）論文集 14

tion time increases as the number of EJB objects
increases. Nevertheless, the synchronization time is
still short and we believe that it is efficient enough
to support real applications.

7 Related Work

The mainstream work of off-site synchronization
is work on bidirectional transformation [FGM+07,
KH06, KW07, LHT07, Obj05]. In these ap-
proaches, a bidirectional language is used to de-
scribe a consistency relation R between two arti-
facts a ∈ A, b ∈ B, a forward function f : A×B →
B and a backward function g : A × B → A at
the same time [Ste07]. Bidirectional transformation
cannot directly support modifying the two artifacts
at the same time. Benjamin and et al. [PSG03] pro-
posed a framework, Harmony, to support this with
bidirectional transformation by designing a com-
mon artifact and use a reconciler to reconcile dif-
ferent versions of the common artifact.

Some bidirectional transformation approaches
also target at synchronizing data in software ap-
plications. Two among them are Triple Graph
Grammars (TGGs) [KW07], a model transforma-
tion approach applying early work in graph gram-
mars to modeling environments [NNZ00, AKRS06],
and QVT relations [Obj05], the standard of model
transformation. The two approaches have been
proved structurally similar by Greenyer and Kindler
[GK07]. They are both rule-based, and can support
incremental synchronization by re-checking applied
rules. Part of our design of on-site synchronizers,
like the smap combinator, is inspired by TGGs. On
the other hand, we try to stay less declarative than
TGGs, so that we can provide finer control over
synchronization behavior to users.

Some researchers focus on the on-site mainte-
nance of view consistency, which is a typical ap-
plication of on-site synchronization. Amor and et
al. [AHM95] design a declarative language which fo-
cuses on bijective mappings between views and pro-
vides powerful support to expressions. Some other
work [GHM98, FGH+94] provides general frame-
works for view consistency, where users write code
for identifying and handling inconsistency. Com-

pared to these frameworks, our approach only re-
quires users to composite synchronizers once and
users automatically get the ability of handling in-
consistency.

Our work started from our previous attempt
[XLH+07] on synchronizing models from a forward
transformation program. However, later we found
that it is difficult to fully present the semantics of
synchronization just in a forward program, and then
we designed synchronizers, to provide a precise and
flexible foundation for synchronization.

8 Discussion and Future Work

In this paper we have defined several on-site syn-
chronizers and combinators, and have used them to
construct an EJB modeling application. However,
several issues still need attention before on-site syn-
chronizers can be widely used. Here we discuss four
of these issues.

Memory Consumption To achieve an efficient
synchronization of application data, on-site syn-
chronizers keep some information as their internal
states. Keeping these states requires extra memory.
Currently, to synchronize 6000 EJBs, we need about
110m memory, which is about twenty times higher
than just keeping the objects without synchroniz-
ers. The memory consumption may be reduced by
sharing of data. The current states of synchronizers
are mainly the copies of data they synchronize. If
we just keep references to the original data instead
of keeping duplicated copies, a lot of memory can
be saved. We leave this engineering task for future
work.

Totality The current synchronizers are not to-
tal, which means, synchronizers may fail even if
there is no conflicts among modifications. To see
how this happens, consider the following synchro-
nizer.

graph(k, d, v) {

vars=k0;

DGet <changeKey=true >(k0, d, v);

Id(k, k0);

}

Suppose the input modifications are 〈2, nomod,
"newV"〉. Since both inner synchronizers are con-

日本ソフトウェア科学会第 25回大会（2008年度）論文集 15

nected to modifications, they are invoked in the or-
der they appear in the declaration. When DGet is
invoked, it will try to find a new key for the changed
value. However, if the new key is different from 2,
the synchronization will fail when the Id is invoked.

This failure can be avoided by changing the or-
der of Id and DGet. As a result, the current synchro-
nizers require programmers to carefully consider the
synchronization behavior when they define synchro-
nizers, and sometimes the synchronization behavior
is not easy to analyze.

We plan to overcome this problem by designing
some high level languages that is total, so that users
can program synchronizers by considering only the
consistency relations over application data.

Termination The current synchronizers are not
always ensured to terminate. Suppose AddOne is a
synchronizer over two integers a and b, and ensures
a + 1 = b. One example of a non-terminating syn-
chronizer is as follows.

graph{d1 , d2}{

map <sync=AddOne , dicts=2>(d1, d2);

map <sync=AddOne , dicts=2>(d2, d1);

}

When users add a new integer x to d1, the first
map will insert a new integer x+ 1 to d2, and then
the second map will be invoked and insert x + 2 to
d1 and x − 1 to d2. After that, the first map will
be invoked again, and will insert two more items to
the dictionaries. This process will repeat and will
not stop.

Termination is a more fundamental problem to
programming, and non-terminating programs can
also be constructed in other synchronization ap-
proaches [KW07, Obj05] and common program-
ming languages. If we want to keep synchronizers
always terminating, we may have to greatly reduce
the expressiveness of synchronizers, which conflicts
with our original goal. Therefore we choose not to
ensure the termination of all synchronizers, and rely
on programmers to create terminating synchroniz-
ers.

Conflicts Reporting The current synchroniz-
ers only report the existence of conflicts. A more
preferable way is to report the locations of conflicts

so that users know where to solve the conflicts. This
can be possibly achieved by extending a modifica-
tion with a source location, which records the orig-
inal location of the modification. When a synchro-
nizer propagates a modification from one data item
to another data item, it also copies the source lo-
cation part to the new modification. However, for
complex synchronizers it is sometimes difficult to
tell where the modification is propagated from. For
example, for a DGet synchronizer, when the key and
the dictionary are both modified, it is difficult to
say the modification propagated to the third data
item is from the key or from the dictionary. We
plan to further investigate this issue and design an
algorithm for propagating the source locations of
modifications.

References
[AC06] Michal Antkiewicz and Krzysztof Czarnecki.

Framework-specific modeling languages with
round-trip engineering. In Proc. 9th MoD-
ELS, pages 692–706, 2006.

[ACar] Michal Antkiewicz and Krzysztof Czarnecki.
Design space of heterogeneous synchroniza-
tion. In Proc. 2nd GTTSE, to appear.

[AHM95] Robert Amor, John Hosking, and Warwick
Mugridge. A declarative approach to inter-
schema mappings. In Modelling of Build-
ings Through Their Life-Cycle: Proc CIB
W78/TG10 Conference, 1995.

[AKRS06] C. Amelunxen, A. Königs, T. Rötschke, and
A. Schürr. MOFLON: A standard-compliant
metamodeling framework with graph trans-
formations. In Proc. 2nd ECMDA, pages
361–375, 2006.

[FGH+94] A. C. W. Finkelstein, D. Gabbay, A. Hunter,
J. Kramer, and B. Nuseibeh. Inconsistency
handling in multiperspective specifications.
IEEE Trans. Softw. Eng., 20(8):569–578,
1994.

[FGM+07] J. Nathan Foster, Michael B. Greenwald,
Jonathan T. Moore, Benjamin C. Pierce,
and Alan Schmitt. Combinators for bidirec-
tional tree transformations: A linguistic ap-
proach to the view-update problem. ACM
Trans. Program. Lang. Syst., 29(3):17, 2007.

[GHM98] John Grundy, John Hosking, and War-
wick B. Mugridge. Inconsistency manage-
ment for multiple-view software develop-
ment environments. IEEE Trans. Softw.
Eng., 24(11):960–981, 1998.

日本ソフトウェア科学会第 25回大会（2008年度）論文集 16

[GK07] Joel Greenyer and Ekkart Kindler. Recon-
ciling TGGs with QVT. In Proc. 10th MoD-
ELS, pages 16–30, 2007.

[ikv] ikv++ technologies. medini QVT homepage.
http://www.ikv.de/index.php?option=

com content&task=view&id=75&Itemid=77.

[KH06] Shinya Kawanaka and Haruo Hosoya. biXid:
a bidirectional transformation language for
XML. In Proc. 11th ICFP, pages 201–214,
2006.

[KW07] Ekkart Kindler and Robert Wagner. Triple
graph grammars: Concepts, extensions, im-
plementations, and application scenarios.
Technical Report tr-ri-07-284, University of
Paderborn, June 2007.

[LHT07] Dongxi Liu, Zhenjiang Hu, and Masato
Takeichi. Bidirectional interpretation of
XQuery. In Proc. PEPM, pages 21–30, 2007.

[NNZ00] Ulrich Nickel, Jörg Niere, and Albert
Zündorf. The FUJABA environment. In In
Proc. 22nd ICSE, pages 742–745, 2000.

[Obj05] Object Management Group. MOF
QVT final adopted specification.
http://www.omg.org/docs/ptc/05-11-
01.pdf, 2005.

[OMG02] OMG. MetaObject Facility specifica-
tion. http://www.omg.org/docs/formal/02-
04-03.pdf, 2002.

[PSG03] Benjamin C. Pierce, Alan Schmitt, and
Michael B. Greenwald. Bringing Harmony to
optimism: A synchronization framework for
heterogeneous tree-structured data. Tech-
nical Report MS-CIS-03-42, University of
Pennsylvania, 2003.

[Ste07] Perdita Stevens. Bidirectional model trans-
formations in QVT: Semantic issues and
open questions. In Proc. 10th MoDELS,
pages 1–15, 2007.

[XHT+08] Yingfei Xiong, Zhenjiang Hu, Masato Take-
ichi, Haiyan Zhao, and Hong Mei. On-site
synchronization of software artifacts. Tech-
nical Report Report METR 2008-21, De-
partment of Mathematical Informatics, Uni-
versity of Tokyo, April 2008.

[XLH+07] Yingfei Xiong, Dongxi Liu, Zhenjiang Hu,
Haiyan Zhao, Masato Takeichi, and Hong
Mei. Towards automatic model synchroniza-
tion from model transformations. In Proc.
22nd ASE, pages 164–173, 2007.

[YKW+08] Yijun Yu, Haruhiko Kaiya, Hironori
Washizaki, Yingfei Xiong, and Zhenjiang
Hu. Enforcing a security pattern in stake-
holder goal models. In Proc. 4th QoP Work-
shop, 2008.

