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Version space algebra (VSA) is an effective data structure for representing sets of programs and has been
extensively used in program synthesis. Despite this success, a crucial shortcoming of VSA-based synthesis is
its inefficiency when processing many examples. Given a set of IO examples, a typical VSA-based synthesizer
runs by first constructing an individual VSA for each example and then iteratively intersecting these VSAs
one by one. However, the intersection of two VSAs can be much larger than the original ones – this effect
accumulates during the iteration, making the scale of intermediate VSAs quickly explode.

In this paper, we aim to reduce the cost of intersecting VSAs in synthesis. We investigate the process of
the iterative intersection and observe that, although this process may construct some huge intermediate
VSAs, its final VSA is usually small in practice because only a few programs can pass all examples. Utilizing
this observation, we propose the approach of multi-way intersection, which directly intersects multiple small
VSAs into the final result, thus avoiding the previous bottleneck of constructing huge intermediate VSAs.
Furthermore, since the previous intersection algorithm is inefficient for multiple VSAs, we design a novel
algorithm to avoid most unnecessary VSA nodes.

We integrated our approach into two SOTA VSA-based synthesizers: a general synthesizer based on VSA
and a specialized one for the string domain Blaze. We evaluate them over 4 different datasets, 994 synthesis
tasks; the results show that our approach can significantly improve the performance of VSA-based synthesis,
with up to 105 more tasks solved and a speedup of 7.36×.

1 INTRODUCTION

Programming by example (PBE) [Shaw et al. 1975] is an important paradigm of program synthesis,
where the goal is to learn a program from a set of input-output (IO) examples. PBE has attracted
much research interest because many practical synthesis tasks can be converted into PBE through
the OGIS framework [Jha and Seshia 2017]. After decades of development, there have been various
effective PBE solvers proposed for different domains [Alur et al. 2015; Ding and Qiu 2024; Dong
et al. 2022; Gulwani 2011; Ji et al. 2021; Lee 2021; Lee et al. 2018; Li et al. 2024; Mitchell 1982;
Padhi et al. 2018; Reynolds et al. 2019; Udupa et al. 2013; Wang et al. 2017]. Among these solvers,
a particular branch based on version spaces [Mitchell 1982] has recently achieved great success
in various scenarios, including string manipulation [Gulwani 2011], web automation [Dong et al.
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(a) A sample VSA. (b) Iterative Intersection. (c) Our multi-way intersection.

Fig. 1. (a) A sample VSA that represents {0+𝑦, 𝑥 +𝑦,𝑦 +𝑦}. (b, c) The scale of the VSA during the intersection,

shown on a logarithmic scale. The red line marks a resource limit at VSAs with 108 nodes. Such a VSA typically

takes several minutes to construct and tens of GBs of memory to store, unacceptable in practice.

2022; Li et al. 2024], and data processing [Padhi et al. 2018; Wang et al. 2017]. Its key idea is to
construct a sub-space of programs (i.e., the version space) satisfying the given IO examples and
then extract the best synthesis result from the space, typically via a pre-defined ranking function.
VSA-based synthesis. Version space algebra (VSA) is an effective data structure for learning version
spaces. It follows a graph-like structure, as shown in Fig. 1a, where each node represents a set of
programs, and the edges specify how programs are combined from small to large. Its advantage is
to compactly represent a large set of programs, usually with an exponential saving on memory; so
a typical VSA-based synthesizer will construct a VSA for the set of valid programs satisfying all
examples, then efficiently extract the best result through the compact structure of this VSA.

Despite the success, one major issue of existing VSA-based synthesizers is their inefficiency when
processing many examples. This issue originates from the iterative process of intersecting VSAs;
given a set of IO examples, the existing synthesizers will first construct a series of single-example
VSAs, each representing the set of programs satisfying one example, and then intersect these VSAs
one by one. However, the intersection of two VSAs can be much larger than the original ones — in
the worst case, its size can be the product of the original sizes [Polozov and Gulwani 2015]. This
effect can accumulate during the iteration, making the VSA scale quickly exceed the resource limit.
Multi-way intersection. This paper aims to accelerating VSA-based synthesis by reducing the cost
of intersecting VSAs. Our approach is motivated by the following observation.
• Observation. The size of the intersected VSA typically exposes a hill-like curve during the
iteration, as shown in Fig. 1b. Although the size may start with a quick explosion, it will
switch to going down after reaching a peak and finally fall to a fairly low level; during this
process, the size of the largest intermediate VSA can be orders of magnitude larger than the
initial and final ones — approximately 300× on average in our dataset.

This property stems from the fact that practical synthesis systems are typically eager for dis-
ambiguation [Le et al. 2017; Solar-Lezama et al. 2006]. For such systems, their primary mission
is always to find a program that meets the user’s demand. To ensure this, they need to collect
enough information (typically examples) to exclude most invalid programs; then, a small VSA will
be enough to represent the few remaining programs.

Based on this observation, we propose a novel approach to intersect VSAs,multi-way intersection,
to avoid generating the giant VSAs at the peak. As shown in Fig. 1c, our approach divides the
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examples into several groups, iteratively constructs a VSA for each group, and then intersects
these VSAs at once. In this way, it excavates a tunnel through the hill, thus skipping the previous
bottleneck at the peak.
To make our approach effective, the key is to find an efficient algorithm for intersecting many

VSAs at once. However, existing algorithms are far from efficient enough. For example, a naive
algorithm constructs the intersected VSA by ranging over node tuples (𝑛1, . . . , 𝑛𝑘 ) where 𝑛𝑖 comes
from the 𝑖th input VSA. For each tuple, this algorithm constructs a node for the intersected
VSA, representing the set of programs shared among the nodes in the tuple, and adds edges
correspondingly. This algorithm cannot support an efficient multi-way intersection because it
enumerates all node tuples, which requires exponential time and can be even slower than the
iterative intersection. Although Polozov and Gulwani [2015] have proposed a better algorithm
for VSA intersection, we prove it still suffers from a similar issue when the number of examples
increases (Thm. 3.7).

Our intersection algorithm. To address this issue, we utilize again our observation that the final
VSA is typically small. In this case, the naive algorithm will waste most of its time on constructing
empty nodes that represent no valid program. Such nodes are trivially unnecessary, so skipping
them from the enumeration could provide a significant speed-up.
Following this idea, our algorithm builds the intersection from the bottom up and uses lower

non-empty nodes to precisely construct the higher non-empty ones. It is powered by a search
method based on the trie data structure [Briandais 1959] to efficiently locate non-empty nodes,
thus implicitly ignoring empty ones. We demonstrate the advantages of this algorithm in theory.

• On a case study over commutative and associative operators, we prove our algorithm can
avoid an exponential explosion observed in the previous best algorithm for VSA intersec-
tion [Polozov and Gulwani 2015].
• By integrating our algorithm into a VSA-based synthesizer, we prove its efficiency is no
worse than observational equivalence [Udupa et al. 2013], a SOTA general synthesizer based
on enumeration, even in the worst case.

Evaluation. We implement our approach in a tool for intersecting VSAs, named Mole, since it
tunnels through the hill of intermediate VSAs (Fig. 1c) just like moles. For evaluation, we integrated
Mole into two SOTA VSA-based synthesizers, a general synthesizer based on finite tree automata
(FTA)1 [Wang et al. 2017] and a specialized synthesizer Blaze relying on abstract refinement [Wang
et al. 2018]. We evaluate both synthesizers over 4 different datasets, 994 synthesis tasks; the results
show that our approach can significantly improve the performance of VSA-based synthesizers,
with up to 105 more tasks solved and a speedup of 7.36×.

Contributions. To sum up, this paper makes the following contributions.

• Defining the multi-way intersection problem and analyzing the inefficiency of the existing
intersection algorithm (Sec. 3).
• Proposing an efficient bottom-up algorithm for intersecting multiple VSAs (Sec. 4).
• Implementing our approach into two synthesizers and evaluating its performance over 4
datasets and 994 synthesis tasks (Sec. 5).

1Strictly speaking, FTA is a different data structure for learning version spaces. However, as we shall mention later, this
paper considers only finite program spaces, where FTA is proven equivalent to VSA [Koppel 2021]. Therefore, we shall use
FTA and VSA interchangeably for simplicity.
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(a) the VSA for example 𝑒𝑎 .
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{0, y} {1, x}
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B4 B5

(S, 1)

(L, 0) (L, 1)

(b) the VSA for example 𝑒𝑏 .

+

{0, x, y}

(S, 0)

C1

C2

(L, 0)

(c) the VSA for example 𝑒𝑐 .

Fig. 2. The single-example VSAs in our sample task, where the topmost node is the root, and 𝑒𝑎 , 𝑒𝑏 , 𝑒𝑐 denotes

⟨𝑥 = 0, 𝑦 = 1⟩ ↦→ 1, ⟨𝑥 = 1, 𝑦 = 0⟩ ↦→ 1, and ⟨𝑥 = 0, 𝑦 = 0⟩ ↦→ 0, respectively. Here, we use blue to assign an

index for each VSA node, and use violet to mark the corresponding non-terminal and the output value.

2 OVERVIEW

This section gives an overview of our approach with a PBE task. Its goal is to synthesize the program
𝑥 + 𝑦 (or its equivalent form 𝑦 + 𝑥 ) from the following grammar.

𝑆 := 𝐿 + 𝐿 𝐿 := 0 | 1 | 𝑥 | 𝑦
This task provides three IO examples for synthesis, as listed below.

(𝑒𝑎) ⟨𝑥 = 0, 𝑦 = 1⟩ ↦→ 1 (𝑒𝑏) ⟨𝑥 = 1, 𝑦 = 0⟩ ↦→ 1 (𝑒𝑐 ) ⟨𝑥 = 0, 𝑦 = 0⟩ ↦→ 0

2.1 Background: VSA and VSA-Based Synthesis

A VSA can be viewed as a directed graph with a root node, as illustrated in Fig. 2a. Each VSA node
represents a set of programs, and the whole VSA represents the program set of its root. There are
three kinds of VSA nodes, corresponding to three different ways to construct programs.
• Each leaf node is labeled with the set of programs it represents, such as nodes 𝐴4 and 𝐴5.
• Each join node is labeled with an operator, such as nodes 𝐴2 and 𝐴3. It constructs programs
by applying the labeled operator to the programs represented by its children. For example,𝐴2
applies operator + by picking the left operand from 𝐴4 and picking the right operand from
𝐴5, resulting in the program set {0 + 1, 0 + 𝑦, 𝑥 + 1, 𝑥 + 𝑦}.
• A union node is marked by the bold union symbol ∪, such as node 𝐴1. It represents the union
set of all programs represented by its children.

The key idea of VSA-based synthesis is to construct a VSA for the set of valid programs satis-
fying all examples. A typical VSA-based synthesizer constructs such a VSA in two steps, by first
constructing an individual VSA for each example and then merging these VSAs by intersection.
Single-example VSAs. This paper uses off-the-shelf methods to construct single-example VSAs
[Polozov and Gulwani 2015; Wang 2019]. Their result can be viewed as an augmentation of the
initial grammar, where each VSA node corresponds to a non-terminal and a specific output value,
representing the set of programs that (1) are expanded from this non-terminal, and (2) outputs this
value on the example. Fig. 2 shows the single-example VSAs in our sample task. Among them, node
𝐴4 represents the programs that are expanded from non-terminal 𝐿 and output 0 on example 𝑒𝑎 ,
corresponding to program set {0, 𝑥}. Specially, when there are multiple ways to construct programs
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(A2, B2) (A3, B3) (A2, B3) (A3, B2)

(A4, B4) (A5, B5) (A4, B5) (A5, B4)

(a) The intersected VSA for examples 𝑒𝑎 and 𝑒𝑏 .

U

{x} {y}

+ +

(A1, B1, C1)

(A2, B3, C1) (A3, B2, C1)

(A4, B5, C2) (A5, B4, C2)

(b) The intersected VSA for all examples.

Fig. 3. The intersected VSAs in our sample task. Here, we use blue to mark the corresponding node pairs (or

tuples) in the Cartesian product of single-example VSAs.

with the same output for a certain non-terminal, such as nodes 𝐴2 and 𝐴3 (two additions with
arguments swapped), the VSA will comprise an additional union node, which is node 𝐴1 here, to
merge all these possibilities.

Intersecting VSAs. Existing VSA-based synthesizers intersect single-example VSAs by iteration.
They first intersect the VSAs for 𝑒𝑎 and 𝑒𝑏 , resulting in Fig. 3a, and then intersect the result with
the VSA for 𝑒𝑐 , resulting in Fig. 3b. This final VSA represents two programs, 𝑥 + 𝑦 and 𝑦 + 𝑥 ; both
of them are valid for our synthesis task.
The existing algorithm for VSA intersection works by traversing the Cartesian product of the

input VSAs from the top down [Kini and Gulwani 2015]. For example, to construct the intersected
VSA in Fig. 3a, the algorithm first creates the root node with mark (𝐴1, 𝐵1), the root pair of the
input VSAs, which represents the intersection of the program sets of 𝐴1 and 𝐵1. Then, the next step
is to decide the node type of (𝐴1, 𝐵1) and its children. Since both 𝐴1 and 𝐵1 are union nodes, by the
equality of (⋃𝑖 𝑆𝑖 ) ∩ (

⋃
𝑖 𝑇𝑖 ) =

⋃
𝑖, 𝑗 (𝑆𝑖 ∩𝑇𝑗 ), the intersected program set is equal to the result of

first taking the intersection for each children pair and then taking the union. Hence, the top-down
algorithm sets the root to a union node and constructs 4 children for it, (𝐴2, 𝐵2), (𝐴2, 𝐵3), (𝐴3, 𝐵2),
and (𝐴3, 𝐵3), each a children pair of 𝐴1 and 𝐵1. After that, the algorithm traverses down to these
children and recursively decides their type and children, until reaching the bottom.
In this procedure, the top-down algorithm may construct unnecessary nodes that do not con-

tribute to any program represented by the root. For example, when intersecting the VSAs in Fig. 3a
and Fig. 2c, this algorithm will construct nodes (𝐴2, 𝐵2,𝐶1) and (𝐴3, 𝐵3,𝐶1) as the children of the
root, which are not needed, as shown in Fig. 3b. To exclude these nodes, the top-down algorithm
post-processes its raw result and takes only the necessary parts.

Efficiency Issue. Despite many known advantages, one major shortcoming of VSA-based synthesis
is its inefficiency in processing many examples. This issue originates from the iterative approach
for intersecting VSAs. Specifically, after each intersection, the resulting VSA can be much larger
than the individual ones because it is constructed over the Cartesian product. For example, the
intersected VSA for examples 𝑒𝑎 and 𝑒𝑏 (Fig. 3a) comprises 9 nodes, larger than the single-example
VSAs (Fig. 2a and Fig. 2b), each comprising only 5 nodes. Such an effect can accumulate during the
iteration, leading to a giant VSA that exceeds the resource limit.
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(a) The existing top-down algorithm.

U

{0} {x} {y}

+ +

(A1, B1, C1)

(A2, B3, C1) (A3, B2, C1)

(A4, B4, C2) (A4, B5, C2) (A5, B4, C2)

(b) Our bottom-up algorithm.

Fig. 4. The process of the two intersection algorithms when intersecting the three individual VSAs in our

sample task (Fig. 2). Here, we use blue to mark the corresponding node tuples in the Cartesian product, and

use violet to mark the unnecessary nodes introduced by each algorithm.

2.2 Multi-Way Intersection

This paper aims to improve the efficiency of VSA intersection. To begin with, we observe that the
final intersection is usually small in practice. In our sample task, the final VSA (Fig. 3b) uses only 5
nodes, smaller than the intermediate one (Fig. 3a). This is because a PBE task usually comprises
enough IO examples to ensure a small set of valid programs; otherwise, the synthesizer can hardly
pick the desired program from a massive collection of valid choices. For example, in our sample task,
without the third example 𝑒𝑐 , incorrect programs 0 + 1 and 1 + 0 will be mistaken as valid, leading
to the risk of an incorrect result. With enough examples, the final VSA needs only to represent a
small set of programs and will not take up too many nodes.
Motivated by this observation, our idea is to construct the final VSA by intersecting multiple

VSAs at once, for example, directly from the three VSAs in Fig. 2 to the final one (Fig. 3b). In this
way, we can avoid the intermediate VSAs, creating great potential for optimization.

To realize such potential, the key is to find an efficient algorithm for intersecting multiple VSAs.
However, the previous top-down algorithm is far from efficient enough. It often constructs an
enormous number of unnecessary nodes when intersecting multiple VSAs, causing a significant
waste of computation. Fig. 4a shows its process when intersecting the three single-example VSAs
in Fig. 2a-Fig. 2c. After creating the root (𝐴1, 𝐵1,𝐶1), the top-down algorithm identifies 4 possible
children, each corresponding to a tuple comprising a child of𝐴1, a child of 𝐵1, and𝐶1 itself. However,
this algorithm cannot tell which children are necessary for the final VSA, so it has to construct all of
them and their descendants. As a result, it constructs 4 unnecessary nodes during the intersection.
On the one hand, nodes (𝐴2, 𝐵2,𝐶1), (𝐴3, 𝐵3,𝐶1), and (𝐴5, 𝐵5,𝐶2) represent an empty set and thus
are trivially useless; on the other hand, although there is a program in node (𝐴4, 𝐵4,𝐶2), this
program is not used by the root because both parents of this node are empty. These unnecessary
nodes make the raw result as large as the intermediate VSA during the iteration (Fig. 3a), completely
offsetting the advantage of multi-way intersection.

2.3 Bottom-Up Intersection

To improve the top-down algorithm, we notice that most of its unnecessary nodes are empty nodes
that represent no program. On our sample task (Fig. 4a), such empty nodes include (𝐴2, 𝐵2,𝐶1),
(𝐴3, 𝐵3,𝐶1), and (𝐴5, 𝐵5,𝐶1), accounting for 75% of the unnecessary nodes. Although these empty
nodes are trivially useless, the top-down algorithm cannot be aware of them because of its top-down
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Table 1. Nodes in the individual VSAs that are related to the leaf nodes in the intersection (Fig. 4b).

VSA Related Nodes Related Parent Nodes
Fig. 2a {𝐴4, 𝐴5} 𝐴2 → 𝐴4 +𝐴5 𝐴3 → 𝐴5 +𝐴4
Fig. 2b {𝐵4, 𝐵5} 𝐵2 → 𝐵4 + 𝐵5 𝐵3 → 𝐵5 + 𝐵4
Fig. 2c {𝐶2} 𝐶1 → 𝐶2 +𝐶2

nature. Specifically, whether a node is empty is a bottom-up property decided by its descendants;
for example, the emptiness of node (𝐴2, 𝐵2,𝐶2) is caused by its empty right child (𝐴5, 𝐵5,𝐶2). In
contrast, the top-down algorithm constructs every node before its descendants. Therefore, it cannot
check the emptiness on time and has to construct all visited nodes.

To address this issue, we design a bottom-up algorithm to avoid empty nodes. Fig. 4b shows its
process on our sample task. Our algorithm starts with the non-empty leaf nodes. To find them, it
searches for the programs that are shared among the leaf nodes of all individual VSAs; here are 3
such programs, 0 shared by (𝐴4, 𝐵4,𝐶2), 𝑥 shared by (𝐴4, 𝐵5,𝐶2), and 𝑦 shared by (𝐴5, 𝐵4,𝐶2). For
each program, our algorithm constructs a leaf node for the corresponding node tuple and adds the
program to the labeled program set. In this way, it constructs 3 leaf nodes for the intersected VSA,
all of which are ensured to be non-empty.

Then, we move up to construct higher nodes. Our key idea is to construct new nodes only from
existing non-empty nodes, thus ensuring their non-emptiness. Currently, only the three leaf nodes
are known non-empty. To construct new nodes from them, our algorithm first collects their related
nodes in individual VSAs and all parents of these related nodes, as shown in Tab. 1.
Our algorithm searches to combine these parent nodes into node tuples, resulting in two new

non-empty nodes for the intersected VSA:

(𝐴3, 𝐵2,𝐶1) → (𝐴5, 𝐵4,𝐶2) + (𝐴4, 𝐵5,𝐶2) (𝐴2, 𝐵3,𝐶1) → (𝐴4, 𝐵5,𝐶2) + (𝐴5, 𝐵4,𝐶2)
Note that these parent nodes have two other possible combinations, as listed below. They are
ignored because they use an unavailable node (𝐴5, 𝐵5,𝐶2) as a child, marked as blue.

(𝐴2, 𝐵2,𝐶1) → (𝐴4, 𝐵4,𝐶2) + (𝐴5, 𝐵5,𝐶2) (𝐴3, 𝐵3,𝐶1) → (𝐴5, 𝐵5,𝐶2) + (𝐴4, 𝐵4,𝐶2)
In practice, the number of such invalid combinations can be very large. So we develop an efficient
search method based on the trie data structure [Briandais 1959] to skip these invalid combinations
early. We will introduce its details in Sec. 4.2.
After constructing (𝐴3, 𝐵2,𝐶1) and (𝐴2, 𝐵3,𝐶1), there will be a new chance to construct higher

nodes, so our algorithm will repeat the above procedure until no new node is found. As shown in
Fig. 4a, our algorithm constructs only 1 unnecessary node on our sample task, much fewer than
the top-down algorithm; on the other hand, our result is smaller than the intermediate VSA during
the iteration (Fig. 3a), thus realizing the advantage of multi-way intersection.

3 PROBLEM DEFINITION AND ANALYSIS

This section defines the problem of multi-way intersection and analyzes the previous top-down
algorithm for VSA intersection on this problem.

3.1 Multi-Way Intersection Problem

Let us start with a formal definition of version space algebra (VSA).

Definition 3.1 (VSA). A VSA is a pair 𝑉 = ⟨𝑁, 𝑟 ⟩, where 𝑁 is a set of nodes defined in Tab. 2 and
𝑟 ∈ 𝑁 denotes the root. Each node 𝑛 ∈ 𝑁 can be interpreted into a program set, denoted as P(𝑛),
and the program set represented by the VSA, denoted as P(𝑉 ), is defined as the set of its root.
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Table 2. The definition of VSA nodes. Each node is in one the following three forms.

Form Syntax Interpretation to Program Sets
Union ∪(𝑛1, . . . , 𝑛𝑘 ) 𝑝 ∈ P(∪(𝑛1, . . . , 𝑛𝑘 )) if ∃𝑖, 𝑝 ∈ P(𝑛𝑖 )
Join 𝑓 (𝑛1, . . . , 𝑛𝑘 ) 𝑝 ∈ P(𝑓 (𝑛1, . . . , 𝑛𝑘 )) if 𝑝 = 𝑓 (𝑝1, . . . , 𝑝𝑘 ) and ∀𝑖, 𝑝𝑖 ∈ P(𝑛𝑖 )
Leaf {𝑝1, . . . , 𝑝𝑘 } 𝑝 ∈ P({𝑝1, . . . , 𝑝𝑘 }) if ∃𝑖, 𝑝 = 𝑝𝑖

𝑝𝑖 denotes a program, 𝑛𝑖 denotes a VSA node, and 𝑓 denotes an operator with the arity 𝑘 .

Table 3. The injection 𝜑 for defining the intersection of VSAs. Its definition follows the first

matched case from top down, modulo symmetry.

𝑛 ∈ 𝑁1 𝑛′ ∈ 𝑁2 The definition of 𝜑 (𝑛, 𝑛′)
∪(𝑛1, . . . , 𝑛𝑘 ) ∪

(
𝑛′1, . . . , 𝑛

′
𝑘 ′

)
∪

(
𝜑 (𝑛𝑖 , 𝑛′𝑗 )

)
for 𝑖 ∈ [1, 𝑘] and 𝑗 ∈ [1, 𝑘′]

∪(𝑛1, . . . , 𝑛𝑘 ) 𝑛′ ∪(𝜑 (𝑛𝑖 , 𝑛′)) for 𝑖 ∈ [1, 𝑘]
𝑓 (𝑛1, . . . , 𝑛𝑘 ) 𝑓

(
𝑛′1, . . . , 𝑛

′
𝑘

)
𝑓
(
𝜑 (𝑛𝑖 , 𝑛′𝑖 )

)
for 𝑖 ∈ [1, 𝑘]

𝑓 (𝑛1, . . . , 𝑛𝑘 ) 𝑔

(
𝑛′1, . . . , 𝑛

′
𝑘 ′

)
∅

{𝑝1, . . . , 𝑝𝑘 } 𝑛′ {𝑝𝑖 } for 𝑖 ∈ [1, 𝑘] and 𝑝𝑖 ∈ P(𝑛′)

For simplicity, this paper considers only acyclic VSAs that represent a finite set of programs. In
most program synthesis tasks, an infinite program space can be truncated into finite by setting up
a size/depth limit, which increases iteratively until a valid program is found.

We define the intersection of VSAs over the Cartesian product of their node sets, in the same
way as the previous studies [Polozov and Gulwani 2015]. Each node in the intersection corresponds
to a tuple of nodes from the individual VSAs and represents the programs shared by these nodes.
Below, we first define the intersection for two VSAs, and then generalize it to more VSAs.

Definition 3.2 (VSA Intersection). Given two VSAs 𝑉1 = ⟨𝑁1, 𝑟1⟩ and 𝑉2 = ⟨𝑁2, 𝑟2⟩, define their
intersection 𝑉1 ∩𝑉2 as a VSA ⟨𝑁, 𝑟 ⟩, where
• The node set 𝑁 is defined as the image of an injection 𝜑 from the Cartesian product of the
individual node sets, i.e., 𝑁1×𝑁2. The definition of 𝜑 is shown in Tab. 3. It is naturally derived
from the invariant that P(𝜑 (𝑛1, 𝑛2)) = P(𝑛1) ∩ P(𝑛2), i.e., the node corresponding to pair
(𝑛1, 𝑛2) represents the set of programs shared between 𝑛1 and 𝑛2.
• The root 𝑟 is defined as 𝜑 (𝑟1, 𝑟2), the node corresponding to the pair of the individual roots.

Given a set of VSAs V, define their intersection
⋂

𝑉 ∈V𝑉 as
(⋂

𝑉 ∈V/{𝑉 ′ } 𝑉
)
∩𝑉 ′ for an arbitrary

𝑉 ′ in V, i.e., the result of first taking the intersection for the set except one last VSA and then
intersecting the result with the last one. Note that the order of intersection is not important here —
the resulting VSA is always isomorphic, whatever the choice of 𝑉 ′ is.

Theorem 3.3 (Soundness of VSA Intersection). For any set of VSAs V, their intersection repre-
sents the set of programs shared among all individual VSAs, or formally, P (⋂𝑉 ∈V𝑉 ) =

⋂
𝑉 ∈VP(𝑉 ).

Although Def. 3.2 provides a sound construction, it covers the whole Cartesian product and
thus is unnecessarily large in most cases. For example, consider the three individual VSAs in our
motivating example (Fig. 2). Their Cartesian product comprises 5 × 5 × 2 = 50 node tuples, but only
5 among them contribute to the final intersection (Fig. 3b). To take out the necessary part in the
raw intersection, we further introduce the concept of the core of a VSA, which includes only those
nodes that contribute to representing at least one program of the root.
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Algorithm 1: the top-down algorithm.

Input: a set of VSAs V = {𝑉1, . . . ,𝑉𝑘 }.
Output: the core intersection of V.

1 𝑟 ← 𝜑 (𝑟1, . . . , 𝑟𝑘 ) where 𝑟𝑖 is the root of 𝑉𝑖 ;
2 𝑁 ← ∅;
3 traverse(𝑟 );
4 return core(⟨𝑁, 𝑟 ⟩);

5 Function traverse(𝑛):
6 if 𝑛 ∉ 𝑁 then
7 𝑁 ← 𝑁 .add(𝑛);
8 createChildren(𝑛);
9 traverse(𝑛′) foreach 𝑛′ as a child of 𝑛;

10 end

Definition 3.4 (VSA Core). Given a VSA 𝑉 = ⟨𝑁, 𝑟 ⟩, define the predicate contribute𝑉 (𝑛) for node
𝑛 ∈ 𝑁 as the minimal predicate satisfying the following constraints:

contribute𝑉 (𝑟 ) ∧ ∀𝑛.
(
contribute𝑉 (𝑛) →
∀𝑛′ as a child of 𝑛,

(
P(𝑛′) is not empty→ contribute𝑉 (𝑛′)

) )
Then, define the core of 𝑉 , denoted as core(𝑉 ), as the sub-VSA of 𝑉 that comprises only nodes

satisfying contributive𝑉 and the edges connecting between them.

In this paper, we use multi-way intersection to handle multiple examples in VSA-based synthesis,
where the key problem is to compute the core intersection for a set of given VSAs.

Definition 3.5 (Multi-Way Intersection Problem). Given a set V of VSAs, compute core(⋂𝑉 ∈V𝑉 ).

3.2 Top-Down Intersection

Polozov and Gulwani [2015] propose a top-down algorithm for intersecting VSAs2, as shown in
Algorithm 1. The algorithm starts with constructing the root node (Line 1, where 𝜑 is the injection
in Tab. 3) and then builds its descendants from the top down via function traverse (Lines 5-10).
Each time when visiting a new node, the algorithm constructs its children (Line 8) and deals with
each child recursively (Line 7). At last, a VSA is constructed using all visited nodes, and its core is
returned as the result (Line 4).
However, this algorithm is inefficient for multi-way intersection. It constructs all nodes that

are reachable from the root, but the number of such nodes faces a combinatorial explosion as the
number of VSAs increases. This issue is particularly significant when the synthesis task involves
some special operators, such as commutative and associative ones, as shown in the lemma below.

Lemma 3.6 (Case Study). Consider the following grammar that involves a constant 𝑐 , an input
variable 𝑥 , a commutative and associative operator ⊕, and a depth limit of ℎ.

𝑆𝑖 := 𝑆𝑖+1 ⊕ 𝑆𝑖+1 for 𝑖 ∈ [1, ℎ) 𝑆ℎ := 𝑐 | 𝑥

Let V be a set of VSAs on this grammar, each constructed for a given IO example. Then, the formula
below provides a lower-bound for the number of nodes constructed by the top-down algorithm when
intersecting V, where #jnode(𝑉 , 𝑖) denotes the number of join nodes related to 𝑆𝑖 .∑ℎ

𝑖=1
∏

𝑉 ∈V#jnode(𝑉 , 𝑖)

If we further assume the VSA nodes distribute uniformly at each level, this lower-bound will become
(2ℎ)1−|V |∏𝑉 ∈V |𝑉 |, which is close to the size of the Cartesian product.

2This algorithm is originally proposed for two VSAs, but can be naturally generalized to intersecting multiple ones.
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{c} {x} Sh

Sh-1

Fig. 5. A sample VSA in Lem. 3.6.

Fig. 6. The position of two join nodes at level 2.

Explanation. Here we provide an informal explanation for this lemma. The formal proofs in
this paper can be found in the supplementary material.
As mentioned in Sec. 2.1, the existing approach for constructing single-example VSAs works

by attaching a possible output to each non-terminal and adding edges according to the semantics
of operators. Hence, every VSA in this lemma must follow a ℎ-level structure, as shown in Fig. 5,
where each level corresponds to a non-terminal, each join node combines the nodes at a lower
level, and each union node merges those join nodes corresponding to the same output. The root at
level 1 corresponds to the expected output in the example, while the leaf nodes at level ℎ denote
the constant and the input variable.

Our lower-bound is derived from a key observation:
• when intersecting VSAs with the above structure, the top-down algorithm will construct a node
for every tuple of join nodes at the same level.

To see this point, let us consider the case with two VSAs, and further consider two arbitrary join
nodes (𝑛, 𝑛′) at level 2, as shown in Fig. 6. These two nodes must belong to the left branch of
some join nodes 𝑢/𝑢′ at level 1 because of the commutativity of ⊕. In more detail, 𝑛 belongs to the
VSA only when there is a valid program 𝑝1 ⊕ 𝑝2 where either 𝑝1 or 𝑝2 belongs to P(𝑛). For the
case of 𝑝1, 𝑛 will be on the left branch; otherwise, there must be another valid program 𝑝2 ⊕ 𝑝1
because 𝑣 is commutative, where 𝑣 appears at the left. Following the structure in the figure, the
top-down algorithm will construct nodes for pairs (𝑟, 𝑟 ′), (𝑢,𝑢′), (𝑣, 𝑣 ′), and finally (𝑛, 𝑛′) in order.
This analysis can be naturally generalized to more VSAs and other depths by induction. □

Although practical grammars are more complex, they use commutative and associative operators
everywhere, such as + in integer arithmetic, and/or in the Boolean domain, bvxor/bvmul in bit-
vector manipulation, and the index shifting operator in string processing. When intersecting VSAs
on these grammars, their sub-structure formed by commutative and associative operators will
still explode, as shown in Thm. 3.7. For example, suppose a commutative and associative operator
contributes 100 nodes at a fixed level in each VSA. Then, the top-down algorithm will construct at
least 1004 nodes when intersecting 4 such VSAs, causing a significant overhead.

Theorem 3.7. Let 𝐺 be any grammar involving commutative and associative operators, and let
V be a set of VSAs on this grammar, each constructed for a given IO example. Then, the following
formula provides a lower-bound for the number of constructed nodes when invoking the top-down

, Vol. 1, No. 1, Article . Publication date: August 2025.



Tunneling Through the Hill: Multi-Way Intersection for Version-Space Algebras in Program Synthesis 11

Algorithm 2: our bottom-up algorithm, where 𝜑 is the injection mapping a node tuple to a
node in the intersection (Tab. 3).

Input: a set of VSAs V = {𝑉1, . . . ,𝑉𝑘 }.
Output: the core intersection of V.

1 𝑁 ← {};
2 Function construct(𝑛1, . . . , 𝑛𝑘 ):
3 node← 𝜑 (𝑛𝑖 );
4 if node ∉ 𝑁 then 𝑁 ← 𝑁 .add(node);
5 foreach program 𝑝 represented by a leaf in 𝑉1 do
6 𝐿𝑖 ← the set of leafs in 𝑉𝑖 that represent 𝑝;
7 construct(𝑛) foreach 𝑛 ∈ 𝐿1 × · · · × 𝐿𝑘 ;
8 end
9 repeat buildUp(𝑁 ) until no new node is added;

10 addEdgeAmong(𝑁 );
11 𝑟 ← 𝜑 (𝑟𝑖 ) where 𝑟𝑖 is the root of 𝑉𝑖 ;
12 return core(⟨𝑁, 𝑟 ⟩);

13 Function buildUp(𝑁pre):
14 foreach operator 𝑓 do
15 𝐽𝑖 ← the set of 𝑓 -labeled join nodes in 𝑉𝑖 of

which every child is used by some node
tuple in 𝑁pre;

16 foreach 𝑛 ∈ combine(𝑓 , 𝐽𝑖 , 𝑁pre) do
17 construct(𝑛);
18 end
19 end
20 foreach 𝜑 (𝑛1, . . . , 𝑛𝑘 ) ∈ 𝑁pre do
21 𝑈𝑖 ← the set of union nodes in 𝑉𝑖 that uses

𝑛𝑖 as a child;
22 𝑈𝑖 ← {𝑛𝑖 } if 𝑈𝑖 is empty;
23 construct(𝑛′) foreach 𝑛′ ∈ 𝑈1 × · · · ×𝑈𝑘 ;
24 end

algorithm on V. ∑
⊕∈𝐺

∑
𝑖>0

∏
𝑉 ∈V#jnode(𝑉 , ⊕, 𝑖)

where ⊕ ranges over the commutative and associative operators in 𝐺 , and #jnode(𝑉 , ⊕, 𝑖) denotes the
number of join nodes in𝑉 reachable from the root by passing only union nodes and exactly 𝑖 ⊕-labeled
join nodes.

Please note that commutativity and associativity are not the only factors making the top-down
algorithm inefficient. Many other operators, such as if-then-else, can also cause an exponential
increase in the number of constructed nodes. Here we take commutative and associative operators
as an example because they are the most common in practice and also the simplest to analyze.

4 APPROACH

This section introduces our bottom-up intersection algorithm (Sec. 4.1 and Sec. 4.2), analyzes its
properties (Sec. 4.3), and at last introduces the full synthesis approach (Sec. 4.4).

4.1 Bottom-Up Intersection

The key idea of our bottom-up algorithm is to construct new nodes only from the lower non-empty
nodes, thus avoiding the unnecessary nodes that represent no program. Algorithm 2 shows the
pseudocode of our algorithm. It first constructs non-empty leaf nodes in the intersection (Lines
5-8), then iteratively builds non-empty join/union nodes via function buildUp (Lines 9 and 13-24),
and at last constructs the core intersection from all existing nodes (Lines 10-12).

Leaf nodes. For each program represented by a leaf node in 𝑉1 (Line 5), our algorithm collects all
other nodes representing this program (Line 6) and constructs the tuples formed by these nodes
(Line 7). Any such tuple must correspond to a non-empty node that at least represents program 𝑝 .

Join nodes. Given a set 𝑁pre of the existing nodes (Line 13) and an operator 𝑓 with the arity 𝑡 (Line
14), the first part of buildUp constructs all 𝑓 -labeled join nodes whose children all belong to 𝑁pre

, Vol. 1, No. 1, Article . Publication date: August 2025.



12 Guanlin Chen, Ruyi Ji, Shuhao Zhang, and Yingfei Xiong

Table 4. The node sets in Example 4.1.

Set Join Nodes
𝐽1 𝐴2 : 𝐴4 +𝐴5 𝐴3 : 𝐴5 +𝐴4
𝐽2 𝐵2 : 𝐵4 + 𝐵5 𝐵3 : 𝐵5 + 𝐵4
𝐽3 𝐶1 : 𝐶2 +𝐶2

Table 5. The node sets in Example 4.2.

Set Union Node
𝑈1 𝐴1 : ∪(𝐴2, 𝐴3)
𝑈2 𝐵1 : ∪(𝐵2, 𝐵3)
𝑈3 𝐶1 : 𝐶2 +𝐶2

(Lines 15-18). Formally, such nodes correspond to the node tuples in the following form.(
𝑛′1, . . . , 𝑛

′
𝑘

)
where ∀𝑖 ∈ [1, 𝑘], 𝑛′𝑖 is a join node 𝑓

(
𝑛′𝑖,1, . . . , 𝑛

′
𝑖,𝑡

)
∈ 𝑉𝑖

and ∀𝑗 ∈ [1, 𝑡], 𝜑
(
𝑛′1, 𝑗 , . . . , 𝑛

′
𝑘,𝑗

)
∈ 𝑁pre

To find such tuples, our algorithm collects all possible 𝑛′𝑖 into set 𝐽𝑖 (Line 15) and uses function
combine to combine these sets into node tuples that satisfy the above condition (Line 16). We will
introduce the implementation of combine later in Sec. 4.2.

Example 4.1 (Join). Consider the first invocation of buildUp in our motivating example (Fig. 4b),
where the input set 𝑁pre comprises the three non-empty leaf nodes, as shown below:{

𝜑 (𝐴4, 𝐵4,𝐶2), 𝜑 (𝐴4, 𝐵5,𝐶2), 𝜑 (𝐴5, 𝐵4,𝐶2)
}

When operator + is picked at Line 14 to construct new join nodes, node sets 𝐽𝑖 will include the
nodes listed in Tab. 4, and the corresponding result of combine will be {(𝐴2, 𝐵3,𝐶1), (𝐴3, 𝐵2,𝐶1)}.

Union nodes. Then, the second part of buildUp constructs the union nodes that have a child in
𝑁pre (Lines 20-24). Such nodes correspond to the node tuples in the following form.(

𝑛′1, . . . , 𝑛
′
𝑘

)
where ∀𝑖 ∈ [1, 𝑘], 𝑛′𝑖 is a union node in 𝑉𝑖

and ∃𝜑 (𝑛1, . . . , 𝑛𝑘 ) ∈ 𝑁pre,∀𝑖 ∈ [1, 𝑘], 𝑛𝑖 is a child of 𝑛′𝑖
To find such tuples, our algorithm first picks a node tuple (𝑛1, . . . , 𝑛𝑘 ) from 𝑁pre (Line 20), then
collects all possible 𝑛′𝑖 into set 𝑈𝑖 (Line 21), and constructs the entire Cartesian product of these
sets (Line 23). Specially, node 𝑛𝑖 will be added to𝑈𝑖 when it has no union parent (Line 22), as each
node can be regarded as a union node comprising itself.

Example 4.2 (Union). In our motivating example (Fig. 4b), when node 𝜑 (𝐴2, 𝐵3,𝐶1) is picked at
Line 20 to construct new union nodes, node sets𝑈𝑖 will include the nodes listed in Tab. 5, where𝐶1
appears in𝑈3 because it does not have any union parent. From these sets, our algorithm will find
node 𝜑 (𝐴1, 𝐵1,𝐶1), the root of the intersected VSA3.

Data structures. Note that Algorithm 2 shows only the key idea of our bottom-up algorithm. Its
efficiency also relies on several data structures not yet mentioned, for example, to maintain the
node set 𝑁 (Lines 4) and to construct the sets 𝐽𝑖 and𝑈𝑖 (Lines 15 and 21). These details are omitted
here for simplicity, and can be found in Appendix B.

4.2 Trie-Based Combination

Now we go into the details of the function combine (Line 16) for constructing the join nodes.
• The input of combine includes an operator 𝑓 , several node sets 𝐽1, . . . , 𝐽𝑘 , each comprising
some 𝑓 -labeled join nodes in an input VSA, and a set 𝑁 of nodes in the intersection.

3The reader may notice that our algorithm does not construct all non-empty union nodes. For example, node 𝜑 (𝐴2, 𝐵1,𝐶1 )
is a parent of 𝜑 (𝐴2, 𝐵2,𝐶1 ) by Def. 3.2 and represents programs 𝑥 + 𝑦 and 𝑦 + 𝑥 , but it is skipped. The details and the
soundness of this optimization can be found in Appendix B.
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Fig. 7. A trie built for keys (𝐴4, 𝐵4,𝐶2),
(𝐴4, 𝐵5,𝐶2), and (𝐴4, 𝐵5,𝐶2), where we

use blue to mark tokens and keys, and use

violet to assign indices for some nodes.

Algorithm 3: function combine.
Input: operator 𝑓 , node sets 𝐽1, . . . , 𝐽𝑘 , 𝑁 .
Output: the set of valid node tuples.

1 root← buildTrie(𝑁 ); res← ∅;
2 Function search(𝑚,𝑛,𝑢1, . . . , 𝑢𝑡 ):
3 if 𝑚 = 𝑘 then res← res.add(𝑛);
4 else foreach 𝑛𝑚+1 ∈ 𝐽𝑚+1 do
5 𝑛𝑚+1,1, . . . , 𝑛𝑚+1,𝑡 ← children of 𝑛𝑚+1;
6 𝑢′

𝑗
← moveDown(𝑢 𝑗 , 𝑛𝑚+1, 𝑗 ) for 𝑗 ∈ [1, 𝑡];

7 if no 𝑢′
𝑗
is null then

8 search(𝑚 + 1, 𝑛.add(𝑛𝑚+1), 𝑢′1, . . . , 𝑢
′
𝑡 );

9 end
10 end
11 search(0, (), root, . . . , root);
12 return res;

• Its goal is to search among the Cartesian product of 𝐽𝑖 and return those node tuples whose
children all belong to 𝑁 . Formally, it needs to return all tuples (𝑛1, . . . , 𝑛𝑘 ) in 𝐽1 × · · · × 𝐽𝑘
satisfying the following condition, where 𝑡 denotes the arity of 𝑓 .

∀𝑗 ∈ [1, 𝑡], 𝜑
(
𝑛1, 𝑗 , . . . , 𝑛𝑘,𝑗

)
∈ 𝑁 where ∀𝑖 ∈ [1, 𝑘], 𝑓

(
𝑛𝑖,1, . . . , 𝑛𝑖,𝑡

)
= 𝑛𝑖 (1)

A direct implementation of this function is to build the entire Cartesian product and then filter out
the valid tuples using the condition. This implementation, however, is inefficient because the size
of the Cartesian product is typically much larger than the number of valid tuples, resulting in a
significant waste on processing invalid tuples. To address this issue, our implementation employs
the trie data structure [Briandais 1959] to skip the invalid tuples early.

A trie is a search tree built for a set of keys, each is a sequence of tokens. As illustrated in Fig. 7,
each trie edge is labeled with a token, and each trie node represents the sequence of tokens on the
path from the root to it. Given a set of keys, the corresponding trie comprises only the nodes that
represent the keys and their ancestors. Hence, there is a one-to-one correspondence between the
trie nodes and all prefixes of the keys.

Switching back to the function combine, suppose the first𝑚 nodes 𝑛1, . . . , 𝑛𝑚 have been picked
from the first𝑚 sets, while the last 𝑘 −𝑚 nodes are still undecided. At this time, the assignments
to 𝑛𝑖, 𝑗 in Eq. 1 are fixed for 𝑖 ∈ [1,𝑚] and 𝑗 ∈ [1, 𝑡], so the condition cannot be true if there is an
index 𝑗 such that (𝑛1, 𝑗 , . . . , 𝑛𝑚,𝑗 ) is not a prefix of any tuple in 𝑁 . In other words, the following
formula is a sufficient condition for ¬Eq. 1.

∃ 𝑗 ∈ [1, 𝑡],∀𝜑 (𝑛′) ∈ 𝑁,
(
𝑛1, 𝑗 , . . . , 𝑛𝑚,𝑗

)
is not a prefix of 𝑛′ (2)

Our implementation of combine uses this formula as a pruning condition and builds a trie to
perform the prefix check, as shown in Algorithm 3. It builds a trie for node tuples in 𝑁 (Line 1) and
searches among the Cartesian product via function search (Lines 2-11). In the input of search,𝑚
denotes the number of nodes that have been decided, 𝑛 stores the assignments to the first𝑚 nodes,
and 𝑢 𝑗 for 𝑗 ∈ [1, 𝑡] denotes the trie node corresponding to sequence (𝑛1, 𝑗 , . . . , 𝑛𝑚,𝑗 ).
Initially, all nodes are unknown; so𝑚 is 0, 𝑛 is an empty tuple, and 𝑢𝑖 are all the root node of

the trie (Line 11). Then, in each step, search picks a node from the next node set 𝐽𝑚+1 (Line 4) and
updates the trie nodes via function moveDown (Lines 6-7). This function returns the child of 𝑢 𝑗

that is linked with label 𝑛𝑚+1, 𝑗 , and will return an error token null if such a child does not exist.
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After the update, function search will skip the current search branch if any of the new trie nodes is
null (Line 7) since the pruning condition Eq. 2 is satisfied. Otherwise, it will move to enumerate the
next node recursively (Line 8).

Example 4.3. In Example 4.1, function combine is invoked with 𝑓 as +, set 𝐽𝑖 as listed in Tab. 4,
and set 𝑁 comprising 𝜑 (𝐴4, 𝐵4,𝐶2), 𝜑 (𝐴4, 𝐵5,𝐶2), and 𝜑 (𝐴5, 𝐵4,𝐶2). At this time, the trie is shown
as Fig. 7, and one search trace of search is as follows.
(1) The initial invocation at Line 11 is search(0, (), 𝑣1, 𝑣1).
(2) Node 𝐴2 : 𝐴4 +𝐴5 is picked from 𝐽1. Then, the first trie node is moved from 𝑣1 to 𝑣2 through

label 𝐴4, and the second is moved from 𝑣1 to 𝑣3 through label 𝐴5; so the next invocation is
search(1, (𝐴2), 𝑣2, 𝑣3).

(3) Node 𝐵2 : 𝐵4 + 𝐵5 is picked from 𝐽2. Then, the first trie node is moved from 𝑣2 to 𝑣4 through
label 𝐵4, and the second node 𝑣3 becomes null because 𝑣3 has no outgoing edge labeled with
𝐵5. Hence, search will ignore this branch and thus skip the invalid tuple (𝐴2, 𝐵2,𝐶2).

4.3 Properties

4.3.1 Soundness. Our algorithm can correctly construct the core intersection of VSAs (Thm. 4.4).

Theorem 4.4 (Soundness). Given a set V of VSAs, the output of Algorithm 2 must be equal to the
core intersection core(⋂𝑉 ∈V𝑉 ).

4.3.2 Efficiency. Before an empirical evaluation, we first study the efficiency of our algorithm by
theoretically comparing it with existing methods.
Comparing with the top-down algorithm. Continuing with the case study in Lem. 3.6, we
prove that our algorithm can efficiently handle commutative and associative operators (Lem. 4.5).
Under the same setting as Lem. 3.6, the number of nodes constructed by our algorithm is always
polynomial in the depth ℎ and the size of programs; this number is significantly smaller than the
exponential counterpart of the top-down algorithm, especially when given many VSAs.

Lemma 4.5 (Case Study). Consider the grammar in Lem. 3.6, repeated as follows, where 𝑐 is a
constant, 𝑥 is the input variable, ⊕ is a commutative and associative operator, and ℎ is a depth limit.

𝑆𝑖 := 𝑆𝑖+1 ⊕ 𝑆𝑖+1 for 𝑖 ∈ [1, ℎ) 𝑆ℎ := 𝑐 | 𝑥

Let V be a set of VSAs on this grammar, each constructed from a given IO example, and let 𝑝∗ be the
largest program represented by any VSA in V. Then, Algorithm 2 will construct at most ℎ · size2 (𝑝∗)
nodes when intersecting the VSAs in V.

Comparing with observational equivalence. Another method worth comparing is observational
equivalence (OE) [Udupa et al. 2013], a pruning strategy for avoiding duplicated programs in bottom-
up enumeration. It will evaluate each visited program on the example set, record the outputs, and
skip all programs whose outputs are duplicated. This method is popular because of its generality —
it relies only on operator-level semantics, hence can be applied to most synthesis problems.
In this sense, whether there is a general synthesizer that is more efficient than OE becomes an

interesting question and has not been answered before; for example, although VSA-based synthesis
has achieved the same level of generality and better practical performance in several domains [Wang
et al. 2017], this advantage is not guaranteed because of the inefficient intersection (i.e., Lem. 3.6).

We prove that our intersection algorithm has bridged this last gap. As shown in Thm. 4.6, when
exploring the same program space, the number of VSA nodes constructed by our algorithm is
always no larger than the number of programs constructed by OE, within a constant factor.
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Fig. 8. The comparison of using different numbers

of examples in multi-way intersection, where 3 in-

dividual VSAs are used. In this figure, 𝑛𝑒 denotes

the number of examples in multi-way intersec-

tion, the dotted line denotes the resource limit,

triangles denote the size of individual VSAs, and

arrows denote the process of intersecting VSAs.

Algorithm 4: Our PBE solver.
Input: A PBE task𝑇 with examples {𝑒1, . . . , 𝑒𝑚},

a VSA builder B for single-example
VSAs, and a parameter 𝑛𝑣 .

Output: A program satisfying all examples.
1 𝑉𝑖 ← B(𝑇, 𝑒𝑖 ) for 𝑖 ∈ [1, 𝑛𝑣];
2 𝑛𝑒 ← 𝑛𝑣 ;
3 while ¬isEnough(𝑇,𝑉1, . . . ,𝑉𝑛𝑣

) do
4 foreach 𝑖 ∈ [1, 𝑛𝑣] do
5 𝑉𝑖 ← intersect(𝑉𝑖 ,B(𝑇, 𝑒𝑛𝑒+𝑖 ));
6 end
7 𝑛𝑒 ← 𝑛𝑒 + 𝑛𝑣 ;
8 end
9 𝑉 ← multiIntersect(𝑉1, . . . ,𝑉𝑛𝑣

);
10 foreach 𝑖 ∈ [𝑛𝑒 + 1,𝑚] do
11 𝑉 ← intersect(𝑉 , buildVSA(𝑇, 𝑒𝑖 ));
12 end
13 return any program in 𝑉 ;

Theorem 4.6 (Worst-Case Efficiency). The following inequality always hold for any finite
program space 𝑃 and any example set 𝐸.

costOurs (V) ≤ 2costOE (𝑃, 𝐸)
where
• V is the set of single-example VSAs constructed over program space 𝑃 and example set 𝐸.
• costOurs (V) denotes the number of VSA nodes constructed by our bottom-up algorithm when
intersecting the VSAs in V.
• costOE (𝑃, 𝐸) denotes the number of programs constructed by OE after traversing the whole
program space 𝑃 with the example set 𝐸.

Explanation. Recall that our bottom-up algorithm constructs only non-empty VSA nodes. Let
𝑣 be an node it constructs, and let 𝑝 be a program represented by 𝑣 . Since 𝑝 is in the program
space 𝑃 , OE must have recorded the outputs of 𝑝 after traversing the whole space; hence 𝑣 can
be connected to a program 𝑝′ constructed by OE whose outputs are the same as 𝑝 . By properly
deciding the choice of 𝑝′, we prove that this connection can form an at most 2-to-1 mapping from
the VSA nodes to the constructed programs, thus obtaining the target theorem. □

Note that the above theorem illustrates only the worst case. In practice, our algorithm typically
constructs fewer nodes, thus letting VSA-based synthesis outperform OE significantly. Details on
this comparison can be found in Sec. 5.3.

4.4 Multi-Way Interaction for Programming by Example

At the end of this section, we discuss how to integrate the multi-way intersection efficiently into a
PBE solver. Our straightforward approach, as in Thm. 4.6, is to construct an individual VSA for
each IO example and intersect these VSAs at once.
Grouping strategy. However, this approach can be unnecessarily inefficient when the number of
examples is large, because it exposes too many VSAs to the intersection algorithm. Specifically,
although our algorithm is optimized for multi-way intersection, its overhead will still increase
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when its input comprises more VSAs; for example, the combine function (Algorithm 3) searches
among the Cartesian product of several node sets, each from a VSA, so this search space can still
be large when intersecting too many VSAs.
To address this issue, we propose a grouping strategy to limit the number of VSAs. Given a

pre-defined parameter 𝑛𝑣 and a set of IO examples, this strategy first divides the examples into
several groups, constructs an individual VSA for each group, and then intersects all these VSAs
simultaneously; in this way, no matter how many examples there are, the intersection algorithm
needs only to process 𝑛𝑣 VSAs, with limited overhead.

Adaptive grouping. But on the other hand, the grouping strategy introduces a new issue: the
individual VSA of a group can grow too large when there are many examples but 𝑛𝑣 is too small.
This is illustrated by the purple line in Fig. 8, where the individual VSAs appear at the peak; their
scale exceeds the resource limit, and their construction becomes a new bottleneck.
To avoid such an extreme case, we propose to adaptively decide the scope of multi-way inter-

section, as shown in Algorithm 4. Our solver starts by initializing each individual VSA with only
one example (Line 1) and then enlarges these VSAs iteratively, each time adding one example
(Lines 4-6), until a termination condition is satisfied (Line 3). After intersecting these VSAs via our
bottom-up algorithm (Line 9), our solver incorporates the remaining examples (Line 10-12) and
returns a program in the final VSA as the result (Line 11).

Termination condition. In this algorithm, the termination condition isEnough (Line 3) is crucial
to the overall performance. As shown by the yellow line in Fig. 8, if this condition adds too few
examples to multi-way intersection, the intersected VSA will lie before the peak, then the largest
VSA will still be constructed when processing the remaining examples; on the other hand, if it
adds too many examples, the individual VSAs will be large, leading to the same problem as the
straightforward grouping strategy. Ideally, the number of examples should be the smallest value to
let the intersected VSA appear at the right foot of the hill.
To achieve this ideal case, our isEnough estimates the number of programs in the intersection

and returns true once this number falls below a pre-defined threshold, since a VSA comprising few
programs must be small. The estimation is defined as follows, where 𝑃 denotes the program space.

|𝑃 | ·
𝑛𝑣∏
𝑖=1

𝑟𝑖 where 𝑟𝑖 :=
P(𝑉𝑖 )
|𝑃 |

In this estimation, we first compute the ratio 𝑟𝑖 of programs in 𝑃 that are included in the 𝑖th VSA𝑉𝑖
— it denotes the probability for a random program to be in 𝑉𝑖 . Then, we naively assume that these
probabilities are independent for different VSAs, under which the expected number of programs
remaining in the intersection will be the product of all these probabilities and the size of 𝑃 , as
shown in the left formula above.

Note that this estimation is not for precisely counting the programs in the intersection; instead,
it is designed to efficiently compute a rough number, so that our solver can, with a low overhead,
find a good point for performing multi-way intersection. The bias in the estimation mainly comes
from the independence assumption. In practice, IO examples are mostly dependent, leading to
complicated dependencies among VSAs; for example, if an IO example is generated specifically
to exclude incorrect programs that satisfy all previous examples, its VSA will be more effective
at excluding programs in previous VSAs than a random program in the whole program space. It
is possible to design a better estimation to account for such dependencies in the future; however,
such an estimation is not the main focus of this paper, and could be overly complicated for our
synthesizer, e.g., too complex to be computed efficiently.
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5 EVALUATION

We implemented our approach (Algorithm 4) into a tool named Mole, which can be integrated
into any existing VSA-based synthesizers [Polozov and Gulwani 2015; Wang et al. 2017, 2018]. To
evaluate its effectiveness, we design experiments to answer the following research questions.

• RQ1: How does Mole perform in a general VSA-based synthesizer?
• RQ2: How does Mole perform in a specialized VSA-based synthesizer?
• RQ3: How does each component of Mole contribute to its performance?

5.1 Implementation

Our implementations are all in C++ and can be found in the supplementary materials.

Synthesizers. We also implement two VSA-based synthesizers by integrating Mole into existing
synthesizers, following Algorithm 4.

The first synthesizer is based on finite-tree automata (FTA) [Wang et al. 2017], named MoleFTA.
Given an input-output example, MoleFTA first grows an FTA as the existing synthesizers [Wang
et al. 2017]; then, since this paper considers only finite program spaces, the resulting FTA must
be acyclic, so it can be converted into a VSA via the mapping constructed by Koppel [2021]. This
synthesizer is general because it requires only the forward interpretation of the operators, hence
can be applied to any SyGuS problem [Alur et al. 2013] without further customization.
The second synthesizer is based on Blaze [Wang et al. 2018], named MoleBlaze, which builds

VSAs with abstract values rather than concrete ones to reduce the cost. Compared with the general
synthesizer, Blaze requires an additional universe of predicates to define the abstract space, hence
is specialized; on the other hand, it can be much more efficient if a proper abstract space exists, for
example, Blaze is still a SOTA synthesizer over a special program space in the string domain. We
implement MoleBlaze for the string domain under the same setting as Blaze, i.e., using the same
program space and the same universe of predicates.

Parameters. Our approach (Algorithm 4) relies on two parameters, 𝑛𝑣 denotes the number of
input VSAs for multi-way intersection and 𝑛lim in function isEnough denotes the threshold on the
number of remaining programs. By default, we set 𝑛𝑣 to 3 according to the result of a small-scale
experiment, and set 𝑛lim to 105 because a VSA with no more than 105 programs is usually small
enough for a quick process.

5.2 Experimental Setup

Baseline solvers. We compare MoleFTA and MoleBlaze with their SOTA counterparts.

• For the general synthesizer MoleFTA, we consider the standard VSA-based synthesizer
(RawVSA) and observational equivalence (OE). RawVSA constructs single-example VSAs via
FTA [Wang et al. 2017] and uses the previous top-down algorithm for intersection [Polozov
and Gulwani 2015]; OE enumerates programs from small to large and skips all programs that
have duplicated outputs on the example set [Udupa et al. 2013].
• For the specialized synthesizer MoleBlaze, we consider its original synthesizer Blaze, the
SOTA on the program space supported by MoleBlaze. Blaze uses its VSA builder to build a
VSA for all examples at once.

Dataset. We consider three synthesis domains in SyGuS-Comp [Alur et al. 2019], integer arithmetic,
cryptographic circuits, and string manipulation. Tab. 6 lists the profile of the datasets we used in our
evaluation — they are collected in the following way.
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Table 6. The profile of the datasets in our evaluation.

Name #Tasks Domain #Operators
D𝐼 100 Integer Arithmetic 10
D𝐶 581 Cryptographic Circuits 4
D𝑆 205 String Manipulation 16

DBlaze 108 3

Table 7. The results of comparing MoleFTA with baselines.

Dataset Solver #Solved
Time Cost (sec) #VSA Nodes

MeanB MeanO RatioA RatioH MeanB MeanO RatioA

D𝐼

MoleFTA 41 0.77 3952
RawVSA 24 0.20 0.10 × 2.09 × 5.51 8393 1028 × 8.17

OE 21 0.98 0.10 × 9.60 × 72.07 NA

D𝐶

MoleFTA 579 0.09 4074
RawVSA 505 0.39 0.05 × 7.36 × 34.00 39749 2784 × 14.28

OE 482 0.61 0.11 × 5.72 × 34.27 NA

D𝑆

MoleFTA 146 0.34 178
RawVSA 140 0.30 0.30 × 1.00 × 1.01 566 150 × 3.78

OE 152 0.32 0.34 × 0.93 × 1.09 NA

• For integer arithmetic,D𝐼 is the dataset constructed by Ji et al. [2021]. It augments the dataset
in SyGuS-Comp with 18 tasks extracting from the synthesis tasks of divide-and-conquer
algorithms [Farzan and Nicolet 2017].
• For cryptographic circuits, D𝐶 is exactly the same as the dataset in SyGuS-Comp.
• For string manipulation, we use two datasets: D𝑆 is the dataset in SyGuS-Comp, and DBlaze
is created by Wang et al. [2018] for evaluating Blaze, which comprises only operators and
problems supported by the predicate space of Blaze.

Since this paper focuses only on finite program spaces and finite example sets, we simplify some
tasks in these datasets as follows.

• For a task with an infinite program space, we will truncate the space according to the size of
the expected program. In practice, this truncation can be performed adaptively by iteratively
enlarging a size limit, until a valid program is found.
• For a task with an infinite example set (e.g., when the specification is given as an SMT
formula), we will randomly generate 100 IO examples and replace the original set with the
finite list of these random examples.

Others. Our experiments are conducted on Intel(R) Xeon(R) Platinum 8369HC 8-Core CPU, with a
timeout of 10 minutes and a memory limit of 4GB per task.

5.3 RQ1: Effect in General VSA-Based Synthesis

Setup. We compare MoleFTA with RawVSA and OE on three datasets DI, DC and DS.

Results. The results are summarized in Tab. 7, organized as follows.

• For each dataset and each solver, column “#Solved” reports the number of solved tasks.
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(a) D𝐼 (b) D𝐶 (c) D𝑆

Fig. 9. Number of tasks solved by MoleFTA and each baseline solver over time on each dataset.

• For each dataset, column “Time Cost” reports the average4 time cost (in seconds) of each
approach and the average acceleration ratio achieved by MoleFTA. We consider only tasks
solved by both solvers when computing the averages and ratios. Column “MeanB” reports
the average time cost of the baseline approach, while column “MeanO” reports the average
time cost of our approach. Column “MeanA” reports the average acceleration ratio achieved
by MoleFTA in comparison with the baseline approach on tasks solved by both approaches,
while column “MeanH” further considers only tasks that take at least one solver more than 1
second.
• For each dataset, column “#VSANodes” reports the average number of VSA nodes constructed
by each approach, and the average saving on this number achieved by MoleFTA. We consider
only tasks solved by both approaches in this comparison.

Fig. 9 further shows the number of tasks solved by MoleFTA, RawVSA, and OE over time.
These results demonstrate the effectiveness of MoleFTA. It significantly outperforms RawVSA

and OE on D𝐼 and D𝐶 , by solving more tasks, using less time, and constructing fewer VSA nodes
than RawVSA. Such an advantage comes from multiple aspects:
• Compared with RawVSA, MoleFTA avoids huge intermediate VSAs via multi-way intersec-
tion, and avoids wasting time on empty nodes via the bottom-up algorithms.
• Compared with OE, MoleFTA ensures its VSA nodes are nomore than the number of programs
enumerated by OE (Thm. 4.6); moreover, this number is typically much smaller because
MoleFTA will skip those programs that are not included in any VSAs.

In contrast to these two datasets, the advantage of Mole is much less significant on D𝑆 . This
is because our approach is designed only for the intersection of multiple VSAs, so its advantage
can emerge only for tasks requiring multiple examples. In contrast, the IO examples in the string
domain are too informative, so that for most tasks in D𝑆 , the program space will be small enough
even with only a single example; Mole cannot provide any improvement for RawVSA on such
tasks because VSA intersection is no longer the bottleneck.

The same reason also explains why the advantage of Mole tends to be more significant on more
challenging tasks (Fig. 9). Such tasks usually require more examples, providing greater room for
our method to improve.

5.4 RQ2: Effect in Specialized VSA-Based Synthesis

Setup. We compare MoleBlaze with Blaze on its dataset DBlaze.
Result. Tab. 8 summarizes the results of this experiment, organized in the same way as Tab. 7.
These results show the success of Mole in improving Blaze —Mole further increases the efficiency
4We always take the geometric mean when computing the average of multiple results.
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Table 8. The results of comparing MoleBlaze with Blaze.

Dataset Solver #Solved
Time Cost (sec) #VSA Nodes

MeanB MeanO RatioA RatioH MeanB MeanO RatioB

DBlaze
MoleBlaze 88 0.02 1466
Blaze 86 0.06 0.02 × 2.48 × 1.80 3068 1207 × 2.54

Table 9. The results of comparing MoleFTA with different variants.

Dataset Experiment Solver #Solved Time Cost (sec) #VSA Nodes
MeanB MeanO RatioA RatioH MeanB MeanO RatioB

D𝐶

MoleFTA 579 0.09 4074
Sec. 5.5.1 MoleTop-Down 241 0.03 0.01 × 2.92 × 63.24 3120 624 × 5.00
Sec. 5.5.2 Mole Iter 579 0.19 0.09 × 2.13 × 3.28 6991 4074 × 1.72
Sec. 5.5.3 MoleCart 228 0.16 0.03 × 4.79 × 40.07 9971 1642 × 6.07

Sec. 5.5.4 MoleAll-Once 574 0.38 0.09 × 4.39 × 12.29 11039 3942 × 2.80
MoleAll-Group 579 0.47 0.09 × 5.17 × 8.60 13227 4074 × 3.25

Sec. 5.5.5 Mole2 579 0.09 0.09 × 1.02 × 1.20 4074 4074 × 1.00
Mole4 579 0.09 0.09 × 1.02 × 0.98 4624 4074 × 1.13

and significantly reduces the number of constructed VSA nodes. More generally, such results
demonstrate the potential for Mole to improve existing synthesizers. Since existing studies on
VSA-based synthesis have primarily focused on the construction of single-example VSAs, Mole
offers an orthogonal approach that could provide even more significant speedups when combined
with the previous techniques.

5.5 RQ3: Ablation study of each component of Mole

Setup. In this experiment, we conduct ablation studies on different components of Mole. Specifi-
cally, we study the effectiveness of our bottom-up intersection algorithm (Algorithm 2), multi-way
intersection, trie-based combination (Algorithm 3), and the grouping strategy (Algorithm 4). Besides,
we also study the effects of the parameter 𝑛𝑣 , the number of VSAs in multi-way intersection.

For simplicity, we consider only one datasetD𝐶 in the experiment. We chose this dataset because
it comprises the most tasks and the advantage of MoleFTA is most clear; so we expect it to provide
the most significant results for the ablation study.

5.5.1 Bottom-up intersection. We consider a variant of MoleFTA, denoted as MoleTop-Down, where
the existing top-down algorithm (Algorithm 1) is used to perform all VSA intersection, in place of
our bottom-up algorithm.
Result. Tab. 9 summarizes the results of this experiment, organized in the same way as the
previous experiments. These results show the effectiveness of our bottom-up algorithm, as the
default MoleFTA significantly outperforms the variant using the top-down algorithm.

Note that MoleTop-Down performs even worse than the baseline solver RawVSA (Tab. 7), which
iteratively intersects VSAs via the top-down algorithm. This result matches our theoretical analysis
in Sec. 3.2 — the top-down algorithm is inefficient when intersecting multiple VSAs, making the
multi-way intersection even worse than the direct iterative approach.

5.5.2 Multi-way intersection. We consider another variant, denoted as Mole Iter, which uses our
bottom-up intersection algorithm to perform iterative intersection.
Result. The results are listed in Tab. 9. They show the effectiveness of our multi-way intersection
algorithm, as the default MoleFTA outperforms the variant using iterative intersection.
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5.5.3 Trie-based combination. We consider a variant, denoted as MoleCart, which builds the entire
Cartesian product instead of our trie-based combination (Algorithm 3).
Result. The results are summarized in Tab. 9. They demonstrate the effectiveness of our trie-based
combination, which reduces the cost in processing invalid tuples when constructing the join nodes.

5.5.4 Grouping strategy. We consider two variants of MoleFTA.
• MoleAll-Once sets the grouping parameter 𝑛𝑣 to the number of provided examples, instead of
3. That is, each group contains only one example.
• MoleAll-Group disables the grouping termination condition function isEnough (Line 3 of
Algorithm 4), and uses all provided examples for the grouping intersection process (Line 3-8
of Algorithm 4).

Result. The results are listed in Tab. 9. They show the effectiveness of our grouping strategy, as
the default MoleFTA outperforms each variant. This matches our analysis in Sec. 4.4 that a suitable
grouping strategy is required for the best performance.

5.5.5 Parameter selection. We consider two variants of MoleFTA, denoted as Mole2 and Mole4,
with the parameter 𝑛𝑣 in multi-way intersection set to 2 and 4 respectively instead of the default 3. .
Result. The results are listed in Tab. 9. They demonstrate that Mole is robust regarding the choice
of 𝑛𝑣 , since all three choices of 𝑛𝑣 yielded similar performance.

6 RELATEDWORK

VSA-based synthesis. VSA has achieved great success in program synthesis [Dong et al. 2022;
Gulwani 2011; Li et al. 2024; Padhi et al. 2018; Polozov and Gulwani 2015; Wang 2019; Wang
et al. 2017]. A VSA-based synthesizer typically comprises two components, one for constructing
single-example VSAs and the other for intersecting these VSAs.
There are two major methods for constructing single-example VSAs, one works from the top

down via witness functions [Polozov and Gulwani 2015], and the other works from the bottom up
via FTA [Wang 2019]. On top of the FTA-based method, Blaze [Wang et al. 2018] applies abstraction
refinements to further reduce the scale of the resulting VSA. The contribution of this paper is
orthogonal to these methods, and our approach Mole can be combined with any of them.
As for VSA intersection, the previous method uses a top-down algorithm for two VSAs and

handles more by iteratively intersecting them one by one [Polozov and Gulwani 2016]. This method
is inefficient when processing many VSAs, and this paper addresses this issue by proposing the
scheme of multi-way intersection and the bottom-up algorithm for intersecting VSAs.

There are also theoretical results on the hardness of VSA intersection. Kozen [1977] shows this
problem is PSPACE-complete, and Karakostas et al. [2003] further prove that there is no algorithm
better than building the entire Cartesian product, unless two complexity classes NL and P are
different5. However, these results do not conflict with our progress in designing an empirically
efficient algorithm because they rely on extreme cases that can hardly appear in practice.
Besides, this paper considers only context-free programs spaces, following the SyGuS frame-

work [Alur et al. 2013], while there has been recent work applying VSA-based synthesis to context-
sensitive domains, such as recursions [Miltner et al. 2022] and programs with local variables [Li
et al. 2024]. It is future work to extend our approach to these domains.
Programming by example. Besides VSA-based approaches, there have been numerous other
synthesizers proposed for various scenarios [Alur et al. 2015; Ding and Qiu 2024; Jha et al. 2010; Ji

5Whether NL is equal to P is still an open problem after decades of research.
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et al. 2021; Lee 2021; Lee et al. 2018; Reynolds et al. 2019; Udupa et al. 2013]. They make trade-offs
between keeping general and improving efficient via special domain properties.

Among these synthesizers, observational equivalence (OE) [Udupa et al. 2013] achieves the highest
level of generality. It relies only on the interpreter of operators, hence can be applied to most
synthesis domains. In this paper, our approach Mole is designed keep the same level of generality.
We prove that Mole performs no worse than OE theoretically, and our evaluation results show
that Mole is significantly more efficient than OE.
The other synthesizers either require more inputs or utilize domain properties to improve the

efficiency, such as using efficient witness functions [Cambronero et al. 2023; Lee 2021], relying on
constraint solvers [Jha et al. 2010; Ji et al. 2021; Reynolds et al. 2019], applying abstractions [Yoon
et al. 2023], incorporating specialized optimizations for certain operators [Alur et al. 2015, 2017;
Ding and Qiu 2024], and combining with probabilistic models [Balog et al. 2017; Ji et al. 2020; Lee
et al. 2018]. Our general synthesizer MoleFTA can hardly outperform these synthesizers. This is
not surprising because, in theory, general optimizations should not be more effective than domain-
specific optimizations. For example, STUN solvers [Alur et al. 2015] focus on programs with nested
if-then-else operators and can leverage their structures to decompose the whole task into subtasks
of synthesizing if-terms and if-conditions, thus reducing the search space exponentially with almost
no cost; instead, MoleFTA still needs to construct and intersect VSAs over the whole program space
— its improvement in this process can hardly offset the advantage of STUN.

7 DISCUSSION AND CONCLUSION

This paper aims to accelerate VSA-based synthesis when processing many examples. Given an
example set, existing VSA-based synthesizers first construct a VSA for each example and then
iteratively intersect these VSAs one by one. The bottleneck here is on the second step — the iterative
intersection often produces giant intermediate VSAs, leading to an unacceptable time cost.
To improve this point, we propose the scheme of multi-way intersection. This scheme relies on

an efficient algorithm for intersecting multiple VSAs and avoids the giant intermediate VSAs by
intersectingmany small VSAs at once, directly into the final one. However, the existing algorithm for
VSA intersection is not efficient, because it often constructs an exponential number of unnecessary
nodes when the number of input VSAs increases. Hence, we further propose a novel bottom-up
intersection algorithm and design a trie-based search algorithm to accelerate its procedure.
We analyze our algorithm in theory and prove its advantage compared with the previous

intersection algorithm and a popular synthesis technique namely observational equivalence. On
the other hand, we implement our approach into a PBE solver namely Mole, and evaluate it over 4
different datasets and 994 synthesis tasks. The results demonstrate the advantage of Mole against
the previous VSA-based synthesizer: it solves 105 tasks more and can offer a speedup of up to ×7.36.

Combination with other PBE solvers. Though Mole can hardly outperform some specialized
PBE solvers, Mole can be combined with these techniques to achieve further improvement. In
most cases, domain properties are not enough to synthesize the whole program; instead, they can
only simplify or decompose the task, and general synthesis techniques are still required to find the
final result. This process leaves much room for Mole to contribute. Below are some examples.

• Many SOTA synthesizers can be viewed as an advanced approach for constructing single-
example VSAs, such as Blaze [Wang et al. 2018], Duet [Lee 2021], FlashFill++ [Cambronero
et al. 2023], and DryadSynth [Huang et al. 2020]. Mole can be combined with these tech-
niques in the same paradigm as MoleBlaze, which uses the existing techniques to construct
single-example VSAs, and uses Mole to perform intersection.
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• Some other synthesizers use domain properties to decompose the whole task into subtasks,
which are later solved by OE, such as EuSolver [Alur et al. 2017] and PolyGen [Ji et al. 2021].
In these synthesizers, MoleFTA can be used to replace OE as it is more efficient.

It is future work to integrate Mole into these existing synthesizers.

Generalization to intersect other automata. Furthermore, Mole can be potentially generalized
to intersect other automata. The key idea of Mole is to use multi-way intersection rather than
the basic iterative intersection when the final automaton is known to be small. This prerequisite
may hold in various problems; for example, many tasks require checking the emptiness of the
intersection (e.g., when proving unreachability), where the final automaton is expected to be empty.
On the other hand, the key idea behind our bottom-up intersection algorithm is to construct only
non-empty states, which is also generalizable. It is further work to study such generalization.
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A PROOFS

This appendix supplies the proofs for the lemmas and theorems in this paper.

A.1 Proof of Thm. 3.3

Theorem A.1 (Soundness of VSA Intersection). For any set of VSAs V, their intersection repre-
sents the set of programs shared among all individual VSAs, or formally, P (⋂𝑉 ∈V𝑉 ) =

⋂
𝑉 ∈VP(𝑉 ).

Proof. For any set of VSAs V, their intersection represents the set of programs shared among
all individual VSAs, or formally, P (⋂𝑉 ∈V𝑉 ) =

⋂
𝑉 ∈VP(𝑉 ).

To get the target theorem, it is sufficient to prove that the intersection of 2 VSAs is sound. We
prove this case by showing a more general result: P(𝜑 (𝑛, 𝑛′)) = P(𝑛) ∩ P(𝑛′) holds for any node 𝑛
in the first VSA and any node 𝑛′ in the second VSA.

Our proof is conducted by induction on the total height of the sub-VSAs rooted at nodes 𝑛 and 𝑛′.
If the total height is 0, both 𝑛 and 𝑛′ must be leaf nodes. The definition of 𝜑 (𝑛, 𝑛′) can only match
case 5. By definition, we have

P(𝜑 (𝑛, 𝑛′)) = P(𝑛) ∩ P(𝑛′)
Then, for the general case, we perform case analysis on the types of 𝑛 and 𝑛′.

Case 1. If both𝑛 and𝑛′ are union nodes, then they can be written as∪(𝑛1, . . . , 𝑛𝑘 ) and∪(𝑛′1, . . . , 𝑛′𝑘 ′ )
respectively. The definition of 𝜑 (𝑛, 𝑛′) matches case 1, which is

𝜑 (𝑛, 𝑛′) = ∪(𝜑 (𝑛𝑖 , 𝑛′𝑗 )) 𝑓 𝑜𝑟 𝑖 ∈ [1, 𝑘] 𝑎𝑛𝑑 𝑗 ∈ [1, 𝑘 ′] .

The height of nodes 𝑛1, . . . , 𝑛𝑘 and 𝑛′1, . . . , 𝑛
′
𝑘 ′ are at least 1 lower than node 𝑛 and 𝑛′ respectively.

So, according to the induction hypothesis, for any 𝑖 ∈ [1, 𝑘] and 𝑗 ∈ [1, 𝑘 ′]:

P(𝜑 (𝑛𝑖 , 𝑛′𝑗 )) = P(𝑛𝑖 ) ∩ P(𝑛′𝑖 )

From the definition of union nodes, for any nodes 𝑎1, . . . , 𝑎𝑚 ,

P(∪(𝑎1, . . . , 𝑎𝑚)) =
𝑚⋃
𝑖=1

P(𝑎𝑖 )

Combining the equations above, we get

P(𝜑 (𝑛, 𝑛′)) = P(∪(𝜑 (𝑛𝑖 , 𝑛′𝑗 ))) 𝑓 𝑜𝑟 𝑖 ∈ [1, 𝑘] 𝑎𝑛𝑑 𝑗 ∈ [1, 𝑘 ′]

=

𝑘⋃
𝑖=1

𝑘 ′⋃
𝑗=1
(P(𝜑 (𝑛𝑖 , 𝑛′𝑗 )))

=

𝑘⋃
𝑖=1

𝑘 ′⋃
𝑗=1
(P(𝑛𝑖 ) ∩ P(𝑛′𝑗 ))

=

𝑘⋃
𝑖=1

P(𝑛𝑖 ) ∩
𝑘 ′⋃
𝑗=1

P(𝑛′𝑗 )

= P(∪(𝑛1, . . . , 𝑛𝑘 )) ∩ P(∪(𝑛′1, . . . , 𝑛′𝑘 ′ ))
= P(𝑛) ∩ P(𝑛′)

Case 2. If only one of 𝑛 and 𝑛′ is a union node, the proof is the same as case 1, as any non-union
node can be regarded as a union node with one child.
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Case 3. If both 𝑛 and 𝑛′ are join nodes of the same operator 𝑓 , then they can be written as
𝑓 (𝑛1, . . . , 𝑛𝑘 ) and 𝑓 (𝑛′1, . . . , 𝑛′𝑘 ) respectively.
the definition of 𝜑 (𝑛, 𝑛′) matches case 3, which is

P(𝜑 (𝑛𝑖 , 𝑛′𝑖 )) = 𝑓 (𝜑 (𝑛𝑖 , 𝑛′𝑖 )) 𝑓 𝑜𝑟 𝑖 ∈ [1, 𝑘]
The height of nodes 𝑛1, . . . , 𝑛𝑘 and 𝑛′1, . . . , 𝑛

′
𝑘
are at least 1 lower than node 𝑛 and 𝑛′ respectively.

So, according to the induction hypothesis, for any 𝑖 ∈ [1, 𝑘]:
P(𝜑 (𝑛𝑖 , 𝑛′𝑖 )) = P(𝑛𝑖 ) ∩ P(𝑛′𝑖 )

From the definition of join nodes, for any nodes 𝑎1, . . . , 𝑎𝑚 ,

P(𝑓 (𝑎1, . . . , 𝑎𝑚)) = 𝑓 (
𝑚∏
𝑖=1

P(𝑎𝑖 ))

Combining the equations above, we get
P(𝜑 (𝑛, 𝑛′)) = P(𝑓 (𝜑 (𝑛𝑖 , 𝑛′𝑖 ))) 𝑓 𝑜𝑟 𝑖 ∈ [1, 𝑘]

= 𝑓 (
𝑘∏
𝑖=1

P(𝜑 (𝑛𝑖 , 𝑛′𝑖 )))

= 𝑓 (
𝑘∏
𝑖=1
(P(𝑛𝑖 ) ∩ P(𝑛′𝑖 )))

= 𝑓 (
𝑘∏
𝑖=1

P(𝑛𝑖 )) ∩ 𝑓 (
𝑘∏
𝑖=1

P(𝑛′𝑖 ))

= P(𝑛) ∩ P(𝑛′)
Case 4. If both 𝑛 and 𝑛′ are join nodes of different operators 𝑓 and 𝑔 respectively, the outermost
operators of their corresponding programs must be 𝑓 and 𝑔 respectively.
As the outermost operators are different,

P(𝑛) ∩ P(𝑛′) = ∅
The definition of 𝜑 (𝑛, 𝑛′) can only match case 4, so we have

𝜑 (𝑛, 𝑛′) = ∅ = P(𝑛) ∩ P(𝑛′)
Case 5. If one of 𝑛 and 𝑛′ is a leaf node, the definition of 𝜑 (𝑛, 𝑛′) can only match case 5. From the
definition of 𝜑 (𝑛, 𝑛′) in case 5, we have

P(𝜑 (𝑛, 𝑛′)) = P(𝑛) ∩ P(𝑛′)
□

A.2 Proof of Lem. 3.6

Lemma A.2 (Case Study). Consider the following grammar that involves a constant 𝑐 , an input
variable 𝑥 , a commutative and associative operator ⊕, and a depth limit of ℎ.

𝑆𝑖 := 𝑆𝑖+1 ⊕ 𝑆𝑖+1 for 𝑖 ∈ [1, ℎ) 𝑆ℎ := 𝑐 | 𝑥
Let V be a set of VSAs on this grammar, each constructed for a given IO example. Then, the formula
below provides a lower-bound for the number of nodes constructed by the top-down algorithm when
intersecting V, where #jnode(𝑉 , 𝑖) denotes the number of join nodes related to 𝑆𝑖 .∑ℎ

𝑖=1
∏

𝑉 ∈V#jnode(𝑉 , 𝑖)
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If we further assume the VSA nodes distribute uniformly at each level, this lower-bound will become
(2ℎ)1−|V |∏𝑉 ∈V |𝑉 |, which is close to the size of the Cartesian product.

Proof. Consider the following grammar that involves a constant 𝑐 , an input variable 𝑥 , a
commutative and associative operator ⊕, and a depth limit of ℎ.

𝑆𝑖 := 𝑆𝑖+1 ⊕ 𝑆𝑖+1 for 𝑖 ∈ [1, ℎ) 𝑆ℎ := 𝑐 | 𝑥
Let V be a set of VSAs on this grammar, each constructed for a given IO example. Then, the formula
below provides a lower-bound for the number of nodes constructed by the top-down algorithm
when intersecting V, where #jnode(𝑉 , 𝑖) denotes the number of join nodes related to 𝑆𝑖 .∑ℎ

𝑖=1
∏

𝑉 ∈V#jnode(𝑉 , 𝑖)
If we further assume the VSA nodes distribute uniformly at each level, this lower-bound will
become (2ℎ)1−|V |∏𝑉 ∈V |𝑉 |, which is close to the size of the Cartesian product.

Because of the way single example VSAs are constructed, they must follow a ℎ-level structure in
this lemma. The lower part of each level is join nodes combining nodes at a lower level, and the
upper part is union nodes merging join nodes corresponding to the same output.
We prove a stronger version of the first part of lemma 3.6, denoted as lemma 3.6’:
When intersecting VSAs with the above structure, the top-down algorithm will construct a node

for every tuple of join nodes at the same level.
We use induction on the level the node tuple is on.
On level 1, the top-down algorithm constructs the Cartesian product of all join nodes on level 1

when traversing the root node, so a node for every tuple of join nodes is constructed.
Suppose that a node for every tuple of join nodes on level 𝑛 − 1 is constructed.
We consider an arbitrary tuple of join nodes on level 𝑛 (𝑛1, . . . , 𝑛𝑘 ).
We denote the tuple of their union node fathers (or in the case that they do not have a union

node father, themselves) (𝑓1, . . . , 𝑓𝑘 ), and the fathers of (𝑓1, . . . , 𝑓𝑘 ) (𝑡1, . . . , 𝑡𝑘 ). (𝑡1, . . . , 𝑡𝑘 ) are all
join nodes because of the structure of individual VSAs.

𝑓𝑖 may be either the left child or right child of 𝑡𝑖 . We construct another tuple of join nodes on
level 𝑛 − 1 (𝑡 ′1, . . . , 𝑡 ′𝑘 ) where 𝑓𝑖 is always the left child of 𝑡 ′𝑖 .
If 𝑓𝑖 is the left child, 𝑡 ′𝑖 = 𝑡𝑖 . If 𝑓𝑖 is the right child, because of the commutativity of ⊕, another

join node must exist where 𝑓𝑖 is the left child. We take this node as 𝑡 ′𝑖 .
The resulting tuple (𝑡 ′1, . . . , 𝑡 ′𝑘 ) is a tuple of join nodes on level 𝑛−1, so a node must be constructed

in the intersection VSA.
When this node is constructed, its children is also created. In the case of (𝑡 ′1, . . . , 𝑡 ′𝑘 ), the left child

is created from the node tuple (𝑓1, . . . , 𝑓𝑘 ).
The node tuple (𝑓1, . . . , 𝑓𝑘 ) is a mix of union and join nodes on level 𝑛, so the intersection node

is a union node whose children is the Cartesian product of the children set of each union node, and
a set containing only the node itself for each non-union node. Either way, the set corresponding to
node 𝑓𝑖 always contain the node 𝑛𝑖 , so (𝑛1, . . . , 𝑛𝑘 ) is included in the Cartesian product, and a node
is constructed for the tuple. Thus lemma 3.6’ holds for every level in a VSA.
The number of tuples of join nodes at level 𝑖 is

∏
𝑉 ∈V#jnode(𝑉 , 𝑖), so the total number of nodes

constructed is at least
∑ℎ

𝑖=1
∏

𝑉 ∈V#jnode(𝑉 , 𝑖).
If we further assume the VSA nodes distribute uniformly at each level, each level would have

exactly |𝑉 |/ℎ nodes. Because each union node represents program sets that have the same output,
each join node on each level may be the child to at most one union node, so at least half of nodes
are join nodes at each level. Therefore, each level would have at least |𝑉 |/2ℎ join nodes. Replace
#jnode(𝑉 , 𝑖) in the first part with |𝑉 |/2ℎ, and the second part of lemma 3.6 follows.

□
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A.3 Proof of Thm. 3.7

Theorem A.3. Let 𝐺 be any grammar involving commutative and associative operators, and let
V be a set of VSAs on this grammar, each constructed for a given IO example. Then, the following
formula provides a lower-bound for the number of constructed nodes when invoking the top-down
algorithm on V. ∑

⊕∈𝐺
∑

𝑖>0
∏

𝑉 ∈V#jnode(𝑉 , ⊕, 𝑖)

where ⊕ ranges over the commutative and associative operators in 𝐺 , and #jnode(𝑉 , ⊕, 𝑖) denotes the
number of join nodes in𝑉 reachable from the root by passing only union nodes and exactly 𝑖 ⊕-labeled
join nodes.

Proof. Let 𝐺 be any grammar involving commutative and associative operators, and let V be a
set of VSAs on this grammar, each constructed for a given IO example. Then, the following formula
provides a lower-bound for the number of the constructed nodes when invoking the top-down
algorithm on V. ∑

⊕∈𝐺
∑

𝑖>0
∏

𝑉 ∈V#jnode(𝑉 , ⊕, 𝑖)

where ⊕ ranges over the commutative and associative operators in 𝐺 , and #jnode(𝑉 , ⊕, 𝑖) denotes
the number of join nodes in 𝑉 reachable from the root by passing only union nodes and exactly 𝑖
⊕-labeled join nodes.
We consider a subset of each 𝑉𝑖 in V for each commutative and associative operator ⊕, denoted

as 𝑉𝑖⊕ . The set of 𝑉𝑖⊕ is denoted as V⊕ .
𝑉𝑖⊕ is defined as the VSA whose nodes are the root node and nodes in 𝑉𝑖 that are only reachable

from the root by passing only union nodes and ⊕-labeded join nodes, and whose edges are the
edges in 𝑉𝑖 that connect these nodes.
When we invoke the top-down algorithm on V, the resulting VSA contains all the nodes from

the VSA resulting from invoking the algorithm on V⊕ .
Following lemma 3.6, the VSA resulting from invoking the algorithm on V⊕ contains at least∑
𝑖>0

∏
𝑉 ∈V#jnode(𝑉 , ⊕, 𝑖) nodes.

For each commutative and associative operator ⊕ and each 𝑖 , the node sets of 𝑉𝑖⊕ are disjoint
except for the root, so the top-down intersection of each 𝑉𝑖⊕ has disjoint node sets except for the
root.
Therefore, each operator ⊕ contributes at least

∑
𝑖>0

∏
𝑉 ∈V#jnode(𝑉 , ⊕, 𝑖) nodes in the complete

top-down intersection.
It follows that at least

∑
⊕∈𝐺

∑
𝑖>0

∏
𝑉 ∈V#jnode(𝑉 , ⊕, 𝑖) nodes are in the complete top-down

intersection. □

A.4 Proof of Thm. 4.4

Theorem A.4 (Soundness). Given a set V of VSAs, the output of Algorithm 2 is equal to the core
intersection core(⋂𝑉 ∈V𝑉 ) if no node in V has both union parents and join parents.

Proof. Given a set V of VSAs, the output of Algorithm 2 is equal to the core intersection
core(⋂𝑉 ∈V𝑉 ) if no node in V has both union parents and join parents.
We assume that core(⋂𝑉 ∈V𝑉 ) has heightℎ.We use𝑉𝑖 to denote the set of all nodes in core(

⋂
𝑉 ∈V𝑉 )

that have height 𝑖 𝑉𝑖 .
We prove by induction that all nodes in core(⋂𝑉 ∈V𝑉 ) is constructed by the bottom-up algorithm,

by proving that the set 𝑁 in the bottom-up algorithm contains every node in 𝑉1 ∪ . . .𝑉𝑖 before the
𝑖th invocation of function buildUp.
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For the case of the 1st invocation, each node in 𝑉1 must be a leaf node, representing programs
directly. If a program 𝑝 is represented by some leaf node 𝑣 in 𝑉1, the program must be represented
in a leaf node in each individual VSA. The bottom-up algorithm constructs a node for each different
program represented by leaf nodes, so the lemma holds for this case.
Suppose that the lemma holds for 𝑉1 through 𝑉𝑖−1. We now prove the lemma for 𝑉𝑖 . Each node

in 𝑉𝑖 is either a join node or a union node.
Consider a join node 𝑣 in 𝑉𝑖 with operator 𝑓 , constructed from the node tuple (𝑣1, . . . , 𝑣𝑛). The

children of 𝑣 are 𝑣1, . . . , 𝑣𝑚 . The children of 𝑣𝑖 are denoted as 𝑣𝑖1, . . . , 𝑣
𝑖
𝑚 respectively.

Because 𝑣 is a join node, it must be constructed by intersecting join nodes, and its 𝑖th child 𝑣𝑖 is
the intersection of the node tuple (𝑣1𝑖 , . . . , 𝑣𝑛𝑖 ). From the induction hypothesis, 𝑣1, . . . , 𝑣𝑚 are all in
𝑁 , so all the children of 𝑣1, . . . , 𝑣𝑛 are used in some node in 𝑁 .
Therefore, the node tuple (𝑣1, . . . , 𝑣𝑛) is found in the buildUp function, and a node is constructed

for the tuple.
Consider a union node 𝑣 in 𝑉𝑖 , constructed from the node tuple (𝑣1, . . . , 𝑣𝑛), with children

𝑣1, . . . , 𝑣𝑚 .
The intersection is only necessary if node 𝑣𝑖 has a join father or is the root of its VSA, which

means node 𝑣𝑖 has no union father. The program set of a VSA root is the program set of the entire
VSA. A join node takes the Cartesian product of the program sets of each child and constructs new
programs using the product. These are the only two ways a set of programs need to exist as an
individual node.

Union nodes are constructed by taking the intersection of each tuple in the Cartesian product of
their respective children set. Therefore, each 𝑣𝑖 is constructed by a tuple of nodes (𝑣1𝑖 , . . . , 𝑣𝑛𝑖 ). For a
fixed 𝑖 , 𝑣 𝑗

𝑖
is a child of 𝑣 𝑗 if 𝑣 𝑗 is a union node, and 𝑣 𝑗 itself if it’s a join node. From the induction

hypothesis, each node in 𝑣1, . . . , 𝑣𝑚 has already been constructed by the bottom-up algorithm.
Therefore, the intersections of node tuples (𝑣1𝑖 , . . . , 𝑣𝑛𝑖 ) have all been constructed in 𝑁 .
We take 𝜑 (𝑣11, . . . , 𝑣𝑛1 ). If 𝑣

𝑗

1 is a child of 𝑣 𝑗 , 𝑣 𝑗 must be a union father of it, so it is inserted into
𝑈 𝑗 . If 𝑣 𝑗1 = 𝑣 𝑗 , because 𝑣 𝑗 does not have a union father, 𝑣 𝑗 itself is inserted into𝑈 𝑗 .

Therefore, we construct every node in core(⋂𝑉 ∈V𝑉 ).
Note that every node is constructed from a node tuple in the Cartesian product of the node sets

of each VSA. Thus, every node we construct is included in
⋂

𝑉 ∈V𝑉 . Take the core set of both node
sets, and our core set is a subset of core(⋂𝑉 ∈V𝑉 ).
Therefore, we construct the same VSA as core(⋂𝑉 ∈V𝑉 ).

□

A.5 Proof of Lem. 4.5

Lemma A.5 (Case Study). Consider the grammar in Lem. 3.6, repeated as follows, where 𝑐 is a
constant, 𝑥 is the input variable, ⊕ is a commutative and associative operator, and ℎ is a depth limit.

𝑆𝑖 := 𝑆𝑖+1 ⊕ 𝑆𝑖+1 for 𝑖 ∈ [1, ℎ) 𝑆ℎ := 𝑐 | 𝑥
Let V be a set of VSAs on this grammar, each constructed from a given IO example. Then, Algorithm 2
will construct at most ℎ · size2 (𝑝∗) nodes when intersecting the VSAs in V.

Proof. The individual VSAs follow a ℎ-level structure. The worst case is when every program
constructed from the grammar is a valid program in the intersection VSA.
Assume that level 𝑖 has 𝑛𝑖 union nodes. For level 𝑖 + 1, the bottom-up algorithm first constructs a

join node for each pair of union nodes in level 𝑖 , totaling 𝑛2𝑖 nodes. Then, because of the commuta-
tivity and associativity of operator ⊕, there are at most 2𝑖 + 1 different outputs, so only 2𝑖 + 1 union
nodes are constructed.
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Therefore, for level 𝑖 , there are at most (2ℎ−2 + 1)2 join nodes and 2ℎ−1 + 1 union nodes. The size
of the largest program 𝑝∗ is 2ℎ − 1. Each level has more nodes than the level below it, so the largest
level is level ℎ with (2ℎ−2 + 1)2 + 2ℎ−1 + 1 nodes, and each level has at most (2ℎ−2 + 1)2 + 2ℎ−1 + 1
nodes, which is less than size2 (𝑝∗) for all ℎ ≥ 2. Therefore, the entire VSA consisting of ℎ layers
has at most ℎ · size2 (𝑝∗) nodes.

□

A.6 Proof of Thm. 4.6

Theorem A.6 (Worst-Case Efficiency). The following inequality always holds for any finite
program space 𝑃 and any example set 𝐸.

costOurs (V) ≤ 2costOE (𝑃, 𝐸)
where
• V is the set of single-example VSAs constructed over program space 𝑃 and example set 𝐸.
• costOurs (V) denotes the number of VSA nodes constructed by our bottom-up algorithm when
intersecting the VSAs in V.
• costOE (𝑃, 𝐸) denotes the number of programs constructed by OE after traversing the whole
program space 𝑃 with the example set 𝐸.

Proof. We consider the process in which OE constructs programs. OE maintains a set 𝑁 that is
the set of enumerated programs modulo observational equivalence. When a program is inserted
into 𝑁 , if a program with the same output behavior already exists in 𝑁 , the program is discarded.
For each height ℎ and each operator 𝑓 , OE enumerates all programs of height ℎ by applying the
operator 𝑓 on programs in 𝑁 . Then, the enumerated programs are inserted into 𝑁 .
We define 𝑁 (𝑝) as the program with identical output to 𝑝 in 𝑛, or 𝑝 itself if no program with

identical output exists in 𝑁 .
When our bottom-up algorithm constructs a join node of height ℎ and operator 𝑓 , it must

correspond to at least one program 𝑝 = 𝑓 (𝑝1, . . . , 𝑝𝑛). The lower nodes considered in construction
each have different output behavior, so 𝑝 is unique for each node constructed. Because OE traverses
the entire program space, it must construct another program 𝑝′ = 𝑓 (𝑁 (𝑝1), . . . , 𝑁 (𝑝𝑛)) when
enumerating programs with height ℎ.
So, each join node corresponds to a unique program 𝑝′ constructed by OE, and the number of

join nodes is no larger than the number of programs constructed by OE.
Because union nodes combine join nodes with the same output behavior, one join node can have

at most one union father, and the number of union nodes is no larger than the number of join
nodes.

So, the total number of nodes is no larger than twice the number of join nodes, which is no larger
than the number of programs constructed by OE. The theorem follows. □

, Vol. 1, No. 1, Article . Publication date: August 2025.



32 Guanlin Chen, Ruyi Ji, Shuhao Zhang, and Yingfei Xiong

B IMPLEMENTATION DETAILS

This appendix supplies the implementation details of some algorithms in this paper.

B.1 Details of Algorithm 2

Here we describe the implementation details of the construction of sets 𝐿𝑖 , 𝐽𝑖 and𝑈𝑖 .
For sets 𝐿𝑖 (Line 6) ,before the loop (Lines 5-8) we preprocess each VSA and construct a map

from each program to the set of leaf nodes comprising it. Then, the sets 𝐿𝑖 can be taken out directly
from these maps.

For sets 𝐽𝑖 (Line 15) , for each operator 𝑓 and each VSA, we maintain the set 𝐽𝑖 as global variables
and incrementally grow them as more tuples are inserted into the set 𝑁 . Specifically, for each
𝑓 -join node in VSA 𝑉𝑖 , we maintain an auxiliary value denoting the number of its children that are
not used in 𝑁 – this value is initialized as the arity of 𝑓 . Then, each time when a new tuple 𝑛𝑖 is
added to 𝑁 , we visit each 𝑓 -join parent of 𝑛𝑖 , decrease its auxiliary value by 1, and add it to the
corresponding 𝐽𝑖 if the value becomes 0.
For sets𝑈𝑖 (Line 21), we directly enumerate the union parents of 𝑛𝑖 . This process does not cost

much time because𝑈𝑖 is typically small.

B.2 Details of Algorithm 3

Here we describe the details of the construction of trie for each node set 𝑁pre.
Instead of constructing a new trie for each 𝑁pre, we maintain the whole node set 𝑁 as a trie and

attach each trie node with a timestamp representing the index of the iteration (Line 9, algorithm 2)
when the node is constructed. When each node is inserted into 𝑁 (Line 4, algorithm 2), we set its
timestamp to the index of the current iteration. During search on the trie, we ignore nodes whose
timestamps are equal to the index of the current iteration, as these nodes are constructed in the
current iteration and are not in the set 𝑁pre.
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