Specifying Overlaps of Heterogeneous Models for Global Consistency Checking

Zinovy Diskin, Yingfei Xiong, Krzysztof Czarnecki

Generative Software Lab
University of Waterloo, Canada
Motivation
Overlap? Consistency?
Homogenous Overlap and Consistency Checking by Merging

[Sabetzadeh, Easterbrook 2006]
Model D1

Model D2

Model D3

Merge model \(\Sigma \)
Model Correspondence via Span

Model A0 reifies all *same*-links

<table>
<thead>
<tr>
<th>Model A1</th>
<th>Model A0</th>
<th>Model A2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Order</td>
<td></td>
<td>OnlineOrder</td>
</tr>
<tr>
<td>price: int</td>
<td></td>
<td>price: int</td>
</tr>
<tr>
<td>date: Date</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

mapping (leg) f1

Triple (A0,f1,f2) is called a *span* from A1 to A2
Heterogeneous Overlap and Consistency Check
Can we do consistency check by merge?

What is the correspondence?
Heterogeneous Case

Class diagram
 cd

Sequence diagram
 sd

Statechart
 sc

?
Four problems
Problems 1: Type Safety

Incompatible types: Operation vs. MessageType!
Problem 2: Indirect correspondence

No explicit target in mmSD (and sd)!
Problem 3: Inter-Model Constraints

The inter-model constraint is neither in mmSD nor mmSC!
Problem 4: N-ary Metamodel Relations

Pairwise, ternary, ... overlaps!
Overlaps between overlaps!
Solutions
Problem 1: Type Correspondence

Operation ‘get’ models view execution mechanism
Problem 2: Indirect Overlap
Problem 3: Inter-Model Constraints

Inter-model constraint: Traces consistent with the flat Statemachine

A view to mmSD

Mapped to derived elements in mmSD

A view to mmSC
Problem 4: N-ary Metamodel Interrelations
Summary

• Heterogeneous consistency check is reduced to the homogeneous one but metamodel merging is minimal
 – only to manage inter-metamodel constraints, working as locally as possible
• Despite heterogeneity, matching is type safe
• Applicability to a wide class of metamodeling techniques (based on graph-like structures)
• Formal foundations based on the well-established institution theory
Local vs. total consistency checking: Discussion

Two approaches:

(a) Total direct merge: cd, sd, sc are considered instances of the same global metamodel M. M can be derived from the metamodel mappings.

(b) Local merge: we first specify an overlap metamodel CA = a common view to CD, SD, SC. Then project the three models to the overlap and apply Consistency Checking by Merge.
Future work

• Theoretical validation
 – complete the formal semantics outlined in the paper
 – prove that (a) local and (b) global (via total merging of all metamodels) CC are equivalent
 – develop a taxonomy of heterogeneous multimodels and verify its usability

• Experimental validation of the approach