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The floating-point representation provides widely-used data types (such as łfloatž and łdoublež) for modern

numerical software. Numerical errors are inherent due to floating-point’s approximate nature, and pose an

important, well-known challenge. It is nontrivial to fix/repair numerical code to reduce numerical errors Ð it

requires either numerical expertise (for manual fixing) or high-precision oracles (for automatic repair); both

are difficult requirements. To tackle this challenge, this paper introduces a principled dynamic approach that is

fully automated and oracle-free for effectively repairing floating-point errors. The key of our approach is the

novel notion of micro-structure that characterizes structural patterns of floating-point errors. We leverage

micro-structures’ statistical information on floating-point errors to effectively guide repair synthesis and

validation. Compared with existing state-of-the-art repair approaches, our work is fully automatic and has

the distinctive benefit of not relying on the difficult to obtain high-precision oracles. Evaluation results on 36

commonly-used numerical programs show that our approach is highly efficient and effective: (1) it is able to

synthesize repairs instantaneously, and (2) versus the original programs, the repaired programs have orders of

magnitude smaller floating-point errors, while having faster runtime performance.
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1 INTRODUCTION

Floating-point (FP) numbers are essential and widely-used in modern application domains, such as
science, engineering, and finance [Sanchez-Stern et al. 2018]. Because they use finite precision to
approximate real numbers, it is well-known that FP results can be inaccurate. Such inaccuracies
have led to high-profile catastrophes, such as rocket launch failure [Lions et al. 1996], vehicle brake
failure [Valdes-Dapena and Lah 2010], and the loss of human lives [Skeel 1992]. Modern systems,
such as probabilistic programming systems [Dutta et al. 2018] and deep learning libraries [Pham
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et al. 2019], also suffer from FP inaccuracies. Thus, it is important to repair and reduce FP errors
for improving the accuracy of numerical programs.

Repairing significant FP errors is nontrivial. Simply changing FP numbers with higher-precision
types is not the silver bullet, since it may (1) introduce extra errors due to precision-specific opera-
tions [Wang et al. 2016] and precision-related code [Zou et al. 2020], and (2) slow down program

execution, possibly by thousands of times [Benz et al. 2012; Peter Larsson 2013]. In practice, re-
ducing FP errors relies heavily on human expertise. For widely-used numerical libraries such as
the GNU Scientific Library (GSL), numerical experts manually craft sophisticated expressions and
polynomials to reduce FP errors. For example, in GSL, even the simple function1 for computing
log(1 + 𝑥) involves a polynomial with 21 coefficients and terms. Thus, it is difficult for non-experts
to manually craft such polynomials to reduce FP errors.
Several techniques [Panchekha et al. 2015; Yi et al. 2019] have been proposed to automatically

repair FP errors. However, they critically depend on oracle implementations for providing reference
high-precision results. As aforementioned, higher-precision data types do not guarantee more
accurate results due to precision-specific operations and precision-related code (see Section 3 for
an example and discussion). Thus, for users without numerical expertise, it is difficult to construct
oracles to apply such automated techniques.
Recent work has introduced oracle-free (i.e., without relying on reference high-precision im-

plementations) techniques [Guo and Rubio-González 2020; Zou et al. 2020] for detecting inputs
that trigger significant FP errors. Such techniques are shown effective in detecting FP errors, thus
enabling the construction of oracle-free repair techniques Ð oracle-free error detection provides
the inputs for oracle-free repair, the problem that this paper targets.

Micro-structure and Aceso. Indeed, this paper introduces a novel oracle-free approach to repair-
ing FP errors by synthesizing polynomial patches as numerical experts do, but fully automatically.
This is a difficult challenge. Our key observation is that FP errors near an input exhibit structural

patterns with a suitably chosen scope, which we refer to as a micro-structure. Intuitively, a micro-
structure illustrates the distribution of FP errors near a specific input, such as an input that triggers
a significant FP error. Analyzing the micro-structure provides valuable information on the FP error
such as (1) the range and variance of the error, and (2) the expected value of the result, which we
collectively refer to as the statistical information on the FP error. By leveraging this information,
we can understand and describe the FP errors near any specific input without relying on an oracle.

For example, consider the following program foo(x):

double foo(double x) {

double bx = bessel_I1(x);

return (exp(bx) - 1.0) / x;

}

which includes a library call to GSL’s Bessel function. On the input 𝑥=1.2e-5, foo(x) returns
5.0000150001820265e-1. Without a provided oracle, it is difficult to analyze this result Ð we cannot
measure the error, and cannot even know the existence of any error. However, the statistical
information based on the micro-structure shows that, for this input 𝑥=1.2e-5, we can obtain the
following information:

• Error variance: 2.86e-23
• Error range: [-9.31e-12, 9.37e-12]
• Expected result: 5.0000150001196952e-1

1We will elaborate this example in Section 2.4.
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Note that the oracle result is 5.0000150001200006e-1 on this input, and the actual error is 6.20e-
12. Thus, the above statistical information, which is computed in an oracle-free manner, reveals
accurate, relevant information for understanding and analyzing FP errors (cf. Section 5.2).
Based on this insight on micro-structures of FP errors, we develop an effective oracle-free

approach and its accompanying realization Aceso
2 to synthesize patches for repairing FP errors.

Our approach has the following strengths:

• Oracle-free: The statistical information on FP errors allows our approach to be independent
of oracles, thus making it generally applicable in practice.

• Efficient: Micro-structures and statistical information can be obtained directly from the
original FP code, and do not require high-precision executions, thus leading to high efficiency.

• Effective: The statistical information reveals accurate knowledge on FP errors and effectively
guides the synthesis of accurate polynomial patches.

At the high level, Aceso takes the erroneous interval I (which can be obtained from available
error detection techniques [Guo and Rubio-González 2020; Zou et al. 2020]) for a program as input,
samples a set of points within I, collects statistical information on each of the sampled points, and
synthesizes polynomial patches based on such information with a fitting model. It also validates
the patches automatically, and only returns patches more accurate than the original program.
We evaluate Aceso on 32 commonly-used erroneous numerical programs, including 17 com-

plex programs with library calls and 15 classical programs that have been studied in previous
work [Panchekha et al. 2015; Solovyev et al. 2018; Wang et al. 2019], and 4 additional error-free
programs (Table 2). Our results show that Aceso can synthesize patches that reduce FP errors by
orders of magnitude (in terms of maximum absolute/relative error on the entire interval I) for all
the 32 erroneous programs. For the 4 error-free programs, Aceso correctly rejects the synthesized
patches and reports łpatch not available.ž Our results also show that the statistical information
from micro-structures is key to Aceso’s effectiveness Ð without such information, the synthesized
patches become infeasible or erroneous. Aceso is also efficient and takes on average 0.73 seconds
to repair each program. Furthermore, the synthesized patches are performant and take on average
~9 nanoseconds (i.e., 10−9 seconds) for each execution, even faster than the original programs.

Targeted scenario. The scenario that our work targets is to repair FP errors in numerical code
whose oracle is challenging to obtain. This is a common, practical scenario as a single library call
in the numerical code can make constructing its oracle infeasible (e.g., the aforementioned foo(x)

with a call to bessel_I1). As an application developer, one most oftenly simply invokes a library
call; it is difficult for the developer to construct a high-precision implementation of the call as
the oracle required by oracle-dependent repair techniques. It is difficult because of the prevalent
precision-related code [Zou et al. 2020] and precision-specific operations [Wang et al. 2016] in
numerical libraries (see a detailed discussion in Section 3).

Contributions. In summary, we make the following main contributions:

• A novel characterization of FP errors via the concept of micro-structure and statistical informa-
tion based on micro-structures to effectively capture how FP errors in a program distribute
near a specific point;

• A fitting model for synthesizing numerically-accurate polynomial patches by leveraging the
statistical information on FP errors;

• An effective realization of the approach Aceso Ð Aceso automatically synthesizes and vali-
dates polynomial patches based on the fitting model and statistical information, and does not
rely on oracles, thus efficient and generally applicable; and

2The Greek goddess of the healing process and curing of sickness.
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• An empirical evaluation of Aceso on 36 commonly-used programs to demonstrate that Aceso
is effective and efficient in synthesizing accurate and performant patches.

2 PRELIMINARIES

This section presents the necessary background for our work.

2.1 Floating-Point Representation

Floating-point (FP) numbers approximate real numbers, and can represent a finite subset of the
infinite set of real numbers. The IEEE 754 standard [Zuras et al. 2008] stipulates the representation
of FP numbers, which consists of three parts: sign, exponent, and significand (also called mantissa).
Table 1 shows the formats of FP numbers in different precision modes.

Table 1. IEEE 754 floating-point representations.

Precision Sign Exponent (𝑚) Significand (𝑛)

Half (16 bits) 1 5 10

Single (32 bits) 1 8 23

Double (64 bits) 1 11 52

2.2 Error Measurement

Since FP numbers (F) use finite bits to represent real numbers, it is natural that rounding errors

exist. For an FP program P: 𝑦 = 𝑓 (x), 𝑦 ∈ F, rounding errors can be introduced and accumulated
for its FP operations, and may lead to inaccurate results. There are two standard mathematical

measures for the error between the ideal result 𝑓 (x) and the FP result 𝑓 (x): absolute error Errabs ,
and relative error Errrel :

Errabs (𝑓 (x), 𝑓 (x)) =
�� 𝑓 (x) − 𝑓 (x)

��

Errrel (𝑓 (x), 𝑓 (x)) =
�� (𝑓 (x) − 𝑓 (x))/𝑓 (x)

��

Besides absolute and relative errors, units in the last place (ulp) is a measure for the relative
error [Zuras et al. 2008] and is specific for FP numbers. It is defined as [Kahan 2004; Muller 2005]:

ulp(𝑥) is the gap between the two FP numbers nearest 𝑥 , even if 𝑥 is one of them.

For double precision (64-bits) FP numbers, 1 ulp error corresponds to a relative error between
1.1 × 10−16 and 2.2 × 10−16.

2.3 Error Detection

Given an FP program P: 𝑦 = 𝑓 (𝑥) under analysis, the goal of FP error detection is to find test inputs
that trigger significant FP errors. Most existing error detection approaches require the oracle 𝑓 (𝑥)
to be available for an arbitrary input 𝑥 [Chiang et al. 2014; Yi et al. 2017; Zou et al. 2015], which is
used to compute the FP error, Errrel or Errabs , during their respective search procedures.
Recent work [Guo and Rubio-González 2020; Zou et al. 2020] has introduced oracle-free ap-

proaches. For example, Atomu [Zou et al. 2020] is such an approach that is publicly available.3 It
significantly outperforms existing error detection approaches in terms of both effectiveness and ef-
ficiency, thus making detecting FP errors more practical. Our work aims for an oracle-free approach
to repairing FP errors, thus directly benefiting from oracle-free error detection for providing the
intervals to be patched.

3https://github.com/FP-Analysis/atomic-condition
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2.4 Polynomials for Approximation

In numerical analysis, it is common to use polynomials to approximatemathematical functions [Hilde-
brand 1987], such as power series [Abramowitz et al. 1988] and Chebyshev series [Mason and
Handscomb 2002]. One reason for using polynomial approximations is to reduce potential FP
errors.4 We use an example from the GNU Scientific Library (GSL) to show how numerical experts
craft sophisticated polynomials to reduce FP errors.
The method łlog_1plusxž from GSL calculates a simple function: 𝑓 (𝑥) = log(1 + 𝑥) for 𝑥 > −1.

We observe that this function applies different algorithms for different values of 𝑥 :

• For |𝑥 | ∈ [0, 7.4 × 10−4), it applies power series for evaluation;
• For |𝑥 | ∈ [7.4 × 10−4, 0.5), it applies Chebyshev series for evaluation; and
• For |𝑥 | ∈ [0.5, + inf), it evaluates directly based on the expression log(1 + 𝑥).

2.4.1 Power Series. Power series 𝑃𝑛 (𝑥) is represented by the coefficients 𝑝𝑟 in

𝑃𝑛 (𝑥) =
𝑛∑︁

𝑟=0

𝑝𝑟𝑥
𝑟 (1)

To approximate a mathematical function 𝑓 (𝑥), the coefficients 𝑝𝑟 are usually obtained manually,
e.g., from Taylor series, and hard-coded into the FP program.

In GSL’s source code, it applies a power series with 10 terms to approximate its analytic expression
log(1 + 𝑥) for |𝑥 | < 7.4−4, based on its Taylor series at 𝑥 = 0:

𝑃10 (𝑥) = 𝑥 − 𝑥2

2
+ 𝑥3

3
− 𝑥4

4
+ · · · − 𝑥10

10
(2)

2.4.2 Chebyshev Series. As discussed in Section 2.4.1, a power series is composed of linear combi-
nations of 𝑥𝑟 (1, 𝑥, 𝑥2, etc.). Correspondingly, a Chebyshev series is composed of linear combinations
of Chebyshev polynomials, 𝑇𝑠 (𝑥), with coefficients 𝑐𝑠 :

𝑃𝑛 (𝑥) =
𝑛∑︁

𝑠=0

𝑐𝑠𝑇𝑠 (𝑥),where (3)

𝑇0 (𝑥) = 1, 𝑇1 (𝑥) = 𝑥, 𝑇𝑛+1 (𝑥) = 2𝑥𝑇𝑛 (𝑥) −𝑇𝑛−1 (𝑥) (4)

Chebyshev series is widely-used in numerical methods and aims to minimize approximation
errors [Burden and Faires 2010].

In GSL’s source code, when |𝑥 | ∈ [7.4 × 10−4, 0.5), it applies Chebyshev series to produce more
accurate results, rather than directly evaluating the expression log(1 + 𝑥):
1 /* Chebyshev series for 7.4e-4 <= |x| < 0.5 */

2 const double lopx_data [21] = {

3 2.16647910664395270521272590407 ,

4 -0.28565398551049742084877469679 ,

5 0.01517767255690553732382488171 ,

6 -0.00200215904941415466274422081 ,

7 ... };

8 // Domain adaptation

9 double t = 0.5*(8.0*x + 1.0)/(x+2.0);

10 return cheb_eval(lopx_data , t);

4Polynomial approximations have wide applications in numerical analysis, such as reducing FP errors, reducing runtime

cost, and approximating mathematical functions with computable operations (e.g. + and ×), etc.
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Since Chebyshev series requires the input domain to be [−1, 1] [Gil et al. 2007], line 8 applies
domain adaptation 𝑡 (𝑥) = 8𝑥+1

2𝑥+4 to map 𝑥 ∈ (−0.5, 0.5) to 𝑡 (𝑥) ∈ (−1, 1).5 Line 9 evaluates the series
with the hard-coded coefficients in lopx_data.

3 EXAMPLE

This section uses a concrete example to motivate and illustrate our approach, from obtaining
statistical information on FP errors to synthesizing and validating the final patch.

Motivating example. Recall that this work targets the common scenario of repairing numerical
code whose oracle is difficult to construct. As a concrete example, let us consider that an application

developer wrote the following function 𝑓 : foo(x) which invokes GSL’s Bessel function:

double foo(double x) {

double bx = bessel_I1(x); // gsl_sf_bessel_I1(x)

return (exp(bx) - 1.0) / x;

}

To check whether the code is numerically accurate, the developer applied an existing oracle-free FP
error detection technique such as Atomu [Zou et al. 2020]. The tool reported an erroneous interval
I = [−10−2, 10−2], i.e., inputs in I trigger significant FP error in foo(x).
To repair the FP error on this reported interval I, an obvious approach is to construct a high-

precision oracle and then apply oracle-based repair techniques [Panchekha et al. 2015; Yi et al.
2019]. However, constructing a high-precision oracle for foo(x) is challenging; it requires every
involved operation to have high precision, including the library call, which further requires either

• A high-precision implementation of bessel_I1, which does not exist in the high-precision
infrastructure, MPFR library [Fousse et al. 2007], and in practice, one cannot expect that a
high-precision implementation exists for every library call; or

• The assumption that replacing all operations inside the code of bessel_I1 to high-precision types

yields high-precision results, which in general does not hold since the library code may involve
precision-related code. In our example, bessel_I1 contains a hard-coded Chebyshev series
with fixed terms (cf. Section 2.4.2). Thus, an accurate oracle needs not only high-precision
FP types, but also additional terms with carefully constructed coefficients, which is very
challenging. Indeed, Section 6.2.2 and Figure 7 describe results to show that simply replacing
FP types cannot produce accurate oracles.

In practice, application developers, who are typically not numerical experts like the GSL devel-
opers, simply invoke a library call; they are unable (and unwilling) to construct accurate oracles
and repair FP errors with oracle-dependent techniques. Thus, oracle-free repair is needed.

Illustrative example for our approach Aceso. Our goal is, in an oracle-free manner, to auto-

matically synthesize a polynomial patch 𝑝 (𝑥) with improved accuracy on the erroneous interval I,
similar to what numerical experts do manually. Our procedure works as follows:

(1) Specify a polynomial template 𝑝 (𝑥) with unknown coefficients 𝑐𝑖 , e.g., a power series template
𝑝 (𝑥) = 𝑐0 + 𝑐1𝑥 + 𝑐2𝑥2.

(2) Sample a set of points {𝑥1, . . . , 𝑥𝑛} in the interval I and adapt I to I′
= [−1, 1] (cf. Section 5.1

on interval sampling and domain adaptation).
(3) Observe the micro-structure and gather each sample point’s statistical information. For

example, on one of the sample points 𝑥 𝑗 = 0.00383, the statistical information shows

• Estimated mean 𝑓 (𝑥 𝑗 ) = 0.5004795765784401

5Different domain adaptations lead to different coefficients. This domain adaptation, together with the corresponding

coefficients, aims to increase the accuracy of the Chebyshev series approximation [Broucke 1973; Clenshaw 1962].
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• Estimated error variance Var (𝜀 𝑗 ) = 2.78 × 10−28

(cf. Sections 4.2 and 4.3 on observing micro-structure and gathering statistical information).
(4) Solve for the unknown coefficients 𝑐𝑖 based on the statistical information on all sample points

𝑥 𝑗 ∈ {𝑥1, . . . , 𝑥𝑛}: 𝑓 (𝑥 𝑗 ) and Var (𝜀 𝑗 ) (cf. Section 5.2 on fitting with statistical information).

After the coefficients have been solved, the repair patch of this example is shown below:

1 double foo_patched(double x) {

2 if (x >= -1e-2 && x <= 1e-2) {

3 double c0 = 4.9999999998665351e-01;

4 double c1 = 1.2500253909111360e-03;

5 double c2 = 8.3334401054235840e-06;

6 double u = 100 * x; // Domain Adaption

7 return c0 + u*(c1 + u*c2);

8 }

9 else return foo(x);

10 }

Once a candidate patch is synthesized, our approach performs patch validation (cf. Section 5.3)
to evaluate it on a set of random inputs with the corresponding statistical information and reject
any inaccurate patches. Note that, for presentation clarity, this example patch is based on only
four sampling points and with the highest degree of two. In practice, with suitable parameters, the
patch’s accuracy can be further improved.

4 MICRO-STRUCTURE AND LOCAL SAMPLING

The key behind our repair approach is a novel characterization of FP errors, which we call the
micro-structure of FP errors. This section introduces micro-structure and discusses how to leverage
it to gather statistical information on FP errors in an oracle-free manner.
We structure this section as follows. Section 4.1 introduces and illustrates the micro-structure

of FP errors. Section 4.2 presents a method for selecting a suitable radius (or neighborhood) to
observe the micro-structure. Then, Section 4.3 details how to gather statistical information on FP
errors based on the selected neighborhood.

This section focuses on gathering error information near an arbitrary point, thus we refer to the
workflow as local sampling (corresponding to interval sampling in Section 5). Figure 1 depicts the
workflow, which consists of radius selection (Section 4.2) and information gathering (Section 4.3).

Fig. 1. Workflow of local sampling. The procedure to collect pointwise information on 𝑥𝑐 .

4.1 Micro-Structure Overview

Before presenting the micro-structure of FP errors, we give the relevant notations and definitions:

• Center point (𝑥𝑐 ) is an arbitrary point to observe the micro-structure in its neighborhood.
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· 𝑓 (𝑥) = 1−cos(𝑥 )
𝑥2 with example center point 𝑥𝑐 = 1.2345 × 10−3

· 𝑓 (𝑥) = 𝑒𝑥 − 2 + 𝑒−𝑥 with example center point 𝑥𝑐 = 1.2345 × 10−3

· 𝑓 (𝑥) =
√︃

𝑒2𝑥−1
𝑒𝑥−1 with example center point 𝑥𝑐 = 1.2345 × 10−3

Fig. 2. Micro-structure of FP errors.6 In each sub-figure, the x-axis denotes the inputs in the neighborhood (center

point ± radius), the y-axis represents the corresponding FP results 𝑓 (𝑥 ) and the oracle results 𝑓 (𝑥 ) . The x-axis and

y-axis are scaled to make the data points fill the entire sub-figure, thus the range for the axes are not the same across

all sub-figures. The ideal neighborhoods (radii) to be selected in Section 4.2 are the ones in column (c) and (d), as the

micro-structure in such neighborhoods are both significant and complete.

• Radius (𝑟 ) determines the scope of the observation.
• Neighborhood 𝜙 (𝑥𝑐 , 𝑟 ) = (𝑥𝑐 − 𝑟, 𝑥𝑐 + 𝑟 ), which is determined by the center point and radius.
• Observation of micro-structure is a set of sampling points within the neighborhood 𝜙 (𝑥𝑐 , 𝑟 ).
Each sampling point is labeled with ⟨𝑥𝑖 , 𝑦𝑖⟩, where 𝑥𝑖 ∈ 𝜙 is an input and 𝑦𝑖 = 𝑓 (𝑥𝑖 ) is the
corresponding FP result.

Figure 2 illustratesmicro-structures on three functions. The sub-figures on each row correspond to
observations with different neighborhoods. The center is set at the example value 𝑥𝑐 = 1.2345×10−3
for all three functions. The blue points in Figure 2 correspond to the FP results. Although our
approach is oracle-free, we also include the oracle results as orange points for better clarity and
understanding.
We can summarize some general characteristics of micro-structures from Figure 2:

• FP errors are not completely acting like random variables with uniform distribution or normal
distribution, as suggested by previous work [Chatelin and Brunet 1990; Higham and Mary
2019; Tienari 1970]. For example, although Figure 2 (1c) shows that FP errors appear random,
there are striking patterns, e.g., the patterns shown in Figure 2 (1d) and (1e). There are also
structural patterns for the other two functions. We call these patterns the micro-structures of
FP errors.

• The patterns ofmicro-structures vary; the example functions exhibit differentmicro-structures.

6Due to their figure resolutions, Figure 2 (2b), (2c), (3b), and (3c) may appear multi-valued. But the functions are all

ordinary single-valued functions, and each input always maps to the same result, as in Figure 2 (2d) and (3d). The patterns

are just too dense to be distinguished.
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• Radii and neighborhoods for observing micro-structures vary. All the illustrated neighbor-
hoods have the same center point, but micro-structures manifest under different radii, e.g.,
sub-figures (1e), (2e), and (3e) in Figure 2.

More technically, a micro-structure is the discontinuous,7 structural pattern of the FP program
results w.r.t. FP arithmetic. It can be observed under certain scope/interval, where the ideal result

𝑓 (𝑥) is continuous while the FP result 𝑓 (𝑥) is discontinuous, and the FP error dominates the result
range. For example, in Figure 2 (3d) and (3e), 𝑓 (𝑥) is virtually constant on this interval, while FP

errors dominate the range of results, and make 𝑓 (𝑥) discontinuous.
We expect the existence of micro-structures to be a general property of FP errors. In fact,

micro-structures result from discontinuous points in FP code, which are caused by changes in the
rounding directions. In numerical programs, rounding happens in almost all FP operations and
leads to discontinuities (or "jumps"); the combination, accumulation, and amplification of such
discontinuities manifest as micro-structures. Therefore, it is a general property of FP errors that
micro-structures exist.

By observing the micro-structure of FP errors, we can obtain information on the distribution of
FP errors near the center point 𝑥𝑐 (which we will elaborate in Section 4.3). We now propose two
basic principles for observing micro-structures based on Figure 2:

• Significance. To observe the micro-structure of FP errors, the radius should be sufficiently
small to make FP errors significant within the neighborhood. For Figure 2 (1a), (2a), and (3a),
the radii are relatively large, thus the ranges are dominated by the variation from the original
functions, rather than FP errors.

• Completeness. To observe the micro-structure of FP errors, the radius should be sufficiently
large to contain the complete variations on FP errors. For Figure 2 (1f), (2f), and (3f), the radii
are small, and the variations on FP errors in these neighborhoods are incomplete and biased.

Thus, an ideal neighborhood, e.g., Figure 2 (d) in each row, should contain both significant and
complete FP errors for the observation.Wewill discuss how to select such a radius and neighborhood
in the next section.

4.2 Radius Selection for Error Observation

This section discusses how to select radius 𝑟x for an arbitrary input 𝑥 to determine the neighborhood
under observation. The goal of radius selection, as discussed in Section 4.1, is to find a suitable
neighborhood 𝜙 inside which the FP error is significant and complete.

At the high level, we propose a metric 𝑆𝜙 (𝑛, 𝜉) to quantify the discontinuity for a neighborhood
𝜙 , so that we can generate different radii and select the radius/neighborhood based on 𝑆𝜙 (𝑛, 𝜉).
Defining the metric 𝑆𝜙 (𝑛, 𝜉). Since micro-structures may vary across different functions and
even different center points, we cannot simply design a radius selection method based on a specific
pattern of micro-structure. We leverage a key insight to guide radius selection: the micro-structure
has the property of discontinuity. In Figure 2 (1e), (2e), and (3e), although the functions and micro-
structures are different, we can clearly observe several discontinuities in these figures. In fact,
discontinuity is a general property for FP errors since they are caused by changes in the rounding
directions.

To quantitatively guide radius selection, we design a metric 𝑆𝜙 (𝑛, 𝜉) with the following definition,
which leverages the property of discontinuity:

7In this work, we use the words łdiscretež and łdiscontinuousž with meanings different from their standard. FP numbers

are always discrete since they have fixed numbers of bits, and there is a łunit in the last placež (ulp) between two adjacent

FP numbers. Discontinuity in micro-structures is far larger than ulp for significant FP errors. Since the ulp can be easily

obtained, we can simply distinguish the discrete and discontinuous points by setting a threshold based on ulp.
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• 𝜙 (𝑥𝑐 , 𝑟 ) = [𝑥𝑐 − 𝑟, 𝑥𝑐 + 𝑟 ] is a neighborhood.
• 𝑛 is a tunable parameter for defining 𝑛 ordered points {𝑥𝑖 ∈ 𝜙 | 𝑥𝑐 − 𝑟 = 𝑥1 < 𝑥2 < · · · <
𝑥𝑛 = 𝑥𝑐 + 𝑟 } with equal distances.

• Δ = max{𝑓 (𝑥) | 𝑥 ∈ {𝑥1, . . . , 𝑥𝑛}} −min{𝑓 (𝑥) | 𝑥 ∈ {𝑥1, . . . , 𝑥𝑛}} measures the range of the
neighborhood 𝜙 , and is determined by 𝜙 and 𝑛.

• 𝜉 is a tunable threshold.
• 𝑆𝜙 (𝑛, 𝜉) measures the discontinuity within the neighborhood 𝜙 :

𝑆𝜙 (𝑛, 𝜉) =
𝑛−1∑︁

𝑖=1

𝑔(𝑥𝑖 )
Δ

𝑔(𝑥𝑖 ) =
{��𝑓 (𝑥𝑖 ) − 𝑓 (𝑥𝑖+1)

�� if
��𝑓 (𝑥𝑖 ) − 𝑓 (𝑥𝑖+1)

��
> 𝜉

0 if
��𝑓 (𝑥𝑖 ) − 𝑓 (𝑥𝑖+1)

�� ≤ 𝜉
(5)

As the number of points 𝑛 increases, the size of the interval [𝑥𝑖 , 𝑥𝑖+1] decreases and converges
to 0. Based on the definition of continuity [Rudin et al. 1976], in theory, for any positive 𝜉 , there
exists a large enough 𝑛 such that:

• All continuous intervals [𝑥𝑖 , 𝑥𝑖+1] satisfy 𝑓 (𝑥𝑖+1) − 𝑓 (𝑥𝑖 ) ≤ 𝜉 , thus 𝑔(𝑥𝑖 ) = 0, and
• 𝑔(𝑥) > 0 implies the existence of discontinuities in the interval (𝑥𝑖 , 𝑥𝑖+1).

Since the intervals [𝑥1, 𝑥2], . . . , [𝑥𝑛−1, 𝑥𝑛] cover the entire neighborhood 𝜙 , 𝑆𝜙 (𝑛, 𝜉) =
∑
𝑔(𝑥𝑖 )/Δ

can quantitatively measure the discontinuity of the neighborhood 𝜙 .

Parameter settings in practice. In theory, the above definition on 𝑆𝜙 (𝑛, 𝜉) guarantees soundness
for measuring discontinuity. In practice, considering computational cost, we need a guideline to
estimate and set parameters 𝜉 and 𝑛 (rather than an arbitrary 𝜉 and a łlarge enoughž 𝑛 in theory):

• 𝜉 can be set w.r.t. the range Δ on the entire neighborhood, such as 𝜉 = 0.1Δ.
• 𝑛 can be set based on 𝜉 , such as 𝑛 = 100Δ/𝜉 = 1000, which means, if a 𝑔(𝑥𝑖 ) > 0, the domain
[𝑥𝑖 , 𝑥𝑖+1] only covers 1/1000 of the neighborhood, while the range change is larger than
1/10 of the entire range Δ. This is only possible for either discontinuity or extremely large
second-order derivatives,8 and the latter is rare in practice.

Note that we can set stricter (smaller) 𝜉 and larger 𝑛 for better estimating 𝑆𝜙 (𝑛, 𝜉). However, 𝑆𝜙 (𝑛, 𝜉)
is used to guide radius selection, and is unnecessary to be extremely accurate.

How does 𝑆𝜙 (𝑛, 𝜉) address significance and completeness? The metric 𝑆𝜙 (𝑛, 𝜉) =
∑
𝑔(𝑥𝑖 )/Δ

addresses both the conditions for significance and completeness:

• The numerator,
∑
𝑔(𝑥𝑖 ), addresses the condition for completeness. For example, neighbor-

hoods with incomplete micro-structures have fewer discontinuity points, e.g., Figure 2 (1f),
(2f), and (3f), thus the quantity

∑
𝑔(𝑥𝑖 ) is smaller than those for neighborhoods with complete

and dense micro-structures.
• The denominator, Δ, addresses the condition for significance. The discontinuity measurement∑

𝑔(𝑥𝑖 ) must be significant w.r.t. the total range change Δ. For example, Figure 2 (1a) and (2a)
would have small 𝑆𝜙 (𝑛, 𝜉) since the discontinuity is insignificant in these two neighborhoods.

As the 𝑆𝜙 (𝑛, 𝜉) measures the portion of total discontinuity to the total value range in the neigh-
borhood 𝜙 , it is already normalized and comparable across different neighborhoods. Thus, for
different radii and corresponding neighborhoods, we select the radius with maximum 𝑆𝜙 (𝑛, 𝜉) as a
suitable choice for information gathering, which we discuss next.

8If the derivative is constant or nearly constant in the neighborhood, which holds in most cases since the neighborhoods

are tiny, the magnitude of change in the domain (e.g. 1/1000) would be roughly the same as that of change in the range

(~1/1000). Otherwise, the derivative changes significantly in this small fraction of the domain, which means an extremely

large second-order derivative.
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4.3 Statistical Information Gathering

Section 4.2 proposed how to select a suitable radius to make FP errors complete and significant
within the corresponding neighborhood. We now discuss how to gather the statistical information
on FP errors based on the selected neighborhood. More specifically, we estimate the mean of the
FP results and the variance of the FP errors for describing the characteristics of FP errors near an
arbitrary center point 𝑥𝑐 .

Estimating the mean of FP results. According to Higham and Mary [2019], it is a common
practice in probabilistic/statistical FP error analysis to model FP errors as random variables, and
assume the mean of the errors to be zero. Such an assumption is related to the default rounding
mode in the IEEE 754 standard, "round to nearest, ties to even". Although not guaranteed, the
assumption holds in most practical scenarios [Higham and Mary 2019]. However, based on our
observation in Section 4.1, if the neighborhood is too small to cover complete micro-structures,
the FP errors will be biased. Thus, we follow and refine the above assumption: the FP errors in a
neighborhood have mean zero when the neighborhood covers complete micro-structures.
Since the selected neighborhood contains complete micro-structures, we can apply intensive

sampling inside the neighborhood. According to the law of large numbers (LLN) [Dekking et al.
2005], the mean of the results obtained from a large number of samples should be close to the

expected value. Thus, for a center point 𝑥𝑐 , the estimated result is represented as 𝑓 (𝑥𝑐 ), and the FP

result on 𝑥𝑐 is 𝑓 (𝑥𝑐 ):
𝑓 (𝑥𝑐 ) = Avg(𝑓 (𝑥𝑖 )) 𝑥𝑖 ∈ selected 𝜙 (𝑥𝑐 , 𝑟 )

We note that:

• 𝑓 (𝑥𝑐 ) is considered more accurate than 𝑓 (𝑥𝑐 ) when the FP errors are significant and complete
in the selected radius, so that the errors can be mitigated by the mean zero assumption and
the law of large numbers.

• 𝑓 (𝑥𝑐 ) does not necessarily equal 𝑝 (𝑥𝑐 ) for the synthesized patch 𝑝 (𝑥). In the repair procedure

(Section 5.2), 𝑓 (𝑥𝑐 ) provides guidance rather than mandatory constraints for repair synthesis.

In fact, 𝑝 (𝑥𝑐 ) is usually more accurate than 𝑓 (𝑥𝑐 ), since the fitting model for synthesizing
𝑝 (𝑥) further mitigates the errors.

Estimating the variance of FP errors. The goal of this step is to estimate the variance of FP
errors Var (𝜀) within the selected neighborhood. Based on the definition of variance [Mendenhall
et al. 2012] and the error’s mean zero assumption, the variance can be estimated by the following

equation, where 𝑓 (𝑥𝑖 ) is obtained via standard linear regression [Mendenhall et al. 2012] within
the selected 𝜙 (𝑥𝑐 , 𝑟 ):

Var (𝜀) =
∑
𝜀2𝑖

𝑛 − 1
=

∑(𝑓 (𝑥𝑖 ) − 𝑓 (𝑥𝑖 ))2
𝑛 − 1

=

∑(𝑓 (𝑥𝑖 ) − 𝑓 (𝑥𝑖 ))2
𝑛 − 1

5 REPAIR SYNTHESIS

For a given FP program P: 𝑦 = 𝑓 (𝑥), and an erroneous input interval I, this section discusses how
our approach synthesizes a polynomial patch 𝑦 = 𝑝 (𝑥), so that for 𝑥 ∈ I, the patch 𝑝 (𝑥) is more

accurate than the original program 𝑓 (𝑥). We named our approach as Aceso.
Figure 3 shows the overview of this section. Aceso works as follows:

• It starts from a given erroneous interval I. It could be from oracle-free detection techniques
or by manually given.

• It samples a set of input points (Chebyshev nodes) 𝑥𝑖 in I, e.g., 𝑥1, 𝑥2, . . . , 𝑥𝑚 , which we will
discuss in Section 5.1.
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Fig. 3. Overview of Aceso’s repair procedure. The repair procedure: (1) starts from an erroneous input interval I; (2)
samples 𝑥𝑖 within I; (3) collects the micro-structure and statistical information on each 𝑥𝑖 (cf. Section 4); (4) synthesizes

and validates the patch based on statistical information.

• It collects the micro-structure and statistical information on each point 𝑥𝑖 , based on the
insights in Section 4.

• It performs fitting with statistical information to generate a polynomial patch, which we will
discuss in Section 5.2.

• It validates the patch (in oracle-free manner) to accept or deny it. Thus, it can report patch
with strong confidence. We will discuss patch validation in Section 5.3.

5.1 Preliminaries before Fitting

For the erroneous interval I under repair, we need to select a set of sampling points 𝑥𝑖 ∈ I to
describe its characteristics and guide the repair procedure. When using a polynomial to fit and
approaxiamte functions, the selection of the sampling points would affect the accuracy of the
polynomial [Burden and Faires 2010]. Thus, we utilize Chebyshev nodes as the sampling points
within I, which is defined as

𝑥𝑘 =
1

2
(𝑎 + 𝑏) + 1

2
(𝑏 − 𝑎) cos

(
2𝑘 − 1

2𝑚
𝜋

)
, 𝑘 = 1, . . . ,𝑚.

Existing literature [Burden and Faires 2010; Gil et al. 2007] shows that Chebyshev nodes provide
the best9 practical polynomial approximation.

To apply polynomial approximation, it is important to keep the variable domain of the polynomial
series within [−1, 1] [Newbery 1974; Oliver 1979], which helps bound FP errors. Thus, we need a
general adaptation function 𝑢 (·) to map the interval [𝑎, 𝑏] to [−1, 1]. We use the following equation
to achieve this goal:

𝑢 (𝑥) = 2𝑥 − 𝑎 − 𝑏

𝑏 − 𝑎
, for 𝑥 ∈ [𝑎, 𝑏] (6)

Note that we also apply the Kahan-Babuska algorithm [Babuska 1968; Kahan 1965] to evaluate
Equation (6) and to avoid potential FP errors.

5.2 Fitting with Statistical Information

This section presents our method for synthesizing polynomial approximations as repair patches.
As discussed in Section 2.4, there are different forms of polynomials that can be used for the
approximation, e.g., power series and Chebyshev series. Therefore, in this section, we first propose

9The maximum possible error is minimized.
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a general model suitable for various polynomial forms as repair templates. Then, we discuss how
to incorporate the statistical information discussed in Section 4.3 into this model.

General fitting model. Given a polynomial form and the highest degree as the repair template,
the template can be represented as

𝑃𝑛 (𝑥) =
𝑛∑︁

𝑟=0

𝑐𝑟𝜓𝑟 (𝑢 (𝑥)), where (7)

• 𝑛 is the highest degree.
• 𝑢 (𝑥) is the domain adaption discussed in Section 5.1.
• The𝜓𝑟 (𝑢 (𝑥))’s are terms of the polynomial template:
ś For power series,𝜓𝑟 (𝑢 (𝑥)) = 𝑢 (𝑥)𝑟 ; and
ś For Chebyshev series,𝜓𝑟 (𝑢 (𝑥)) = {1, 𝑢 (𝑥), 2𝑢 (𝑥)2 − 1, . . . } are the Chebyshev polynomials,
as defined in Equation (3).

• The 𝑐𝑟 ’s are the unknown coefficients, for which this fitting model needs to solve.

For example, suppose the polynomial form is the power series with the highest degree 𝑛 = 2, and
the domain adaption function is𝑢 (𝑥) = 𝑥/4. Then, the repair template will be 𝑐0+𝑐1 (𝑥/4)+𝑐2 (𝑥/4)2,
and the goal of the fitting model is to solve the coefficients 𝑐0, 𝑐1, and 𝑐2.

A typical way to solve the 𝑐𝑟 ’s is to apply ordinary least squares (OLS), which aims to minimize

the cost function (also called squared residuals) based on a set of adapted sampling points 𝑢𝑖 and
the corresponding observations 𝑦𝑖 [Datta 2010]:

𝜒2 =
∑︁

𝑖

(
𝑦𝑖 − 𝑃𝑛 (𝑢 (𝑥𝑖 ))

)2
=

∑︁

𝑖

(
𝑦𝑖 −

∑︁

𝑟

𝑐𝑟𝜓𝑟 (𝑢 (𝑥𝑖 ))
)2
.

According to the Gauss-Markov theorem [Eaton 1983], in OLS, the errors on the observations
having equal variances is a necessary condition for the solved 𝑐𝑟 to be the best linear unbiased
estimator (BLUE). However, FP errors vary at different points and have different variances. For FP
programs, the error on different points can differ by orders of magnitude [Yi et al. 2019; Zou et al.
2015]. Thus, the OLS model is unsuited for this scenario. To this end, we adopt a generalization of
OLS, weighted least squares (WLS), whose fitting model can handle this situation. WLS has some
additional scale factors, i.e., the weights𝑤𝑖 , included in the fitting model [Datta 2010]. It minimizes
the cost function with the weights𝑤𝑖 :

𝜒2 =
∑︁

𝑖

𝑤𝑖

(
𝑦𝑖 − 𝑃𝑛 (𝑢 (𝑥𝑖 ))

)2
=

∑︁

𝑖

𝑤𝑖

(
𝑦𝑖 −

∑︁

𝑟

𝑐𝑟𝜓𝑟 (𝑢 (𝑥𝑖 ))
)2
. (8)

The weights can be used to indicate the quality of each observation 𝑦𝑖 . Specifically, if each weight
𝑤𝑖 is equal to the reciprocal of the variance of the observation 𝜎

2
𝑖 , i.e.,𝑤𝑖 = 1/𝜎2

𝑖 , the solved 𝑐𝑖 ’s are
the best linear unbiased estimator (BLUE) [Datta 2010].

Following the typical routine [Ryan 2008], the coefficients 𝑐 = [𝑐0, 𝑐2, . . . , 𝑐𝑛]𝑇 can be solved with

𝑐 = (𝑋𝑇𝑊𝑋 )−1𝑋𝑇𝑊𝑦, (9)

where 𝑋𝑖 𝑗 = 𝜓 𝑗 (𝑢 (𝑥𝑖 )). For example, for power series,10 we have

𝑋 =



1 𝑢 (𝑥0) 𝑢 (𝑥0)2 . . .

1 𝑢 (𝑥1) 𝑢 (𝑥1)2 . . .

1 𝑢 (𝑥2) 𝑢 (𝑥2)2 . . .

. . . . . . . . .



𝑊 = diag(𝑤0, . . . ,𝑤𝑛) =



𝑤0 0 0 . . .

0 𝑤1 0 . . .

0 0 𝑤2 . . .

. . . . . . . . .



𝑦 =



𝑦0
𝑦1
𝑦2
. . .


10𝑋 ,𝑊 , and 𝑦 are similarly defined for Chebyshev series.
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Statistical information for the fitting model. Based on Equation (9), to solve the coefficients 𝑐 ,
we need (1) terms matrix 𝑋 , (2) weight vector𝑤 , and (3) observation vector 𝑦. As for the 𝑋 , it can be
obtained from the adapted sampling points 𝑢𝑖 and the polynomial template𝜓𝑟 (𝑢𝑖 ) directly. So, the
important question is, how to obtain the weight𝑤𝑖 and the observation 𝑦𝑖?

The values of𝑤 and 𝑦 are critical to the fitting quality, i.e., the accuracy of the polynomial patch.
Ideally, the 𝑦𝑖 on each 𝑥𝑖 should be the oracle result 𝑓 (𝑥𝑖 ), and the𝑤𝑖 should be the the reciprocal
of the variance on each observation 𝑦𝑖 .
Without an oracle, neither the oracle result 𝑓 (𝑥) nor the variance can be obtained. Thus, we

apply the statistical information based on micro-structure for each sampling point 𝑥𝑖 ∈ I to feed
the fitting model:

𝑤𝑖 =
1

Var (𝜀𝑖 )
𝑦𝑖 = 𝑓 (𝑥𝑖 ) (10)

where 𝑓 (𝑥𝑖 ) is the estimated mean of FP results, and Var (𝜀𝑖 ) is the estimated variance of FP error
(cf. Section 4.3).

In the fitting model, both 𝑓 (𝑥𝑖 ) and Var (𝜀𝑖 ) from the micro-structure play critical roles. If the
micro-structure is unavailable, the only available estimation on 𝑓 (𝑥𝑖 ) would be the direct FP result

𝑓 (𝑥𝑖 ), which is far less accurate than 𝑓 (𝑥𝑖 ). Furthermore, there would be no available estimation
on the observation variance, making the fitting result significantly affected by erroneous (outlier)
points, and thus less accurate.

5.3 Patch Validation

Before reporting the synthesized polynomial patch 𝑝 (𝑥) to the user, it is important to validate 𝑝 (𝑥),
and to only report superior patch (more accurate on the entire interval I). This section proposes
an oracle-free validation method based on micro-structures.

We notice that, in the erroenous interval I, the FP errors may vary in magnitude. For example,
some points may still be (relatively) accurate and only have a few hundreds of ulp error (approx.
10−13 relative error), while some points may gradually decay to 0.0, NaN, or Inf, thus having 1015

ulp error (approx. 1.0 relative error).
Hence, it is important to validate the patch 𝑝 (𝑥) on the entire interval I: (1) 𝑝 (𝑥) should be more

accurate on the decayed area (the FP result becomes NaN or has only few valid digits); and (2)
𝑝 (𝑥) should also be more accurate on relatively stable areas, which is challenging for the patch Ð
therefore, we need to validate it.
To validate 𝑝 (𝑥) without an oracle, micro-structure again plays a critical role. We propose an

oracle-free method to validate 𝑝 (𝑥) based on local sampling (cf. Section 4):

(1) Generate a set of test inputs 𝑡1, 𝑡2, . . . , 𝑡𝑘 within the erroneous interval I.
(2) Select a suitable radius and neighborhood 𝜙𝑖 for each input 𝑡𝑖 as discussed in Section 4.2.
(3) Measure the range ⟨𝑎𝑖 , 𝑏𝑖⟩ on the neighborhood 𝜙𝑖 by the sampling methods in Section 4.2,

where 𝑎𝑖 = min(𝑓 (𝑥𝑖 𝑗 )), 𝑏𝑖 = max(𝑓 (𝑥𝑖 𝑗 )), and 𝑥𝑖0, . . . , 𝑥𝑖𝑛 are sample points within 𝜙𝑖 .
(4) Validate whether the polynomial patch 𝑝 (𝑥) on 𝑡𝑖 satisfies 𝑎𝑖 ≤ 𝑝 (𝑡𝑖 ) ≤ 𝑏𝑖 .

If the validation fails on the last step, the patch is marked as inaccurate and rejected. Possible
reasons for synthesizing an inaccurate patch are:

• The parameters, such as the degree of a polynomial template, the number of Chebyshev
nodes, etc., are inappropriate (too small). Thus, one may repeat the repair process with higher
degrees or more nodes to synthesize more accurate polynomial patches.

• The ideal function 𝑓 (𝑥) itself is discontinuous or ill-conditioned on the interval I, thus
beyond the capability of polynomial patches and our repair approach.
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• The original FP program 𝑓 (𝑥) does not involve significant FP errors, thus the patch cannot
be more accurate.

Recall the example that we illustrated in Section 3, where the parameters are set to be very small
for simplicity. This synthesized patch will in fact fail the validation process.

However, It is still interesting to evaluate this patch 𝑝 (𝑥) and the original program 𝑓 (𝑥) with
the oracle to see what has occurred. We notice that 𝑝 (𝑥) reduces the error on decayed area, e.g.,
on 𝑥 = 10−10. It was rejected because it is less accurate on other inputs, e.g., 𝑥 = 10−4 (the invalid
digits are highlighted in bold):

• 𝑝 (10−4) = 0.50001250107390649 // p(x) increases the error on relatively stable area.

• 𝑓 (10−4) = 0.50001250083253623

• 𝑝 (10−10) = 0.49999999999915362 // p(x) reduces the error on decayed area.

• 𝑓 (10−10) = 0.50000004137018550

This example illustrates the criterion used by patch validation Ð it requires the patch to be more
accurate on the entire interval I. Even if the maximum error is reduced by the patch, the patch
could still be inacurate and should not be reported. Thus, after passing the validation process, the
patch can be reported with strong confidence.

6 EVALUATION

This section details the evaluation of our technique Aceso11.

6.1 Evaluation Setup

Benchmarks. We collected 36 commonly-used univariate functions as well as their variants as
our benchmarks, including

• 17 functions involve library calls from GSL and ALGLIB12, thus the oracles are difficult to con-
struct (cf. Section 3), and can hardly be repaired by oracle-dependent approaches [Panchekha
et al. 2015; Yi et al. 2019]. These functions are the variants of classical functions from the
literature [Hamming 2012].

• 15 univariate functions from related FP analysis/repair work [Panchekha et al. 2015; Solovyev
et al. 2018; Wang et al. 2019].

• 4 additional error-free functions, which we have manually checked to make sure that they
are accurate. We use this control group to evaluate the validity of the validation stage (cf.
Section 5.3), i.e., whether the validation stage can correctly reject less accurate patches.

Details on these functions are shown in Table 2. The erroneous intervals are collected based
on Atomu [Zou et al. 2020], which is an open-source oracle-free error detection tool. The erro-
neous interval is [2.7082818285, 2.7282818285] for function 13 and 14; [0.99, 1.01] for function s15;
[1.5607963268, 1.5807963268] for function s4; and [-0.01, 0.01] for all the remaining functions. We
also set the target interval as [-0.01, 0.01] for the error-free functions c1 to c4 to make Aceso work
under similar criterion.

Error measurements. As discussed in Section 2.2, we use both absolute error (Errabs) and relative
error (Errrel) to measure FP errors.

11The repository at https://bitbucket.org/FP-Aceso/aceso/ contains all our code and experimental data to facilitate the

reproduction of our results.
12Both libraries are mature and actively maintained numerical projects, and with numerous manually crafted polynomials.

Both libraries are implemented with double.
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Table 2. Details of the evaluation subjects.

(a) This group (1-17) includes subjects whose oracles are hard to get due to the involved library calls.

No. ID Function Involved Library Call ∗

1 exp_bI 𝑓 (𝑥 ) = 𝑒bI0 (𝑥 ) −1
𝑥 bessel_I0(x)

2 bJ_sin 𝑓 (𝑥 ) = 1−bJ0 (𝑥 )
sin(𝑥 ) bessel_J0(x)

3 di_tan 𝑓 (𝑥 ) = 1
dilog (𝑥 ) − 1

tan(𝑥 ) dilog(x)

4 log_erf 𝑓 (𝑥 ) = log(1−erf (𝑥 ) )
log(1+𝑥 ) erf(x)

5 acos_fd 𝑓 (𝑥 ) = arccos(𝑥 )2−3fd1(𝑥 )
𝑥 fermi_dirac_1(x)

6 ei 𝑓 (𝑥 ) = sin(𝑒𝑖 (𝑥 ) )
cos(𝑥 )−𝑒𝑥 erf_inv(x)

7 Q1_W 𝑓 (𝑥 ) = 1+𝑄1(𝑥 )
𝑊 (𝑥 )2 lambert_W0(x), legendre_Q1(x)

8 bj_tan 𝑓 (𝑥 ) = 1−bj0 (𝑥 )
𝑥 tan(𝑥 ) bessel_j0(x)

9 Si_tan 𝑓 (𝑥 ) = Si (x)−tan(𝑥 )
𝑥3 Si(x)

10 by_psi 𝑓 (𝑥 ) = y0 (x )2 − psi1(𝑥 ) bessel_y0(x), psi_1(x)

11 fdm_log 𝑓 (𝑥 ) = 2fdm(𝑥 )−1
log(1+𝑥 ) fermi_dirac_m1(x)

12 eQ_sqrt 𝑓 (𝑥 ) = 2eQ (𝑥 )−
√
1+𝑥

𝑥 erf_Q(x)

13 W_var 𝑓 (𝑥 ) = 𝑊 (𝑥 )−1
𝑊 (𝑥 )2−1 lambert_W0(x)

14 W_log 𝑓 (𝑥 ) = 𝑊 (𝑥 )−1
𝑊 (𝑥 ) log(𝑥 )−1 lambert_W0(x)

15 pow_df 𝑓 (𝑥 ) = (1 + di (𝑥 ) )1/𝑥 dawsonintegral(x) (ALGLIB)

16 chi_ci 𝑓 (𝑥 ) = chi (𝑥 )−ci (𝑥 )
𝑥2 hyperboliccosineintegral(x), cosineintegral(x) (ALGLIB)

17 fc_bj 𝑓 (𝑥 ) = 1/FC (𝑥 ) + bj1(𝑥 ) − sin(𝑥 )/𝑥2 fresnelintegral(x) (ALGLIB), bessel_j1(x)

* Basic functions from GNU C Library, e.g., sin, exp, log, etc., are omitted in the column Involved Library Call, as they

are all supported by MPFR.

(b) This group (s1-s15) includes subjects from related FP analysis/repair work.

No. ID Function No. ID Function

s1 cos_x2 𝑓 (𝑥 ) = 1−cos(𝑥 )
𝑥2

s9 x_tan 𝑓 (𝑥 ) = 1
𝑥 − 1

tan(𝑥 )
s2 exp_x 𝑓 (𝑥 ) = (𝑒𝑥 −2)+𝑒−𝑥

𝑥
s10 log_log 𝑓 (𝑥 ) = log(1−𝑥 )

log(1+𝑥 )
s3 cos_sin 𝑓 (𝑥 ) = 1−cos(𝑥 )

sin(𝑥 ) s11 log_x 𝑓 (𝑥 ) = log( 1−𝑥1+𝑥 )
s4 sin_sin 𝑓 (𝑥 ) = sin(𝑥 + 𝜀 ) − sin(𝑥 ) s12 sqrt_exp 𝑓 (𝑥 ) =

√︃
𝑒2𝑥 −1
𝑒𝑥 −1

s5 tan_tan 𝑓 (𝑥 ) = tan(𝑥 + 𝜀 ) − tan(𝑥 ) s13 sin_tan 𝑓 (𝑥 ) = 𝑥−sin(𝑥 )
𝑥−tan(𝑥 )

s6 cos_cos 𝑓 (𝑥 ) = cos(𝑥 + 𝜀 ) − cos(𝑥 ) s14 exp_x 𝑓 (𝑥 ) = 𝑒𝑥 −1
𝑥

s7 exp_exp 𝑓 (𝑥 ) = 𝑒𝑥 − 𝑒−𝑥 s15 x_x2 𝑓 (𝑥 ) = 𝑥−1
𝑥2−1

s8 exp_1 𝑓 (𝑥 ) = 𝑒𝑥 − 1

** 𝜀 = 10−6 for function s4, s5, and s6.

(c) This group (c1-c4) is the control group that consists of error-free functions.

No. ID Function Involved Library Call

c1 control_1 𝑓 (𝑥 ) = 𝑒sin(𝑥 ) cos(𝑥 ) -

c2 control_2 𝑓 (𝑥 ) =
√
𝑒𝑥+1 -

c3 control_3 𝑓 (𝑥 ) = sin(2𝑥 )
sin(𝑥 ) -

c4 control_4 𝑓 (𝑥 ) =
√︁
sin(𝑥 )2 + bJ0 (𝑥 )2 bessel_J0(x)
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// Coefficients in GSL

// for computing LambertW

double coefs [12] = {

-1.0000000000000000e+00,

2.3316439815971242e+00,

-1.8121878856393635e+00,

1.9366311144923598e+00,

-2.3535512018816145e+00,

3.0668589010506319e+00,

-4.1753356002581771e+00,

5.8580237298747741e+00,

-8.4010322175239774e+00,

1.2250753501314460e+01,

-1.8100697012472443e+01,

2.7029044799010562e+01,

};

// Power series based on coefs.

double v = series_eval(x, coefs);

...

// Our crafted code for the oracle of LambertW.

mpreal p = sqrt (2.0* exp (1.0));

mpreal coefs [20] = {

-1,

p, // mpreal: 2.331643981597124203363536...

pow(p,2)*-1 / 3, // mpreal : -1.812187885639363490240191...

pow(p,3) *11 / 72,

pow(p,4)*-43 / 540,

pow(p,5) *769 / 17280 ,

pow(p,6)*-221 / 8505,

pow(p,7) *680863 / 43545600 ,

pow(p,8) * -1963 / 204120 ,

pow(p,9)*mpreal("226287557") / mpreal("37623398400"),

pow(p,10)*mpreal(" -5776369") / mpreal("1515591000"),

pow(p,11)*mpreal("169709463197") / mpreal("69528040243200"),

pow(p,12)*mpreal(" -1118511313") / mpreal("709296588000"),

pow(p,13)*mpreal("667874164916771") / mpreal("650782456676352000"),

pow(p,14)*mpreal(" -500525573") / mpreal("744761417400"),

... }; // We omit further terms for simplicity.

Fig. 4. Comparison between the partial source code in GSL and our manually crafted oracle for the LambertW

function. Left: coefficients in GSL; Right: coefficients in ourmanually crafted oracle. The coefficients on the right have higher

precision and more terms for computing rigorous oracles. We have to carefully examine the numerical literature [Corless

et al. 1996; Fukushima 2013] to craft the code.

Settings for Aceso. We set the repair template (as discussed in Section 5.2) to be Chebyshev series
with the highest degree of six for all 36 evaluation subjects. The degree of the polynomial patch is
a tunable parameter in Aceso.
For interval sampling (Section 5.1), we sample𝑚 = 1,000 Chebyshev nodes within the interval

under repair I. For local sampling on each node, we generate 100 different radii for radius selection
(Section 4.2) and gathering statistical information (Section 4.3).

Ground truth. Aceso does not require oracles or high-precision results during its entire process
(including patch validation). However, to evaluate the validity and accuracy of the repair results,
we need to construct and provide the ground truth.

As our benchmarks involve various library calls from GSL and ALGLIB, we have to apply the
high-precision implementations of such calls to construct rigorous oracles. However, many of the
involved calls do not have high-precision implementations in the MPFR infrastructure.13 Thus, we
carefully crafted the oracles leveraging numerical expertise to ensure their correctness.
For example, the LambertW function is used in our benchmarks, and MPFR does not have its

high-precision implementation. Thus, to construct its oracle, we inspected the source code of
LambertW first. Figure 4 (left) shows a power series inside the LambertW function. As mentioned
in Section 3, to obtain accurate oracles, we need to introduce more terms of this power series,
rather than simply replacing the FP type. By referring the numerical literature [Corless et al. 1996;
Fukushima 2013], we crafted the code in Figure 4 (right) as LambertW’s oracle.
We note that constructing oracles for code like the one in Figure 4 relies on strong numerical

expertise and manual effort, a challenging demand for typical application developers who simply
utilize numerical libraries like GSL. Therefore, our oracle-free approach Aceso provides a practical,
effective solution to this paradoxical difficulty, i.e., one needs accurate oracles to apply oracle-

dependent repair techniques, but accurate oracles are difficult to construct.

6.2 Evaluation Results

This section presents our evaluation results to demonstrate Aceso’s effectiveness and scalability. In
particular, our evaluation addresses the following research questions (RQs):

13Actually, we cannot assume/take for granted that MPFR supports every library call in practice.
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Fig. 5. Accuracy Improvements by Aceso. The accuracy improvements are reported w.r.t. both absolute and relative

error, and on both decayed and (relatively) stable area of the erroneous input interval I. The black dots represent the

errors on original functions, and the arrowheads represent the errors on Aceso’s results. Smaller error (right side) is better.

• RQ1: How effective is Aceso in repairing FP errors?
• RQ2: How significantly does micro-structure contribute to Aceso’s effectiveness?
• RQ3: How scalable is Aceso?

6.2.1 RQ1: How effective is Aceso in repairing FP errors? Figure 5 shows the improvements in
maximum error by Aceso w.r.t. both absolute and relative error. The maximum error for each
function is collected by intensively sampling points in the target interval I.
For the two łDecayed Areaž subfigures, the sampling points are collected based on łrandom in

magnitudež, which can sample points to cover the most decayed and erroneous areas. For example,
function s12 decays and returns NaN on inputs |𝑥 | < 10−16; łuniform random samplingž in [-0.01,
0.01] can rarely generate such decayed points. We observe that the łDecayed Areaž subfigures
visualize the maximum error on I, which is largely determined by the decayed points.

For the two łStable Areaž subfigures, the sampling points are collected based on łrandom in

valuež, which focuses on those relatively accurate and stable points (in contrast to decayed points).
Since we expect the patches reported by Aceso to be superior (more accurate on the entire interval,
including both decayed and stable areas), we use these two subfigures to show its performance on
the relatively stable areas.

As shown in Figure 5, on erroneous FP programs, i.e., functions 1 to 17, and s1 to s15, the reported
patches by Aceso are all superior to the original programs, w.r.t. both absolute and relative errors.
Aceso can reduce FP errors by orders of magnitude on most functions. Error reduction occurs on
both stable and decayed areas, demonstrating the high quality of the synthesized patches Ð the
maximum absolute errors are smaller than 10−14 for all patches, while maximum relative errors are
also significantly reduced.

We note that Aceso, being a dynamic approach, is agnostic to the program constructs used and
can repair FP errors in quite general code. On functions 1 to 17, although the library calls and their
underlying precision-related code (cf. Section 3) make it challenging to construct oracles, Aceso
can still significantly reduce their FP errors. This is because: (1) Aceso is oracle-free and never tries
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to construct oracles, and (2) Aceso is a black-box analysis, thus it is agnostic to program constructs,
e.g., library calls, precision-related code and pointers, making it generally applicable.

Patches synthesized and validated by Aceso are superior to the original programs, with FP
errors reduced by orders of magnitude.

On functions c1 to c4, Aceso also tries to synthesize patches on the target interval I. Since all of
these functions are accurate, we expect that it would be impossible for a polynomial to become
more accurate. Aceso, without such information, is able to correctly reject the less accurate patches
in its validation stage (cf. Section 5.3). This result shows the effectiveness of the validation stage,
which is vital for Aceso. Without validation, the less accurate patches would be reported to the
users. Since it is difficult for users to inspect the accuracy of reported patches, reporting such
inferior patches would significantly diminish the practical value of a technique.

Patch validation is effective and vital forAceso, which enablesAceso to report only superior
patches with confidence.

6.2.2 RQ2: How significantly doesmicro-structure contribute toAceso’s effectiveness? Micro-structure
(and the corresponding statistical information) is critical for Aceso’s effectiveness in two aspects:

• 𝑓 (𝑥𝑖 ) and Var (𝜀𝑖 ) for synthesizing the patch (cf. Section 5.2), and
• ⟨𝑎𝑖 , 𝑏𝑖⟩ for validating the patch (cf. Section 5.3).

This research question is designed to evaluate whether and how significantly the micro-structure
contributes to the effectiveness of Aceso. To this end, we repeat the repair procedure in Section 5
without the aforementioned information:

Fig. 6. Error when Fitting without Micro-Structure. (green: accuracy improvement; red: accuracy loss).

Majority of the patches become worse than the original functions w.r.t. at least one criterion on decayed or stable area of

the erroneous interval I.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 159. Publication date: October 2022.



159:20 Daming Zou, Yuchen Gu, Yuanfeng Shi, MingZhe Wang, Yingfei Xiong, and Zhendong Su

• Using the direct FP results 𝑓 (𝑥) to replace 𝑓 (𝑥);
• Removing the weights (i.e., setting𝑤 = 1 for all points) as Var (𝜀) is no longer available;
• Disabling the validation stage as ⟨𝑎𝑖 , 𝑏𝑖⟩ is no longer available, thus all patches are reported.

The results in Figure 6 show that: (1) all patches in Figure 6 are less accurate than the Aceso-
synthesized patches (Figure 5); and (2) numerous patches become worse than the original programs
w.r.t. at least one criterion (on decayed or stables area) Ð the errors increase by orders of magnitude
in these patches. Thus, such patches are not superior to the original programs on the entire I and
should not be reported.
Furthermore, without micro-structures, it becomes impossible to validate and distinguish the

patches. We notice that some patches do have better performance than the original programs.
However, one cannot distinguish such superior patches from other inferior patches, and has to
report all (or none) of them to users. Thus, it is infeasible to simply repair FP errors by fitting with
FP results without micro-structures.

Micro-structure is critical for Aceso’s effectiveness, for both patch synthesis and validation.

Further ablation study 1. We have conducted a similar evaluation where one fits directly with

the FP results 𝑓 (𝑥), with the weights 1/Var (𝜀) from statistical information, to check whether the
correctly estimated weights alone could yield comparable results with Aceso. The detailed results,
which we omit due to space constraints, are similar to those shown in Figure 6: (1) numerous
patches are worse than the original programs; and (2) it cannot validate the patches, thus inferior
patches would be reported to users. Therefore, our results show that micro-structure (and the
gathered statistical information) is critical for Aceso’s effectiveness.

Further ablation study 2. As discussed in Section 3 and in Figure 4’s example, due to library
calls and their precision-related code, it is difficult for typical application developers to construct
accurate oracles to apply oracle-dependent repair techniques. On the other hand, it may still be
feasible for them to ignore precision-related code and simply lift the FP type (e.g., from double to
MPFR) to obtain a type-only oracle.
We thus conduct a case study to check whether such type-only oracles could be effective for

repairing FP errors. In particular, we use function 14 W_log as the subject since the details of the
invoked library call lambert_W0 are shown in Figure 4. To obtain W_log’s type-only oracle, we lift its
FP type from double to MPFR (1,024 bits precision) in both the user’s code (W_log) and the library
code (inside lambert_W0).

True Oracle

Type-only Oracle

Original W_log

1e-13

Fig. 7. Maximum errors/gaps between

the original function, the accurate ora-

cle, and the type-only oracle for W_log.

The evaluation result in Figure 7 shows that the errors on
the original W_log and its type-only oracle are of the same order

of magnitude Ð the maximum absolute and relative errors are
around 10−1. This result confirms that the type-only oracle is
as erroneous as the original program. In fact, if we had used
the type-only oracle as the baseline, the maximum "error"
on the original program would have only been around 10−13,
which is clearly incorrect and misleading.

Thus, if a user applies an existing oracle-dependent repair
technique with the type-only oracle, it may diminish the small
gap between the original function and the type-only oracle.
However, the most significant gap/error between the true oracle and the type-only oracle is
unavoidable, and the repair result would still be erroneous. Therefore, simply lifting the FP type
cannot produce accurate, effective oracles for repairing FP errors.
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Table 3. Runtime on Aceso.

Runtime for Aceso to repair each function
(in seconds)

Min. Max. Avg.

0.46 2.55 0.73

Table 4. Runtime on patches.

Runtime for original and patched functions
(in nanoseconds, i.e., 10−9 seconds)

Min. Max. Avg.

Origin 2.12 260.48 36.47

Patched 8.87 9.44 9.09

6.2.3 RQ3: How scalable is Aceso? This section discusses the cost of Aceso from two aspects: (1)
cost for Aceso to repair functions, and (2) performance of the patches.

Since Aceso does not rely on oracles or high-precision calculation, it is expected to be efficient.
Table 3 shows the cost for Aceso to repair each function, confirming Aceso’s efficiency. To measure
the cost of Aceso, we run it on each function 10 times and compute the average cost of it on each
function. The results in Table 3 show that Aceso takes on average 0.73 seconds to synthesize and
validate the patch for each function, and thus is highly efficient.

To measure the performance of the synthesized patches, we run the original functions and the
patched functions on 1,000,000 random inputs (within the target interval I) to collect the average
execution times. Table 4 lists the execution times for the original functions and patched functions.
The results show that the patched functions are highly efficient Ð on average execution time, the
patched functions are even faster than the original functions.
Note that each of the synthesized patches is a polynomial with fixed terms, thus has constant

time complexity. In other words, no matter how complex the original program is, the patch always
has a similar execution time.

These results show that Aceso is a lightweight technique, in terms of usability (by being oracle-
free), repair cost (by being efficient), and patch performance (by being fast and having constant
complexity).

Aceso costs 0.73 seconds on average to synthesize a patch. The synthesized patches are
highly efficient, and even faster than the original programs.

7 DISCUSSIONS

7.1 Error Analysis of Polynomial Patch

This section discusses the possible error between the generated patch 𝑝 (𝑥) and the oracle 𝑓 (𝑥). We
divide the error into two parts: (1) Internal error : the FP error when evaluating 𝑝 (𝑥), i.e., |𝑝 (𝑥)−𝑝 (𝑥) |;
(2) External error : the approximation error between the polynomial and oracle, i.e., |𝑝 (𝑥) − 𝑓 (𝑥) |.
Internal error. For evaluating polynomials, our patch applies two methods to reduce error:

• Using domain adaptation to ensure that the adapted variable 𝑢 = 𝑢 (𝑥) satisfies |𝑢 | ≤ 1 (cf.
Section 5.1).

• Using the widely adapted evaluation scheme [Newbery 1974; Oliver 1979], i.e., Horner method

or Clenshaw method, to evaluate power series and Chebyshev series correspondingly.

The evaluation error on such schemes has been extensively discussed and proved [Müller 1983;
Newbery 1974; Oliver 1979] to be insignificant as long as the adapted variable satisfies |𝑢 | ≤ 1.
Since Aceso ensures |𝑢 | ≤ 1 by using domain adaptation, it can guarantee that the generated patch
does not have significant FP errors (i.e., internal errors).
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External error. In Section 5, we use statistical information on Chebyshev nodes to synthesize
polynomial patches on the erroneous interval I. While on each Chebyshev node, the estimated
mean is close to the oracle by the law of large numbers, it is unknown whether the polynomial
patch 𝑝 (𝑥) is accurate on an arbitrary point 𝑥 ∈ I.

Next, we establish a correlation between the error on Chebyshev nodes and on an arbitrary point
within I. More formally, with the following definitions and notations:

• 𝑥𝑖 = 𝑥1, . . . , 𝑥𝑚 are𝑚 Chebyshev nodes within the interval I = [𝑎, 𝑏] (cf. Section 5.1),
• 𝑝 (𝑥) is the synthesized polynomial,
• 𝑓 (𝑥) is the oracle result, and assume 𝑓 (𝑥) is a smooth function, and
• 𝜎 is the upper bound of errors on nodes 𝑥𝑖 , then

If ∀𝑖, |𝑓 (𝑥𝑖 ) − 𝑝 (𝑥𝑖 ) | ≤ 𝜎 , then ∀𝑥 ∈ I, ∃𝜉𝑥 ∈ I such that
����𝑓 (𝑥) − 𝑝 (𝑥)

���� ≤
(𝑏 − 𝑎)𝑚
22𝑚−1𝑚!

𝑓 (𝑚) (𝜉𝑥 ) + 𝜎

(
2 ln(2𝑚 − 1) + 2

𝜋
+ 𝜋

)
(11)

The proof for Equation (11) is in the Appendix (in the seperate supplementary material file).
In Equation (11)

• The first term converges extremely fast to zero. For example, in our setting, we have𝑚 = 1,000,
and suppose (𝑏 − 𝑎) = 10, which is significantly larger than the interval size in practice, we
have

(𝑏 − 𝑎)𝑚
22𝑚−1𝑚!

≈ 10−2,170, for𝑚 = 1,000, (𝑏 − 𝑎) = 10

which means that the higher-order derivative 𝑓 (𝑚) (𝜉𝑥 ) needs to be at least 102,100 to make
the first term significant, which is almost impossible in practice.

• The second term determines the error bound, which increases slowly with larger 𝑚. For
example,

𝜎

(
2 ln(2𝑚 − 1) + 2

𝜋
+ 𝜋

)
= 8.62𝜎 , for𝑚 = 1,000

which means that the maximum possible error for 𝑝 (𝑥) on I will not exceed 9 times of the
maximum error on the sampled Chebyshev nodes in this case.

Equation (11) proves that the error on the entire interval I is strictly bounded by the error (𝜎)
on Chebyshev nodes. This result also implies that, for future work, improving the accuracy on
Chebyshev nodes (reducing 𝜎) is an effective way to improve the accuracy on the entire interval.

7.2 Assumptions, Generality, and Capability of Aceso

Assumptions. Our work has several assumptions, which we further elaborate. Note that these
assumptions are required for the interval under repair (I), not for the entire input domain:

• The program should be continuous in the interval I. Since significant FP errors only occur
on an extremely small portion of inputs [Bao and Zhang 2013], I can usually be small. Thus,
this assumption easily holds in practice. If the program is discontinuous in I, we can still
split I into continuous sub-intervals and repair each separately.

• The program should not be ill-conditioned in the interval I. Ill-conditioned problems, e.g.,
functions with extremely large derivatives, are theoretically very difficult to cure their
inaccuracies [Fu et al. 2015]. Thus, fixing such errors is beyond the scope of our work.

Generality. As discussed in Section 4.1, we expect the existence of micro-structures to be a general
property of FP errors, since they are caused by changes in the rounding directions. Aceso, as a
dynamic approach and viewing input FP programs as blackboxes (i.e., only observing their results),
is general and has some key advantages: (1) it is independent of oracles (i.e., oracle-free), and
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(2) it is agnostic to input program constructs (e.g., library calls, loops, conditionals, castings, and
pointers). It is also efficient and effective in synthesizing accurate and performant patches as shown
in Section 6. Thus, we envision Aceso to be generally applicable in settings where oracle-free error
detection like Atomu can be utilized.
It is worth mentioning that we collect univariate functions as our benckmark following the

existing work [Yi et al. 2019; Zou et al. 2020]. We believe the micro-structure of FP errors will still
exist in multivariate FP programs, since it is a general property caused by the change of rounding
direction in FP operations. In future work, it would be interesting to explore: (1) how to generalize
the neighborhood for observing micro-structure to higher dimensions, and (2) how to generalize
the polynomial templates e.g., Chebyshev series, for multiple variables.

Capability. The considered scenario for Aceso is quite challenging, yet common in practice. The
only available information to Aceso is an erroneous numerical program without an oracle. Hence,
in general, Aceso cannot provide provable accuracy guarantees on the patch. However, during the
validation process, a patch would only pass if, on all the sampled inputs 𝑡𝑖 , the patched value 𝑝 (𝑡𝑖 )
falls into the range [𝑎𝑖 , 𝑏𝑖 ] (cf. Section 5.3). Notice that 𝑎𝑖 and 𝑏𝑖 are actual values that the original
program could produce in 𝑡𝑖 ’s tiny neighbourhood.

Thus, although without provable guarantees, we have strong confidence that the validated patch
is superior to the original program in the entire interval I, which our empirical results have
confirmed (cf. Section 6.2).

8 RELATED WORK

This section surveys several threads of closely-related work, which we discuss below.

Obtaining oracles of FP programs. High-precision shadow execution is a dynamic analysis
that performs side-by-side execution with high-precision types for analyzing FP errors. In this
category, FpDebug [Benz et al. 2012] and Herbgrind [Sanchez-Stern et al. 2018] are based on
MPFR [Fousse et al. 2007] and binary analysis tool Valgrind [Nethercote and Seward 2007], while
FPSanitizer [Chowdhary et al. 2020] and PFPSanitizer [Chowdhary and Nagarakatte 2021] reduce
the runtime overhead significantly via compile-time instrumentation and parallel execution. Such
techniques are effective for analyzing FP errors, however, they are not suited for obtaining oracles
of FP programs. They assume that high-precision executions match the oracle results, which in
turn assumes that the semantics of FP programs matches their underlying mathematical functions.
However, this assumption does not hold on precision-specific operations [Wang et al. 2016] and
precision-related code [Zou et al. 2020]. Thus, it remains a significant challenge to obtain oracles
for FP programs. Even in recent work on detecting FP errors, the oracle results have to be ob-
tained by manually modifying source code [Guo and Rubio-González 2020] or comparing different
implementations [Vanover et al. 2020].

Detecting FP errors. Several approaches have been proposed to detect inputs that trigger significant
FP errors. BGRT [Chiang et al. 2014] is based on heuristic binary search, LSGA [Zou et al. 2015] is
based on a genetic algorithm, while EAGT [Yi et al. 2017] and DEMC [Yi et al. 2019] are based on
differential evolution and Markov Chain Monte Carlo methods. All these approaches rely on the
existence of oracles.

Recently, several oracle-free approaches have been proposed for detecting such error-triggering
inputs. Atomu [Zou et al. 2020] searches for significant atomic conditions, which are highly
connected with FP errors and can be obtained based on runtime information. FPGen [Guo and
Rubio-González 2020] injects checks to detect large precision loss and cancellation, and applies
symbolic execution to generate suspicious inputs.
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In contrast, our work proposes an oracle-free approach, Aceso, to repairing FP errors, rather
than detecting them. Aceso is a downstream task that benefits from oracle-free error detection
techniques because it needs information on where significant errors exist. Without an oracle-free
error detection technique, we would have to construct an oracle (expensive in both development
cost and runtime cost [Zou et al. 2020]) for finding significant errors. Thus, we could also apply the
oracle for repair. Oracle-free error detection enables our work and improves its practical utility.

Repairing FP errors. Several approaches aim to repair FP errors. Herbie [Panchekha et al. 2015]
and Salsa [Damouche and Martel 2017] apply mathematical equivalent transformations to improve
the accuracy of FP programs. Herbie is a dynamic tool, which needs oracles on sample points to
judge and guide the transformations. Salsa is a static tool, which applies abstract interpretation to
judge and guide transformations, and cannot deal with complex data structures, such as function
pointers and library calls. AutoRNP [Yi et al. 2019] is a repair tool. It applies linear or quadratic
approximation to repair the localized erroneous intervals, and relies heavily on the oracle to
synthesize such approximations. Lim et al. [Lim et al. 2021; Lim and Nagarakatte 2021a,b] have
proposed approaches to generate math library functions for different FP representations, such as
Bfloat16 and 32-bit float, which rely on oracles during the synthesis procedure and guarantee errors
to be less than 0.5 ulp (correctly rounded).
The goal of our approach is to dynamically repair FP errors without relying on oracles. Since

obtaining an oracle is difficult and costly, we provide a lightweight approach to synthesizing
polynomial approximations to reduce FP errors for wider applicability.

9 CONCLUSION

We have introduced a novel, effective, oracle-free approach to repairing significant FP errors
in numerical programs. Our key insight is the concept of micro-structure that FP errors can be
observed with structural patterns under a certain scope. Micro-structures allow one to gather
rich statistical information about FP errors, which we have shown how to effectively leverage to
guide patch synthesis and validation. We have designed and realized our general approach and
evaluated it on 36 commonly-used numerical programs. Evaluation results have demonstrated that
our approach is highly effective Ð it can synthesize patches quickly (i.e., under one second), the
synthesized patches drastically reduce FP errors (i.e., by orders of magnitude), and the patches are
efficient (i.e., having better or similar runtime performance as the original programs).
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A APPENDIX: PROOF FOR ERROR ANALYSIS

Lemma A.1. ∀𝑖 ∈ 1, 2, · · · ,𝑚,

������

∏

𝑗≠𝑖, 𝑗∈{1,2,· · · ,𝑚}

(
cos

(
2𝑖 − 1

2𝑚
𝜋

)
− cos

(
2 𝑗 − 1

2𝑚
𝜋

))������
=

�������

𝑚

2𝑚−1 sin
(
2𝑖−1
2𝑚 𝜋

)

�������
(12)
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Proof. Using the sum-to-product formula, we have that (𝑖 is fixed, while 𝑗 ∈ 1, 2, · · · ,𝑚)

LHS = 2𝑚−1

������

∏

𝑖> 𝑗

sin( 𝑖 − 𝑗

2𝑚
𝜋) · sin( 𝑖 + 𝑗 − 1

2𝑚
𝜋)

������
·

������

∏

𝑖< 𝑗

sin( 𝑗 − 𝑖

2𝑚
𝜋) · sin( 𝑖 + 𝑗 − 1

2𝑚
𝜋)

������

= 2𝑚−1

������

2𝑖−2∏

𝑗=1

sin
𝑗

2𝑚
𝜋

������
·

������

𝑚−𝑖∏

𝑗=1

sin
𝑗

2𝑚
𝜋

������
·

������

𝑖+𝑚−1∏

𝑗=2𝑖

sin
𝑗

2𝑚
𝜋

������

= 2𝑚−1

������

2𝑖−2∏

𝑗=1

sin
𝑗

2𝑚
𝜋

������
·

������

2𝑚−1∏

𝑗=𝑚+𝑖
sin

𝑗

2𝑚
𝜋

������
·

������

𝑖+𝑚−1∏

𝑗=2𝑖

sin
𝑗

2𝑚
𝜋

������

= 2𝑚−1

������
1

sin( 2𝑖−12𝑚 𝜋)

2𝑚−1∏

𝑗=1

sin
𝑗

2𝑚
𝜋

������

(13)

We know that

𝑥𝑚−1 + 𝑥𝑚−2 + · · · + 𝑥 + 1 =

𝑚−1∏

𝑘=1

(
𝑥 − 𝑒

2𝑘𝜋
𝑚

𝑖
)

(14)

Let 𝑥 = 1:

𝑚 =

𝑚−1∏

𝑘=1

����1 − cos( 2𝑘𝜋
𝑚

) − 𝑖 sin( 2𝑘𝜋
𝑚

)
���� =

𝑚−1∏

𝑘=1

����2 sin(
𝑘𝜋

𝑚
) (sin(𝑘𝜋

𝑚
) − 𝑖 cos(𝑘𝜋

𝑚
))

���� (15)

Then, we obtain:
𝑚−1∏

𝑘=1

sin(𝑘𝜋
𝑚

) = 𝑚

2𝑚−1 (16)

2𝑚−1∏

𝑗=1

sin( 𝑗

2𝑚
𝜋) =

𝑚−1∏

𝑗=1

sin( 𝑗

2𝑚
𝜋) sin(𝑚 − 𝑗

2𝑚
𝜋)

=

𝑚−1∏

𝑗=1

sin( 𝑗

2𝑚
𝜋) cos( 𝑗

2𝑚
𝜋)

=
1

2𝑚−1

𝑚−1∏

𝑗=1

𝑠𝑖𝑛( 𝑗
𝑚
𝜋)

=
𝑚

22𝑚−2

(17)

Finally with Equations (13) and (17), we have

LHS =

�������

𝑚

2𝑚−1 sin
(
2𝑖−1
2𝑚 𝜋

)

�������
(18)

□

With the following definitions and notations:

• 𝑥𝑖 = 𝑥1, . . . , 𝑥𝑚 are𝑚 Chebyshev nodes within the interval I = [𝑎, 𝑏]

𝑥𝑖 =
1

2
(𝑎 + 𝑏) + 1

2
(𝑏 − 𝑎) cos

(
2𝑖 − 1

2𝑚
𝜋

)

• 𝑝 (𝑥) is the generated polynomial, with 𝑝 (𝑥𝑖 ) = 𝑝𝑖 .
• 𝑓 (𝑥) is the oracle result, and assume that 𝑓 (𝑥) is a smooth function, with 𝑓 (𝑥𝑖 ) = 𝑞𝑖 .
• 𝑃0 (𝑥) is the interpolation polynomial with 𝑞𝑖 .
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Theorem A.2. If ∀𝑖, |𝑝𝑖 − 𝑞𝑖 | ≤ 𝜎 , we have ∀𝑥 ∈ I, ∃𝜉𝑥 ∈ I, such that

|𝑓 (𝑥) − 𝑝 (𝑥) | ≤ (𝑏 − 𝑎)𝑚
22𝑚−1𝑚!

𝑓 (𝑚) (𝜉𝑥 ) + 𝜎

(
2 ln(2𝑚 − 1) + 2

𝜋
+ 𝜋

)
(19)

Proof. Based on the interpolation error theorem [Epperson 2013], the interpolation polynomial
𝑃0 (𝑥) satisfies

∃𝜉𝑥 ∈ (𝑎, 𝑏), 𝑓 (𝑥) − 𝑃0 (𝑥) =
1

𝑚!
𝑓 (𝑚) (𝜉𝑥 )

𝑚∏

𝑖=1

(𝑥 − 𝑥𝑖 ) (20)

where we can substitute 𝑥 with

𝑥 =
𝑎 + 𝑏
2

+ 𝑏 − 𝑎

2
𝑡, where 𝑡 ∈ [−1, 1] (21)

Then, Equation (20) equals to

((𝑏 − 𝑎)/2)𝑚
𝑚!

𝑓 (𝑚) (𝜉𝑥 )
𝑚∏

𝑖=1

(𝑡 − cos( 2𝑖 − 1

2𝑚
𝜋)) (22)

Since 2𝑚−1 ∏𝑚
𝑖=1 (𝑡 − 𝑐𝑜𝑠 ( 2𝑖−1

2𝑚
𝜋)) is the m-order Chebyshev polynomial cos(𝑚 arccos𝑥), the error

in Equations (20) and (22) satisfies

|𝑓 (𝑥) − 𝑃0 (𝑥) | ≤
(𝑏 − 𝑎)𝑚

2(2𝑚−1)𝑚!
𝑓 (𝑚) (𝜉𝑥 ) (23)

We notice that
|𝑓 (𝑥) − 𝑝 (𝑥) | ≤ |𝑓 (𝑥) − 𝑃0 (𝑥) | + |𝑃0 (𝑥) − 𝑝 (𝑥) | (24)

Thus, we simply need to show that

|𝑃0 (𝑥) − 𝑝 (𝑥) | ≤ 𝜎

(
2 ln(2𝑚 − 1) + 2

𝜋
+ 𝜋

)
(25)

Note that 𝑄 (𝑥) as 𝑄 (𝑥) = 𝑃0 (𝑥) − 𝑝 (𝑥); thus, we have

𝑄 (𝑥) =
𝑚∑︁

𝑖=1

(𝑞𝑖 − 𝑝𝑖 )
∏

𝑗≠𝑖

(𝑥 − 𝑥 𝑗 )
(𝑥𝑖 − 𝑥 𝑗 )

𝑥 ∈ [𝑎, 𝑏] (26)

We substitute 𝑥 using Equation (21)

𝑄 (𝑡) =
𝑚∑︁

𝑖=1

(𝑞𝑖 − 𝑝𝑖 )
∏

𝑗≠𝑖

(𝑡 − cos( 2𝑗−12𝑚 𝜋))
(cos( 2𝑖−12𝑚 𝜋) − cos( 2𝑗−12𝑚 𝜋))

𝑡 ∈ [−1, 1]

≤ 𝜎

𝑚∑︁

𝑖=1

������

∏

𝑗≠𝑖

(𝑡 − cos( 2𝑗−12𝑚 𝜋))
(cos( 2𝑖−12𝑚 𝜋) − cos( 2𝑗−12𝑚 𝜋))

������

≤ 𝜎

𝑚∑︁

𝑖=1

�����

1
2(𝑚−1) cos(𝑚 arccos𝑥)

(𝑡 − cos( 2𝑖−12𝑚 𝜋))∏𝑗≠𝑖 (cos( 2𝑖−12𝑚 𝜋) − cos( 2𝑗−12𝑚 𝜋))

�����

(27)

Using Lemma A.1, we can transform the RHS into

RHS = 𝜎

𝑚∑︁

𝑘=1

�����
sin( 2𝑘−12𝑚 𝜋) cos(𝑚 arccos𝑥)

𝑚(𝑥 − cos 2𝑘−1
2𝑚 𝜋)

����� 𝑥 ∈ [−1, 1] (28)

Then, we only need to prove that

ℎ(𝑥) =
𝑚∑︁

𝑘=1

�����
sin( 2𝑘−12𝑚 𝜋) cos(𝑚 arccos𝑥)

𝑚(𝑥 − cos 2𝑘−1
2𝑚 𝜋)

����� ≤
2 ln(2𝑚 − 1) + 2

𝜋
+ 𝜋 (29)

Without loss of generality, we assume that 𝑥 = cos 𝑡
2𝑚

𝜋 and 𝑡
2𝑚

𝜋 ∈ [0, 𝜋/2]. We consider the
following two conditions separately:
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• ∃𝑘 ∈ Z, such that 𝑡 ∈ [2𝑘 − 1, 2𝑘]
• ∃𝑘 ∈ Z, such that 𝑡 ∈ [2𝑘 − 2, 2𝑘 − 2]

In the first condition, ∃𝑘 ∈ Z, such that 𝑡 ∈ [2𝑘 − 1, 2𝑘]. We split ℎ(𝑥) as ℎ(𝑥) = 𝑆1 + 𝑆2

𝑆1 =
∑︁

𝑖≠𝑘

�����
sin( 2𝑖−12𝑚 𝜋) cos(𝑚 arccos𝑥)

𝑚(𝑥 − cos 2𝑖−1
2𝑚 𝜋)

�����

𝑆2 =

�����
sin( 2𝑘−12𝑚 𝜋) cos(𝑚 arccos𝑥)

𝑚(𝑥 − cos 2𝑘−1
2𝑚 𝜋)

�����

(30)

𝑆1 ≤
∑︁

𝑖≠𝑘

�����
sin( 2𝑖−12𝑚 𝜋)

𝑚(cos 𝑡
2𝑚𝜋 − cos 2𝑖−1

2𝑚 𝜋)

�����

≤ 1

2𝑚

∑︁

𝑖≠𝑘

(����cot(
𝑡 − 2𝑖 + 1

4𝑚
𝜋)

���� +
����cot(

𝑡 + 2𝑖 − 1

4𝑚
𝜋)

����
) (31)

Since ∀𝑥 ∈ [0, 𝜋/2), tan𝑥 ≥ 𝑥 , we have cot𝑥 ≤ 1/𝑥,∀𝑥 ∈ [0, 𝜋/2). Then

𝑆1 ≤ 2

𝜋
(
∑︁

𝑖<𝑘

1

𝑡 − 2𝑖 + 1
+

∑︁

𝑖>𝑘

1

2𝑖 − 1 − 𝑡
+

∑︁

𝑖≤𝑚−𝑘

1

𝑡 + 2𝑖 − 1
+

∑︁

𝑖>𝑚−𝑘

1

4𝑚 − 𝑡 − 2𝑖 + 1
)

≤ 2

𝜋
(
𝑘−1∑︁

𝑖=1

1

2𝑖
+
𝑚−𝑘∑︁

𝑖=1

1

2𝑖 − 1
+
𝑚−1∑︁

𝑖=𝑘

1

2𝑖
+

𝑚∑︁

𝑖=𝑚−𝑘+1

1

2𝑖 − 1
)

≤ 2

𝜋

2𝑚−1∑︁

𝑖=1

1

𝑖

≤ 2

𝜋
(ln(2𝑚 − 1) + 1)

(32)

Next we prove 𝑆2 ≤ 𝜋

𝑆2 =
1

𝑚

�����
sin( 2𝑘−12𝑚 𝜋) cos( 𝑡2𝜋)
cos 𝑡

2𝑚𝜋 − cos 2𝑘−1
2𝑚 𝜋

�����

=
1

2𝑚

�����
sin( 2𝑘−12𝑚 𝜋) sin( 𝑡−2𝑘+12 𝜋)
sin( 𝑡−2𝑘+14𝑚 𝜋) sin( 𝑡+2𝑘−14𝑚 𝜋)

�����

(33)

Substitute 𝑡 − 2𝑘 + 1 as 𝑠 , 𝑠 ∈ [0, 1], we have the fact that ∀𝑥 ∈ [0, 𝜋/2), 2𝑥/𝜋 ≤ sin𝑥 ≤ 𝑥 , thus

𝑆2 ≤
sin 𝑠

2𝜋

2𝑚 sin 𝑠
4𝑚𝜋

�����
sin 2𝑘−1

2𝑚 𝜋

sin( 2𝑘−12𝑚 + 𝑠
4𝑚 )𝜋

�����

≤
𝑠
2𝜋

2𝑚 𝑠
4𝑚𝜋 2

𝜋

(���cos 𝑠

4𝑚
𝜋
��� +

�����
sin 𝑠

4𝑚𝜋

sin( 2𝑘−12𝑚 + 𝑠
4𝑚 )𝜋

cos( 2𝑘 − 1

2𝑚
+ 𝑠

4𝑚
)𝜋

�����

) (34)

For 𝑠 ∈ [0, 1], sin 𝑠𝜋
4𝑚

≤ sin( 2𝑘−1
2𝑚

+ 𝑠
4𝑚

)𝜋 , so we have

𝑆2 ≤ 𝜋 (35)

With Equations (32) and (35), we have

ℎ(𝑥) = 𝑆1 + 𝑆2 ≤ 2 ln(2𝑚 − 1) + 2

𝜋
+ 𝜋 (36)

Therefore, the proof for the first condition is complete. For the second condition, ∃𝑘 ∈ Z, such that
𝑡 ∈ [2𝑘 − 2, 2𝑘 − 1], the proof is similar. □
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