
Tolerating Inconsistency in Feature Models

Bo Wang
Key Laboratory of High
Confidence Software

Technologies
(Ministry of Education)

Peking University, China
wangbo07@sei.pku.edu.cn

Zhenjiang Hu
GRACE Center

National Institute of
Informatics

Tokyo, Japan
hu@nii.ac.jp

Yingfei Xiong
Generative Software

Development Lab
The University of Waterloo

Waterloo, Canada
yingfei@swen.uwaterloo.ca

Haiyan Zhao
Key Laboratory of High
Confidence Software

Technologies
(Ministry of Education)

Peking University, China
zhhy@sei.pku.edu.cn

Wei Zhang
Key Laboratory of High
Confidence Software

Technologies
(Ministry of Education)

Peking University, China
zhangw@sei.pku.edu.cn

Hong Mei
Key Laboratory of High
Confidence Software

Technologies
(Ministry of Education)

Peking University, China
meih@pku.edu.cn

ABSTRACT
Feature models have been widely adopted to reuse the re-
quirements of a set of similar products in a domain. When
constructing feature models, it is difficult to always ensure
the consistency of feature models. Therefore, tolerating in-
consistencies is important during the construction of feature
models. The usual way of tolerating inconsistencies is to
find the minimal unsatisfiable core. However, identifying
the minimal unsatisfiable core is time-consuming, which de-
creases itself the practicability.

In this paper, we propose a priority based approach to
tolerating inconsistencies in feature models efficiently. The
basic idea of our approach is to find the weaker unsatis-
fied constraints, while keeping the rest of the feature model
consistent. Our approach tolerates inconsistencies with the
help of priority based operations while building feature mod-
els. To this end, we adopt the constraint hierarchy the-
ory to express the degree of domain analysts’ confidence on
constraints (i.e. the priorities of constraints) and tolerate
inconsistencies in feature models. Experiments have been
conducted to demonstrate that our system can scale up to
large feature models.

Categories and Subject Descriptors
D.2.13 [Software Engineering]: Reusable Software—Do-
main engineering

Keywords
Feature Model, Constraint Hierarchy, Tolerate Inconsistency

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
LWI ’2010 Antwerp, Belgium
Copyright 2010 ACM X-XXXXX-XX-X/XX/XX ...$10.00.

1. INTRODUCTION
Feature models [6, 7] have been widely adopted to reuse

the requirements of a set of similar products in a domain.
During the process of products reuse, specific products that
satisfy all the constraints are derived from feature mod-
els. Inconsistent feature models contain contradictory con-
straints that cannot be satisfied at the same time, leading to
no valid products derivable from them [13]. However, it is
difficult to always ensure the consistency of feature models,
during the construction of feature models. Therefore, toler-
ating inconsistencies is important when constructing feature
models.

The usual way of tolerating inconsistencies is to find the
minimal unsatisfiable core in inconsistent feature models.
However, identifying the minimal unsatisfiable core is time-
consuming [9], which decreases itself the practicability.

In this paper, we propose a priority based approach to
tolerating inconsistencies in feature models, and report an
implementation of a system that not only automatically tol-
erates inconsistencies by identifying weaker unsatisfied con-
straints, but also supports domain analysts to handle the
tolerated inconsistencies, with the help of priority based op-
erations. To this end, we adopt the constraint hierarchy the-
ory [5], a known practical theory in user interface construc-
tion, to express the degree of domain engineers’ confidence
on constraints (i.e. the priorities of constraints) and tolerate
inconsistencies in feature models. The main contributions of
our paper are summarized as follows:

• We show the importance of the constraint hierarchy
theory in tolerating inconsistencies in feature models,
and we adopt it to divide a feature model into the con-
sistent feature model part and pending constraint set
part, which will help tolerate inconsistencies in feature
models.

• We make the first attempt of conducting a constraint
hierarchy system1 for tolerating inconsistencies in fea-
ture models, through adapting and extending an ex-
isting incremental algorithm-SkyBlue [10, 11].

1See http://sei.pku.edu.cn/˜ wangbo07/ for more details.



• We have conducted the experiments on our system,
which demonstrates that our approach scales up to
very large feature models.

The rest of this paper is organized as follows. Section
2 introduces some preliminary knowledge on feature mod-
els, constraint hierarchy and SkyBlue. Section 3 gives an
overview of our approach. Section 4 amplifies our approach.
Section 5 illustrates the scalability of our approach. Section
6 discusses the related work, and Section 7 concludes the
paper and highlights the future work.

2. PRELIMINARIES
In this section, we first describe feature models, followed

by the introduction to the constraint hierarchy theory and
SkyBlue. All these three serve as the fundamental supports
for tolerating inconsistencies in feature models.

2.1 Feature Model
A feature model organizes the requirements of the prod-

ucts of a domain, in terms of features and the relationships
between them. A simplified feature model of the mobile
phone domain [3], which adopts our meta model of feature
models [15], is shown in Fig. 1.

Mobile Phone 

Call GPS Screen Media 

Basic Color 
High 

Resolution 
Camera MP3 

Composite Constraints: 
All-Set(Screen) composite-requires Single-Set(Basic, Color, High Resolution) 
All-Set(Media) composite-requires Or-Set(Camera, MP3) 

Legend 

Mandatory Feature 

Optional Feature 

Require 

Exclude 

Figure 1: A simplified example of the mobile phone
domain

A feature is a software characteristic with sufficient user
or customer value, which essentially denotes a cohesive set of
individual requirements [14]. In feature models, if a feature
is bound (i.e. selected and implemented in a product), so
is its parent. A mandatory feature should be bound if its
parent is bound. An optional feature can be unbound (i.e.
deselected and not implemented in a product), even if its
parent is bound.

There are three kinds of simple constraints on two fea-
tures, namely requires, m-requires, and excludes. If feature
A requires feature B, it indicates that B must be bound when
A is bound. If feature A m-requires feature B, it means that
A and B should be bound or unbound at the same time. If
feature A excludes feature B, it indicates that they cannot
be bound at the same time.

There are three kinds of predicates on a set of features,
namely All, Alternative and Or. Predicates All, Alternative,
and Or indicate these predicates are true only if all, only
one, and at least one features are bound in their feature
sets, respectively. For instance, Single-Set (Basic, Color,
High Resolution) indicates that this predicate is true when
only one kind of screens can be chosen in a product.

Based on the predicates, there are three kinds of com-
posite constraints on two feature sets, composite-requires,
composite-m-requires, and composite-excludes. For example,
given All-Set(Media) composite requires Or-Set(Camera, MP3),
if All-Set (Media) is true, Or-Set (Camera, MP3) must be
true. For the details of the composite constraints, see sub-
section 4.1.

Products are derived from a feature model by binding and
unbinding constraints. A valid derived product must satisfy
all the constraints in the feature model. A feature model
contains inconsistencies if no valid products can be found to
satisfy all the constraints in this feature model [13]. These
inconsistencies are caused by the contradictory constraints
in feature models.

2.2 Constraint Hierarchies and SkyBlue
When a solver is used to check inconsistent models, it is

not enough for the solver to just signal the detected inconsis-
tencies. The constraint hierarchy theory [5] provides a way
to handle the detected inconsistencies through maintaining
constraint hierarchies. A constraint hierarchy contains a set
of constraints, each assigned with a priority, indicating the
importance of the constraint. Given an inconsistent model,
a constraint solver makes sure that stronger constraints are
satisfied, through unsatisfying the contradictory weaker con-
straints.

SkyBlue is an incremental constraint solver that uses local
propagation to maintain the constraint hierarchies. It has
been successfully applied in many GUI systems. SkyBlue
requires that methods can be derived from constraints (ex-
plained later in this sub-section), and thus is not applicable
to some kinds of constraints. One important finding of our
approach is that the constraints in feature models satisfy
the prerequisite of SkyBlue (with minor extension) and thus
can enjoy the performance boost of SkyBlue (see Section 4).

C2 
Strongest 

C1 
Weak 

C3 
Strong A B C 

C4 
Medium 

Unselected 
Method 

C2 
Strongest 

C1 
Weak 

C3 
Strong A B C 

C4 
Medium 

Unenforced 
Constraint 

C2 
Strongest 

C1 
Weak 

C3 
Strong A B C 

C1: A = 5 (Weak) 
Methods: 
1) A = 5 
 
 
C2: A+B = 10 (Strongest) 
Methods: 
1) A  = 10 – B 
2) B  = 10 – A 

C3: B+C = 7 (Strong) 
Methods: 
1) B = 7 – C 
2) C = 7 – B  
 
C4: C = 6 (Medium) 
Methods: 
1) C = 6 

Constraint 

Variable 

Legend 

Determine a 
Variable 

Figure 2: A simple example for SkyBlue

The input of SkyBlue is a set of variables and the con-
straints on these variables. The output of SkyBlue is a set
of values that satisfy stronger constraints and leave the con-
tradictory weaker constraints unsatisfied.

In SkyBlue, each constraint is equipped with one or more
methods. SkyBlue satisfies a constraint by selecting one
of its methods and executing the selected method. Sky-
Blue enforces a constraint by choosing one method for this
constraint and revoke a constraint by choosing no meth-
ods for this constraint. A constraint is enforced if it has
a selected method, otherwise, it is unenforced. The vari-
ables and the constraints form the constraint graph. The
constraint graph, together with the selected methods, forms
the method graph.



The output of SkyBlue, the value set for variables, is cal-
culated through constructing and executing a locally-graph-
better (called LGB) method graph. A method graph is LGB
if there are no method conflicts and there are no unen-
forced constraints that could be enforced by revoking one
or more weaker constraints (and possibly changing the se-
lected methods for other enforced constraints with the same
or stronger strength) [10].

As a simple example, the method graphs in Fig. 2 has
four constraints C1, C2, C3 and C4 on three variables A, B
and C. Each constraint has one or more methods to make
the constraint hold (for instance, two methods are given to
satisfy C3 by either calculating B from C or calculating C
from B). To satisfy every constraint, SkyBlue tries to se-
lect a method from each constraint, as shown in the upper
right of Fig. 2, but there is a method conflict (inconsistency):
variable A is determined by two methods, namely, A=5 and
A=10-B. To resolve this conflict, we have to revoke some
weaker constraint to enforce the stronger constraints. Sky-
Blue finds the strong constraints that can be enforced, while
leaving the weaker constraints unenforced by constructing
LGB method graph. The LGB method graph of this ex-
ample is shown in the middle right of Fig. 2, where C1 is
revoked. After executing the selected methods in the LGB
method graph, A equals to 9, B equals to 1, and C equals to
6, which satisfy the three stronger constraints, namely C2,
C3 and C4. C1 may be reenforced automatically when its
contradictory constraints are deleted. For example, if C4 is
deleted, a new LGB method graph is constructed, in which
constraint C1 is reenforced by selecting method “A equals
to 5”, as shown in the lower right of Fig. 2.

3. APPROACH OVERVIEW
In this section, we first give an overview of our approach,

and then we use an example to illustrate how to tolerate
inconsistencies in feature models.

3.1 Feature Model Inconsistency Tolerance
In our approach, a feature model is divided into two parts,

namely the consistent feature model part (called CFM part)
and the pending constraint set part (called PCS part). The
PCS contains weaker constraints that conflict with some
stronger constraints in the CFM. If the PCS is empty, the
feature model is consistent. Domain analysts work on the
CFM to construct the feature model and work on the PCS
to handle the tolerated inconsistencies. An overview of the
inconsistency tolerance is shown in Fig. 3.

Check 
Inconsistency 

Generate & 
Update Pending 
Constraint Set 

Automatic Step 

Operation 

Add / Delete a 
Constraint 

Consistent 
Feature Model 

Pending 
Constraint Set 

Raise the  
Priority of a 
Constraint 

Reduce the  
Priority of a 
Constraint 

Delete a 
Constraint 

Artifact 

Feature 
Model 

Reduce the  
Priority of a 
Constraint 

Raise the  
Priority of a 
Constraint 

Figure 3: Feature model inconsistency tolerance

We divide a feature models into the CFM and the PCS
through constructing LGB method graphs. The CFM con-
sists of the enforced constraints in the LGB method graph,

and the PCS consists of the unenforced constraints in the
LGB method graph. After a new LGB method graph is
constructed, the CFM and the PCS are updated.

1. If the constructed LGB method graph does not contain
any unenforced constraints, the PCS is empty and the
CFM contains all the constraints in the feature model.
At this moment, the feature model is consistent.

2. If the constructed LGB method graph contains one or
more weaker unenforced constraints, the constraints in
the PCS are replaced with these unenforced constraints
and the constraints in the CFM are replaced with the
enforced constraints in the LGB method graph. At
this moment, the feature model is inconsistent.

Four kinds of operations on the CFM are provided to help
domain analysts construct feature models. When construct-
ing feature models, domain analysts can add a constraint
with priority into the CFM or delete a constraint from it.
Domain analysts can change priorities of constraints when
constructing feature models.

There are three conditions on which the enforced con-
straints in the CFM may become unenforced and thus are
put into the PCS: 1) their priorities are reduced; 2) the pri-
orities of their contradictory weaker constraints in the PCS
are raised; 3) some contradictory stronger constraints are
added. When these conditions are met, we generate a new
LGB method graph to update the CFM and the PCS.

Three kinds of operations on the PCS are provided to
help domain analysts handle the tolerated inconsistencies.
If the domain analysts become more confident about a con-
straint in the PCS, he can raise its priority. The possibility
of reenforcing this constraint become larger as its priority
rises. If the domain analysts become less confident about
a constraint, he can reduce its priority. The possibility of
enforcing this constraint becomes smaller as its priority de-
creases. If domain analysts believe some constraints do not
represent the correct relationships among the features, they
can delete them from the in pending constraint set.

There are three conditions on which the unenforced con-
straints in the PCS can be re-enforced again, and thus are
put into the CFM: 1) their priorities are raised; 2) their con-
tradictory stronger constraints in the CFM are deleted; 3)
the priorities of their contradictory stronger constraints in
the CFM are reduced. When these conditions are met, we
generate a new LGB method graph to update the CFM and
the PCS.

3.2 An Example
To demonstrate how we tolerate inconsistencies in feature

models, let us see how to find the CFMs and the PCSs, and
handle the tolerated inconsistencies in the feature model in
Fig. 4.

Suppose all the constraints have been added into the fea-
ture model except “feature C excludes feature D” (the red
part in Fig. 4). The feature model is consistent before
adding“feature C excludes feature D”, since the LGB shown
in Fig. 4(b) contains no unenforced constraints. At this mo-
ment, the PCS is empty. Note that even some variables are
determined by more than one method in the LGB method
graph, no conflict happens, because these variables are set
to the same value (see Section 4 for more detail).

When the “exclude” constraint is added and enforced, a
LGB method graph, in which the constraints“Mandatory D”



Add excludes 
between C and D

A

CB D E

F G

Composite Constraint:
All-Set(B) c-requires Single(F,G)  Priority: 4

Priority:            1                3              6

Confidence :   Low      Medium   High

Default Priority: 3

Legend:

Unbind a feature

Bind a feature A

B

C D E

F G

Root Feature
Priority 6

5

4

3

5

35

4

4 5 3 3 4

6

5 3

44

4

(a) (b)

Add excludes 
between C 

and D

5

3

3

3

Figure 4: An example of feature model inconsistency
tolerance

and “feature E requires feature D” are revoked, is generated.
The PCS consists of these two revoked constraints.

Domain analysts can delete the constraint “feature D re-
quires feature E” if they believe the “require” constraint
dose not represents the correct relationship between fea-
ture D and E. If domain analysts have more confidence on
the “Mandatory D” than before, they raise its priority to 5.
Then our approach will try to enforce it by constructing a
new LGB. In the new LGB method graph, only “feature B
requires feature C” is revoked. The PCS is updated, and it
only contains the “require” constraint.

4. TOLERATE INCONSISTENCIES IN FEA-
TURE MODELS

In this section, we will describe how we adopt the con-
straint hierarchy theory by revising and extending SkyBlue
to tolerate inconsistencies in feature models.

4.1 Map Feature Models to Constraint Graphs
To use SkyBlue to detect and tolerate inconsistencies, the

first thing is to map the elements of feature models to the
elements of SkyBlue constraint graphs.

The mapping consists of two steps: 1) each feature of
the feature model is mapped to a variable of the SkyBlue
constraint graph; 2) each constraint of the feature model is
mapped to a SkyBlue constraint (called SBC) that is repre-
sented by a set of methods.

SkyBlue cannot be generalized to derive methods from
some “inequality-like” constraints. But feature models are
different from this general case. In feature models, each
feature can have only two states: 1) bound; 2) unbound.
Therefore, it is possible to derive methods for constraints in
feature models, through combinations of the states of “cer-
tain” features. Concrete rules for the mapping from feature
models to constraint graphs are listed in Tables 1 and 2.

Binding a feature (Bind(feature)) sets the bind state of
the feature bound. Unbinding a feature (Unbind(feature))
sets the bind state of the feature unbound. Predicate on a
feature set represents the value of the predicate of a fea-
ture set. In our approach, simple constraints can be repre-
sented by a composite constraint. For example, “feature
A excludes feature B” can be represented as “All-Set(A)
composite-excludes All-Set(B)”.

In Table 2, each kind of group predicates is associated
with a set of methods that can be executed to set the pred-
icate True or False. These predicate methods, together
with the composite constraint methods, can map a com-

Table 1: Methods for constraints

Relationship 
Number of 

Methods 
Methods 

2 
{Bind(A), Bind(B)} or 

{Unbind(A), Unbind(B)} 

2 
{Bind(A)} or  

{Unbind(B)} 

2 
{Predicate(Set-A) = False} or 

{Predicate(Set-B ) = True} 

2 

{Predicate(Set-A) = False, 

Predicate(Set-B) = False} or 

{Predicate(Set-A) = True, 

Predicate(Set-B) = True} 

2 
{Predicate(Set-A)= False} or 

{Predicate(Set-B)= False} 

B 

A 

A 

B 

Mandatory 

Optional 

Composite-Requires 

Composite-M-requires 

Composite-Excludes 

Set-A Set-B 

Predicate Predicate 

Set-A Set-B 

Predicate Predicate 

Set-A Set-B 

Predicate Predicate 

Table 2: Methods for predicates

Predicate Value
Number

Of Methods
Methods

True 1 {Bind(A1),Bind(A2) …Bind(An)} 

False n
{Unbind(A1)} or {Unbind(A2)} or … 

{Unbind(An)}

True n

{Bind(A1),Unbind(A2),Unbind(A3)…Unbind(An)} 

{Bind(A2),Unbind(A1),Unbind(A3)…Unbind(An)} or …

{Bind(An),Unbind(A1),Unbind(A2)…Unbind(An-1)} 

False 1+(n2-n)/2
{Unbind(A1),Unbind(A2)…Unbind(An)} or 

Any two of the features in the group are bound 

True n {Bind(A1)} or {Bind(A2)} or … {Bind(An)}

False 1 {Unbind(A1), Unbind(A2) …Unbind(An)} 

All

Set-A

{A1,A2…An}

Alternative

Set-A

{A1,A2…An}

Or

Set-A

{A1,A2…An}

posite constraint to an SBC. For example, given a compos-
ite constraint “All-Set(A,B) composite-excludes Alternative-
Set(C,D)”, methods are generated through combination of
the states of the features in the two sets. The four derived
methods are {Unbind(A)},{Unbind(B)}, {Unbind(C), Un-
bind(D)}, and {Bind(C), Bind(D)}.

4.2 Construct LGB Method Graphs
In our approach, we divide a feature model into the CFM

and the PCS, and provide priority-based operations through
constructing LGB method graphs. To construct LGB method
graphs for feature models’ tolerance, we have to extend and
revise SkyBlue through: 1) redefining method conflicts; 2)
specializing the execution process.

An LGB method graph is constructed under the follow-
ing conditions: 1) a new constraint is added/deleted to the
CFM; 2) the priority of a constraint in the CFM/PCS is
changed. The pseudo codes are shown below.

Add/delete a constraint in CFM

ConstructCFM(Constraint SBC , Boolean isAdd){
If(isAdd){

ConstructLGB(Constraint SBC)
}
Else {

UnenforcedCnsSet =
collectUnenforcedConstraints ();

While(UnenforcedCnsSet != null){
unenforcedCn = UnenforcedCnsSet.get();
ConstructLGB(SBC);

}
}



Changing a constraint’s priority

ChangePriority(Constraint SBC , Priority p){
oldPriority = SBC.priority;
SBC.priority = p;
If (oldPriority <p){

If (SBC.selectedMethod ==null)
ConstructLGB(SBC);

}
Else If(oldPriority >p){

If (SBC.selectedMethod !=null)
ConstructLGB(SBC);

}
}

Constructing an LGB method graph involves enforcing
the constraints in the constraint graph. To enforce a con-
straint, we select a method for it, change the methods of the
constraints with the same or stronger priorities, or revoke
one or more weaker constraints. This process is called con-
structing a method vine or mvine. When an mvine for the
newly-added SBC is built, the SBC is successfully enforced.

Note that each time a constraint is successfully enforced
(i.e. an mvine is constructed), one or more weaker con-
straints may be revoked. To construct an LGB method
graph, these revoked constraints are added to the unenforced
constraint set. Then our algorithm repeatedly tries to en-
force all the constraints in the unenforced constraint set by
constructing mvines for these constraints, until none of the
constraints can be enforced. This process terminates be-
cause of the finite number of constraints. The pseudo code
of constructing an LGB method is shown below.

Construct an LGB method graph

ConstructLGB(Constraint SBC){
//clean the unenforced constraint
//set before enforce the newly -added SBC}
clearUnenforcedCnSet ();
addToUnenforcedCnSet(SBC);
While(UnenforcedCntSet != null){

unenforcedCn = UnenforcedCnSet.get();
buildMvine(unenforcedCn , unenforcedCnSet);

}
}

SkyBlue uses a backtracking depth-first search to build
mvines. The pseudo code of building a mvine is shown as
follows:

Build a Mvine for a unenforced constraint

buildMvine(Constraint root){
While (root has methods){

Method m = getMethod ();
If(! checkConflicts ()){

return true;
}Else{

Constrint cn = getConflictsConstraint ();
If(cn weaker than root){

revokeConstring(cn);
return true;

}Else{
If(buildMvine(cn))

return true;
}

}
}
return false; //start backtrack

}

To apply the SkyBlue to detect and tolerate inconsisten-
cies in feature models,our algorithm redefines method con-
flict and revises the SkyBlue algorithm for building mvines.
In SkyBlue, a conflict happens when a variable is determined
by more than one method. In our approach, the variables

in the constraint graph can only be bound and unbound.
Therefore, even if a variable is determined by more than
one method, it may not cause a conflict (e.g. see variable B
in Fig. 4). A conflict happens only when this variable is set
to different value by different methods.

In SkyBlue, if an LGB method graph contains directed
cycles, it is not possible to find an execution sort to satisfy
all the variables in the LGB method graph. However, our
approach can just execute all the methods to satisfy all the
constraints, because all the methods set a variable to a fixed
value.

5. PERFORMANCE
In this section, we investigate whether our approach can

scale up to large feature models. To evaluate the scalability,
we randomly generate feature models2 and tolerate the in-
consistencies in the generated feature models. We choose to
use generated models because none of the large models are
publicly available. The generated feature model contains a
root feature. We can specify the number of the subtrees that
are connected to the root feature, the height of the subtrees,
the number of the chid feature for each non-leaf feature in
the subtrees, the number of the constraints. The percentage
of the the variability of features are: Mandatory (25%) and
Optional (75%). The priorities of constraints are randomly
set between 1 to 5.

Time
(Seconds)

Number 
of Features
/Constraints

400 800 1200 1600 2000 2400 2800 3200 3600 4000

242
/30

425
/50

605
/70

765
/110

1023
/130

1364
/150

1705
/170

2046
/190

2387
/210

2728
/230

3069
/250

3410
/270

3751
/290

4092
/310

4400

4433
/330

10

20

30

40

50

60

70

With different 
Priorities

Figure 5: Experiments results for randomly gener-
ated feature models

The environment for our experiments is a Win 7 PC with
a 2.66 GHz CPU, 2GB memory and the result is shown
in Fig. 5. A mandatory feature or optional feature brings
constraints with their parents, m-requires and requires, re-
spectively. The constraints showed in the results are the
constraints explicitly modeled into the feature models, they
do not contain the simple constraints that are brought with
the Mandatory and Optional feature.

In our approach, we check inconsistency and generate the
PCS incrementally. For example, in the second case, 425
mandatory or optional features are added (each bring a con-
straint), and 50 constraints are explicitly modeled, we gen-
erate the PCS 475 times in total and cost 1.2s in all. The
results indicate that our approach can scale up to large fea-
ture models.

6. RELATED WORK
Feature models are first proposed by Kang et al. [7] in the

feature-oriented domain analysis (FODA) method. Since

2See http://sei.pku.edu.cn/˜ wangbo07/ for our system and
the feature model random generation algorithm.



then many researches focus on the detection of inconsisten-
cies in feature models [3]. Maßen and Lichter [13] proposed a
deficiency framework of feature model. They point out that
inconsistency is one of the most severe deficiencies in feature
models. Mannion et al. [8] was the first to use propositional
formulas to find inconsistencies. Batory [2] proposed an ap-
proach to detecting deficiencies with SAT Solver. Benavides
et al. [4] were the first to use constraint programming for
analysis on feature models. Our previous work [16] focused
on how to analyze feature models using BDD.

However, these approaches do not focus on how to find
the unsatisfied constraints and tolerate inconsistencies in
feature models. Balzer [1] pointed out the importance of
tolerating inconsistencies, when the inconsistencies cannot
be fixed. Trinidad et al. [12] focus on the explanation of
inconsistencies in feature models, which helps find unsatis-
fied constraints. Nakajima et al. [9] propose some heuristics
rules to find the unsatisfied core. However, these approaches
do not provide explicit support to handle the tolerated in-
consistencies and the scalability of these approaches is also
not clear. Zowghi et al. [17] propose an approach to han-
dling inconsistencies as a consequence of evolution changes
performed on requirements specification, while our approach
focuses on the inconsistencies in feature models.

7. CONCLUSION AND FUTURE WORK
In this paper, we adopt the constraint hierarchy theory

and extend the constraint solver–SkyBlue to implement a
system that can effectively tolerate inconsistencies in feature
models. The feature model is divided into two parts, consis-
tent feature model part and the pending constraint set part,
through building LGB method graphs. Domain analysts can
construct the feature model by working on the CFM while
handling the tolerated inconsistencies that are expressed ex-
plicitly by the PCS. Three operations are defined and sup-
ported by our system, with the purpose of helping domain
analysts handle the tolerated inconsistencies. Our future
work will focus on investigating the applicability of our ap-
proach.

8. ACKNOWLEDGMENTS
The authors would like to thank Hiroshi Hosobe (NII,

Japan) for introducing Delta/Skyblue to us. This work is
supported by the National Basic Research Program of China
(973) under Grant No. 2009CB320701, the National High
Technology Research and Development Program of China
(863) under Grant No. 2009AA01Z139, the Natural Science
Foundation of China under Grant No. 60703065, 60873059,
and the National Institute of Informatics (Japan) Internship
Program.

9. REFERENCES
[1] R. Balzer. Tolerating inconsistency. In ICSE, pages

158–165, 1991.

[2] D. S. Batory. Feature models, grammars, and
propositional formulas. In SPLC, pages 7–20, 2005.

[3] D. Benavides, S. Segura, and A. R.-R. Cort?s.
Automated analysis of feature models 20 years later: a
literature review. Information Systems, 2010.

[4] D. Benavides, P. Trinidad, and A. R. Cortés. Using
constraint programming to reason on feature models.
In SEKE, pages 677–682, 2005.

[5] A. Borning, B. N. Freeman-Benson, and M. Wilson.
Constraint hierarchies. Lisp and Symbolic
Computation, 5(3):223–270, 1992.

[6] K. Czarnecki, S. Helsen, and U. W. Eisenecker.
Formalizing cardinality-based feature models and their
specialization. Software Process: Improvement and
Practice, 10(1):7–29, 2005.

[7] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak,
and A. S. Peterson. Feature-oriented domain analysis
(FODA) feasibility study. Technical report, CMU-SEI,
November 1990.

[8] M. Mannion. Using first-order logic for product line
model validation. In SPLC, pages 176–187, 2002.

[9] S. Nakajima. Semi-automated diagnosis of foda
feature diagram. In SAC ’10, pages 2191–2197, New
York, NY, USA, 2010. ACM.

[10] M. Sannella. The skyblue constraint solver and its
applications. In PPCP, pages 258–268, 1993.

[11] M. Sannella. Skyblue: A multi-way local propagation
constraint solver for user interface construction. In
ACM Symposium on User Interface Software and
Technology, pages 137–146, 1994.

[12] P. Trinidad, D. Benavides, A. Durán, A. Ruiz-Cortés,
and M. Toro. Automated error analysis for the
agilization of feature modeling. Journal of Systems
and Software, 81(6):883 – 896, 2008. Agile Product
Line Engineering.

[13] T. von der Maßen and H. Lichter. Deficiencies in
feature models. In Workshop on Software Variability
Management for Product Derivation, in Conjunction
with SPLC, 2004.

[14] B. Wang, W. Zhang, H. Zhao, Z. Jin, and H. Mei. A
use case based approach to feature models’
construction. IEEE International Conference on
Requirements Engineering, 0:121–130, 2009.

[15] W. Zhang, H. Mei, and H. Zhao. Feature-driven
requirement dependency analysis and high-level
software design. Requir. Eng., 11(3):205–220, 2006.

[16] W. Zhang, H. Yan, H. Zhao, and Z. Jin. A bdd-based
approach to verifying clone-enabled feature models’
constraints and customization. In ICSR, pages
186–199. Springer, 2008.

[17] D. Zowghi and R. Offen. A logical framework for
modeling and reasoning about the evolution of
requirements. In RE, page 247. IEEE Computer
Society, 1997.


