
Question Selection for Interactive Program Synthesis

Ruyi Ji
Key Lab of High Confidence Software
Technologies, Ministry of Education
Department of Computer Science and
Technology, EECS, Peking University

Beijing, China
jiruyi910387714@pku.edu.cn

Jingjing Liang
Key Lab of High Confidence Software
Technologies, Ministry of Education
Department of Computer Science and
Technology, EECS, Peking University

Beijing, China
jingjingliang@pku.edu.cn

Yingfei Xiong∗

Key Lab of High Confidence Software
Technologies, Ministry of Education
Department of Computer Science and
Technology, EECS, Peking University

Beijing, China
xiongyf@pku.edu.cn

Lu Zhang
Key Lab of High Confidence Software
Technologies, Ministry of Education
Department of Computer Science and
Technology, EECS, Peking University

Beijing, China
zhanglucs@pku.edu.cn

Zhenjiang Hu
Key Lab of High Confidence Software
Technologies, Ministry of Education
Department of Computer Science and
Technology, EECS, Peking University

Beijing, China
huzj@pku.edu.cn

Abstract

Interactive program synthesis aims to solve the ambiguity
in specifications, and selecting the proper question to mini-
mize the rounds of interactions is critical to the performance
of interactive program synthesis. In this paper we address
this question selection problem and propose two algorithms.
SampleSy approximates a state-of-the-art strategy proposed
for optimal decision tree and has a short response time to
enable interaction. EpsSy further reduces the rounds of in-
teractions by approximating SampleSy with a bounded error
rate. To implement the two algorithms, we further propose
VSampler, an approach to sampling programs from a proba-
bilistic context-free grammar based on version space algebra.
The evaluation shows the effectiveness of both algorithms.

CCS Concepts: · Software and its engineering → Soft-

ware notations and tools; General programming lan-

guages.

Keywords: Interaction, Program Synthesis

ACM Reference Format:

Ruyi Ji, Jingjing Liang, Yingfei Xiong, Lu Zhang, and Zhenjiang
Hu. 2020. Question Selection for Interactive Program Synthesis.

∗Corresponding author

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.

PLDI ’20, June 15ś20, 2020, London, UK

© 2020 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-7613-6/20/06. . . $15.00
https://doi.org/10.1145/3385412.3386025

In Proceedings of the 41st ACM SIGPLAN International Conference

on Programming Language Design and Implementation (PLDI ’20),

June 15ś20, 2020, London, UK. ACM, New York, NY, USA, 16 pages.
https://doi.org/10.1145/3385412.3386025

1 Introduction

Program synthesis [3, 20] finds a program meeting a given
specification and has many applications [14, 15, 17, 35, 40, 46,
47, 50, 51]. A classic program synthesis problem assumes that
the specification is complete, and the synthesizer only needs
to find any program that meets the specification. However,
in practice the specification is often incomplete, leading to
ambiguity among many program candidates [36]. For exam-
ple, in programming by example [18], it is common that the
examples are few and many programs are consistent with
the examples [38]. In program repair, it is also known that
incorrect patches are often produced because of incomplete
specification [34, 42].

A fundamental way to address the ambiguity is interactive
program synthesis [30]. In interactive program synthesis, the
system asks easy-to-answer questions to the user, and nar-
rows down the program domain based on the answer from
the user. The interaction ends when there is no ambiguity
remaining. Compared to non-interactive program synthe-
sis, interactive program synthesis adds the extra burden of
answering questions to the user. Therefore, it is critical to
minimize the number of questions needed to be asked.
As a matter of fact, the selection of questions has a great

impact on the number of questions needed. Let us consider
a program domain Pe defined by the following grammar:

S ≔ E | if E ≤ E then x else y E ≔ 0 | x | y

1143

https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3385412.3386025
https://doi.org/10.1145/3385412.3386025

PLDI ’20, June 15ś20, 2020, London, UK Ruyi Ji, Jingjing Liang, Yingfei Xiong, Lu Zhang, and Zhenjiang Hu

There are nine semantically different programs in the do-
main, as follows.

(p1) 0 (p2) if 0 ≤ x then x else y (p3) if 0 ≤ y then x else y
(p4) x (p5) if x ≤ 0 then x else y (p6) if x ≤ y then x else y
(p7) y (p8) if y ≤ 0 then x else y (p9) if y ≤ x then x else y

To find out which program is the desired one, an interactive
synthesis system may use input-output questions, i.e., in
each round, the system selects an input, and asks the output
of the input from the user. The selection of questions can
significantly affect the number of questions. For example,
when the target program isp6, it is possible to finish synthesis
with two questions: (1, 2) and (2, 1), where (a,b) represents
input x = a,y = b. But if the synthesizer always chooses
inputs from {(0, i) |i ≥ 0}, the interaction will never finish
since these inputs cannot distinguish p6 from p1.
As a result, it is important to study the question selection

problem. Given a program domain P with a probability dis-
tribution φ on it, a domain Q of questions, and a sequence
C of previous questions and answers, the question selection

problem is to select the next question from Q such that the
expected number of questions needed to remove ambiguity
is minimized. As far as we are aware, the question selection
problem has not been studied in the program synthesis com-
munity, and recent interactive program synthesis approaches
all randomly select questions, leading to unnecessarily extra
burden to the user.
In this paper we address the question selection problem

for interactive program synthesis. Our basic idea is to adapt
a state-of-the-art polynomial-time strategy for optimal deci-
sion tree problem, minimax branch [2, 11, 21], which selects
the question where the worst user answer gives the best
reduction of the program domain. In this example, (−1, 1) is
one best choice for the first question because it can exclude
at least 5 programs whatever the answer is.

However, there are two main challenges in adapting mini-

max branch. First, applying this strategy requires to calculate
for each program, each question, and each answer, whether
the program is excluded or not. As a result, the time complex-
ity isO (|P|× |Q|× |A|), where |P|, |Q|, and |A| are the sizes of
the program domain, question domain, and answer domain,
respectively. Even for this small example, |P| × |Q| × |A|
is already 9 × 296 (assuming x and y are 32-bit integers).
Such a computation is almost impossible to be finished in
a fast interactive session. Second, due to the complexity of
program domains, minimax branch still results in too many
questions for some practical problems. In our evaluation,
an algorithm approximating minimax branch uses up to 18
questions, which involves too much burden to the user.

We propose two algorithms to address the two challenges.
The first algorithm, SampleSy, approximatesminimax branch

using a Monte Carlo method: in each turn, SampleSy firstly
samples a small set P of programs from the remaining pro-
gram domain, and then appliesminimax branch only to P . For

example, if the samples are p1,p3,p7, SampleSy still chooses
(−1, 1), which is the best input on distinguishing these three
samples. In this way SampleSy removes the enumeration on
the program domain. To further remove the enumerations
on the question and answer domains, SampleSy generates
constraints whose sizes only depend on |P | and utilizes an
SMT solver to solve them: whether there exists question q,
such that at most t programs whose answers are the same.
In this way, t is an upper bound of the worst-case program
domain reduction for question q. By searching on t , Sam-

pleSy finds the best question q. Finally, since sampling P also
requires a significant amount of time, SampleSy utilizes the
intervals when the user answers the question to perform
the sampling, and thus ensures a short response time. We
show that SampleSy approximates minimax branch with a
bounded probability.

The second algorithm, EpsSy, reduces the rounds of inter-
actions by allowing bounded errors, i.e., potentially return-
ing an incorrect program with a bounded probability. EpsSy
reduces the rounds of interactions from two aspects. First,
when a random sample from the program domain already
ensures the bounded error rate, we stop the interaction pro-
cess. For example, when the bounded error rate is 5%, if in
the remaining program domain there is a program whose
probability is larger than 95%, the interaction process will
be stopped. Second, EpsSy further utilizes the fact that many
modern synthesizers are able to accurately predict the de-
sired program in many cases, and if a predicted program
survives from a number of questions that are selected to
challenge it, the predicted program is probably the correct
program. For example, suppose the samples are p1,p3,p7, a
synthesizer predicts p1 to be the target program, and EpsSy

asks for (−1, 1). If p1 is incorrect, the probability for it to sur-
vive from this question will be about 1/3, since it performs
differently from 2/3 samples. We show that the error rate of
EpsSy is bounded, and is controlled by adjusting the number
of samples and the number of challengeable questions.
To implement the two algorithms, we need a sampler to

sample from the remaining program domain according to
a distribution. In other words, the sampler not only finds
programs that are consistent with the existing questions
and answers, as a standard synthesizer does, but also needs
to ensure the programs are drawn from a distribution. We
introduce VSampler to perform this task. VSampler sam-
ples programs from a version space algebra (VSA) [49] ac-
cording to a probabilistic context-free grammar (PCFG) [25].
PCFG is a standard way to model distributions over a set of
programs represented by a CFG. VSA is a commonly-used
data structure to represent a program domain reduced from
input-output questions, which are the most common type of
questions. Since the size of a program is also an important
indicator of probability and PCFG does not directly support
size-related distribution, VSampler also introduces a method

1144

Question Selection for Interactive Program Synthesis PLDI ’20, June 15ś20, 2020, London, UK

to annotate size on non-terminals such that size-related dis-
tributions can be modeled by PCFG.
We have evaluated our algorithm on 166 interactive syn-

thesis problems for program repair and string manipulation.
The results suggest that both algorithms significantly reduce
the number of questions: a random strategy uses 38.5% and
13.9% more questions than SampleSy, and 54.4% and 35.0%
more questions than EpsSy, respectively for program repair
and stringmanipulation. Also, the error rate of EpsSy is small,
where the overall error rate is 0.60%.

To sum up, this paper makes the following main contribu-
tions.

• SampleSy that selects questions with a short response
time by approximatingminimax branchwith a bounded
probability.
• EpsSy that further reduces the number of questions by
allowing a bounded error.
• VSampler that samples programs from a VSA accord-
ing to a PCFG, and can be used to implement SampleSy

and EpsSy.
• An evaluation on a set of SyGuS problems showing
the effectiveness of both SampleSy and EpsSy.

2 Question Selection Problem in
Interactive Program Synthesis

In this section we define the question selection problem and
introduce the minimax branch strategy.

2.1 Question Selection Problem

Definition 2.1 (Oracle Function). Given a program domain
P, a question domain Q, and an answer domain A, an oracle
function D : P → Q → A associates a program p and a
question q with an answer, denoted as D[p](q).

Obviously, interactive synthesis can only distinguish pro-
grams if the oracle function could distinguish them.

Definition 2.2 (Distinguishable Programs). Two programs
p1 and p2 are distinguishable w.r.t an oracle function D if and
only if ∃q ∈ Q,D[p1](q) , D[p2](q), otherwise we say the
two programs indistinguishable.

The goal of interactive program synthesis is to find a pro-
gram p that is indistinguishable from a target program r . For
the convenience of further description, we define the concept
of valid programs, which are programs consistent with a set
of question-answer pairs. In the following definitions, we
implicitly assume the existence of a universal oracle function
D for any program, question, and answer domains.

Definition 2.3 (Valid Programs). Let C ∈ (Q × A)∗ be a se-
quence of question-answer pairs, and P be a set of programs.
The valid programs with respect toC , denoted as P|C , are pro-
grams which are consistent with all these question-answer
pairs, i.e., {p |p ∈ P,∀(q,a) ∈ C,D[p](q) = a}.

Then we come to the interaction part. We first define what
is considered as a question to ask.

Definition 2.4 (Question Selection Function). Given a pro-
gram domain P, a question domainQ, and an answer domain
A, a question selection function QS : (Q × A)∗ 7→ {⊤} ∪ Q
is a function satisfying the following two conditions for any
C ∈ (Q × A)∗ and q∗ = QS (C):

q∗ = ⊤ ⇐⇒ ∀p1,p2 ∈ P|C ,q ∈ Q,D[p1](q) = D[p2](q) (1)

q∗ , ⊤ =⇒ ∃p1,p2 ∈ P|C ,D[p1](q
∗) , D[p2](q

∗) (2)

Here, ⊤ represents the completed signal of the interaction.
With a given question selection function QS , the interactive
synthesis process will be carried out as follows (starting with
C = ∅):

1. If QS (C) = ⊤, return any program in P|C .
2. Show QS (C) to the developer and get the answer a.
3. Add (QS (C),a) to C and return to step 1.

We use len(QS, r) to represent the number of questions
during the interaction.

Let φ be a priori probabilistic distribution on the program
domain P, which measures the likelihood for each program
to be the target. The goal of the question selection problem is
to find the optimal question selection function with respect
to φ.

Definition 2.5 (Optimal Question Selection Function). Let
P be a program domain and φ be a distribution on P. An
optimal question selection function OQS is the question se-
lection function that minimizes

∑

r ∈P φ (r)len(OQS, r), i.e.,
the expected number of questions. For convenience, we call
this expectation as the cost of a question selection function.

The optimal question selection problem, denoted as OQS,
is to implement an optimal question selection function. As
can be found in the supplementary material [1], we show
that OQS is polynomial-time transformable to the problem
of constructing optimal decision tree [28], and vice versa.
Since the optimal decision tree problem has been proved to
be NP-hard, OQS is also NP-hard.

Theorem 2.6. OQS is a NP-hard problem with respect to the

size of P,Q and A.

Due to space limit, we omit all proofs, and the details of
the proofs can be found in the supplementary material [1].

2.2 A Greedy Strategy: Minimax Branch

As mentioned before, minimax branch is a polynomial-time
strategy to approximate the optimal decision tree, and here
we adapt it for optimal question selection. minimax branch

is based on the following intuition: in order to minimize
the expected number of questions, in each turn, the chosen
question should disqualify as many programs as possible. For
a program set P , define its weighted sizew (P) as

∑

p0∈P φ (p0),
i.e., the probability for a random program to be in P .minimax

1145

PLDI ’20, June 15ś20, 2020, London, UK Ruyi Ji, Jingjing Liang, Yingfei Xiong, Lu Zhang, and Zhenjiang Hu

branch aims tominimize the worst-case weighted size in each
turn.

Definition 2.7 (minimax branch). minimax branch is a ques-
tion selection function minimax defined as follows:

• If the interaction is finished, i.e., if ∀p1,p2 ∈ P|C , ∀q ∈
Q, D[p1](q) = D[p2](q), minimax (C) will be ⊤.
• Otherwise, minimax (C) is defined to be:

minimax (C) = argmin
q∈Q

(

max
a∈A

w
(

P|C∪{(q,a) }

)

)

Based on the results from the optimal decision tree prob-
lem [2, 10, 11], minimax branch achieves the best approx-
imation ratio in multiple variants of optimal decision tree
problems and is a state-of-the-art strategy.

Theorem 2.8. The minimax branch strategy approximates

the optimal question selection function with an approximation

ratio ofO (log2m), wherem is the size of the program domain.

3 Optimized Algorithm I: SampleSy

In an interactive session, the response time is expected to be
short, preferably in a couple of seconds. As mentioned before,
implementing minimax branch requires to enumerate three
large domains, which is almost impossible for an interactive
algorithm.

In this section we introduce SampleSy that approximates
minimax branch but has a short response time.

3.1 Overwiew

The basic idea of SampleSy is to sample a small number of
valid problems, and then applyminimax branch only to these
samples. In this way, the number of programs considered
by minimax branch is sharply reduced. After that, instead of
enumerating Q,A, SampleSy uses an SMT solver to find out
the best question directly.
SampleSy is formed by three parallel processes:

• Sampler. A background process that continually sam-
ples programs from P|C .
• Decider. A background process that decides whether
the termination condition is met, i.e., whether∀p1,p2 ∈
P|C ,∀q ∈ Q,D[p1](q) = D[p2](q).
• Controller. The main process of SampleSy, a fore-
ground process that deals with the interaction.

Algorithm 1 shows the pseudo code of the controller. In
each turn (Lines 2-7), the controller firstly requires a set of
samples P from the sampler S (Line 2), and then it applies
minimax branch to find out the best question q∗ for P (Line
3). After that, the controller shows q∗ to the developer and
waits for the corresponding answer a∗ (Line 4). Finally it
updates S and D with the new example (q∗,a∗) (Line 5): S
will filter out the samples of which the answer on q∗ is not a∗,
and both S and D will update their internal data structure.
The interaction repeats until the decider determines that the
termination condition is met (Line 6).

Algorithm 1 The controller of SampleSy

Input: Instance (P,Q,A,φ) of OQS, sampler S and decider
D.

Output: Synthesized program p ∈ P

1: do

2: P ← S.Samples

3: q∗ ← Minimax(P ,Q,A)

4: a∗ ← Interact(q∗)

5: D.AddExample(q∗,a∗), S.AddExample(q∗,a∗)

6: while ¬ D.IsFinished

7: return Some program in S.Samples

In the following subsections, we shall go into the details
of SampleSy.

3.2 Sampler S

The sampler S is a program synthesizer that can repeatedly
and independently sample programs from the remaining pro-
gram domain P|C according to distribution φ. More precisely,
it samples programs from the conditional distribution φ |C
on P|C since other programs have been excluded:

φ |C (p) = Pr
x∼φ

[x = p |x ∈ P|C] = φ (p)w (P|C)
−1

In Section 5, we will show how to build an efficient sam-
pler for distributions defined by probabilistic context-free
grammars.

The sampler also needs to implementAddExample. When
this method is called, the sampler checks whether the current
samples are consistent with a new question-answer pair, and
discard those that are inconsistent.

3.3 Decider D

The decider D is a program synthesizer that can determine
whether there are two distinguishable programs in P|C , i.e.,
the negation of the termination condition. Formally,D needs
to determine whether there exists p1,p2 and q such that the
following formula is satisfied.

ψunfin (p1,p2,q)
def
==== (p1,p2 ∈ P|C) ∧ (D[p1](q) , D[p2](q))

where p ∈ P|C ⇐⇒
(

∧

(q′,a)∈C D[p](q
′) = a

)

∧ (p ∈ P).
In order to utilize SMT solvers, throughout this paper,

we assume domain constraints ∃p ∈ P,∃q ∈ Q and the
semantics functionD can be translated into SMT queries and
formulas respectively. Clearly, when the program domain P
and the question domainQ are both finite, these assumptions
always hold. Moreover, there have been lots of studies on
effective encoding schemes [23, 37]: any of them can be used
here.
Under these assumptions, ψunfin can be encoded into an

SMT query, andD can be implemented by solving it with an
SMT solver.

1146

Question Selection for Interactive Program Synthesis PLDI ’20, June 15ś20, 2020, London, UK

3.4 Question Selection

This subsection explains how to implementMinimax(P ,Q,A)

(Line 3) in Algorithm 1. According to minimax branch de-
scribed in Section 2, the output of Minimax should be:

Minimax0(P ,Q,A) = argmin
q∈Q

(

max
a∈A

���P |(q,a)
���
)

where P |(q,a) denotes the samples in P which are consistent
with question-answer pair (q,a). Note that since P is ob-
tained by sampling, Minimax needs only to minimize the
size of P |(q,a) rather than the weighted size.

There is a double loop on Q and A inMinimax0. To speed
it up, we use an SMT solver to substitute the enumeration on
Q: We define formulaψcost (q, t) to represent whether there
are more than t programs perform the same on question q.

ψcost (q, t)
def
====

∧

a∈A

(���P |(q,a)
��� ≤ t

)

We assume D can be translated to an SMT formula and
thus the whole formula are translatable. This formula tests
whether there is a question with cost no more than a given
threshold. Therefore, SampleSy can quickly find the best
question by firstly calculating the smallest t that makes
ψcost (q, t) satisfiable and then finding a corresponding choice
of q. There are various ways to find the smallest t . In our
implementation, SampleSy searches on all possible values of
t by binary search and checks the satisfiability by an SMT
solver.
So far, the loop on Q has been eliminated. However, the

size of the resulting formulaψcost (q, t) isO (|A| × |P |), which
is too large for an SMT solver to cope with. To do further
optimizations, we utilize the fact that the programs in P
can only produce at most |P | different answers on a given
question. We construct the following formulaψ ′cost (q, t) and
thus reduce the length from O (|A| × |P |) to O (|P |2).

ψ ′cost (q, t) =

|P |
∧

i=1

*.
,
*.
,

|P |
∑

j=i+1

[D[pi] (q) = D[pj] (q)]
+/
-
≤ t

+/
-

To sum up, instead of enumerating Q and A, SampleSy con-
structs the following formula and uses an SMT solver to find
the best question quickly.

Minimax(P ,Q,A) = argmin
q∈Q

t s. t. ψ ′cost (q, t)

3.5 Parallelization

To further reduce the response time, we utilize the fact that
the developermay take awhile to answer the question. There-
fore in SampleSy, Sampler S and DeciderD are implemented
as individual background processes so that they can utilize
the pending time (Line 4 in Algorithm 1) to sample programs
and evaluate the termination condition respectively.
If the sampler is too inefficient, there will not be enough

samples for Minimax (Line 3) to find an efficient question.
At this time, the developer can choose to wait more time for

more samples, or use a potentially inefficient question. In
Section 6, we shall demonstrate that our implementation is
efficient enough for most real synthesis tasks.

So far, exceptMinimax(P ,Q,A), all other calculations are
processed in the background and do not affect the response
time. Meanwhile, the time cost ofMinimax(P ,Q,A) can be
controlled by limiting the size of P . In the implementation,
we limit the response time to two seconds by setting an
upper bound for |P |. We believe such a response time is
small enough for an interactive algorithm.

3.6 Properties of SampleSy

In previous subsections, we discuss the optimizations in
SampleSy and demonstrate that it is efficient on speed. In
this subsection, we shall go back to the number of questions
and show SampleSy performs well in this aspect. We first
show thatMinimax are equivalent to Minimax0.

Lemma 3.1. For any OQS instance (P,Q,A,φ) and any P ⊆

P, let q0 and q1 be the questions selected by Minimax0 and

Minimax, respectively, then q0 and q1 have the same efficiency

on P , i.e.:

max
a∈A

���P |(q0,a)
��� = max

a∈A

���P |(q1,a)
���

We then show that SampleSy well approximates minimax

branch. Theorem 3.2 shows that for any ϵ > 0, when |P | is
large enough, the question of SampleSy is almost surely a
1 + ϵ approximation to that of minimax branch.

Theorem 3.2. For any OQS instance (P,Q,A,φ) and any

sequence of examples C ∈ (Q × A)∗, define the cost of an

question cost(q) to be maxa∈Aw
(

P|C∪{(q,a) }

)

. Let P be a set

of independent samples from φ |C , q1 and q0 be the questions

chosen by SampleSy and minimax branch respectively, then

∀ϵ > 0:

Pr [cost(q1) > (1 + ϵ)cost(q0)] ≤ 2d |Q| exp

(

−
|P |ϵ2

2d2

)

where d = maxq∈Q ��{D[p](q) | p ∈ P}�� which represents the

maximum number of different answers on a single question.

Theorem 3.2 demonstrates that the probability of getting
a bad question decreases exponentially when the number of
samples increases, which can be summarized as the following
corollary.

Corollary 3.3. For any constant ϵ > 0, we have:

Pr [cost(q1) > (1 + ϵ)cost(q0)] = O (exp(−|P |))

4 Optimized Algorithm II: EpsSy

As mentioned before, the number of questions can be large,
and we reduce them by allowing bounded errors. In this
section we first introduce the problem question selection with

bounded error and then introduces EpsSy, an algorithm built
upon SampleSy but allowing bounded errors.

1147

PLDI ’20, June 15ś20, 2020, London, UK Ruyi Ji, Jingjing Liang, Yingfei Xiong, Lu Zhang, and Zhenjiang Hu

4.1 Question Selection with Bounded Error

Definition 4.1 (Unsafe Question Selection Function). Given
a program domain P defined on question domain Q and
answer domain A, an unsafe question selection function
US : (Q×A)∗ 7→ P∪Q is a function satisfying the following
two conditions for any C ∈ (Q × A)∗ and x = US (C).

x ∈ P =⇒ ∀(q,a) ∈ C,D[x](q) = a (3)

x ∈ Q =⇒ ∃p1,p2 ∈ P|C ,D[p1](x) , D[p2](x) (4)

Similar to Definition 2.4, the interactive synthesis process
can be determined by an unsafe question selection function
US as follows (starting with C = ∅):

1. IfUS (C) ∈ P, returnUS (C).
2. ShowUS (C) to the developer and get the answer a∗.
3. Add (US (C),a∗) to C and return to Step 1.

Let r be the target program, we use oup(US, r) to represent
the program generated from the above process and len(US, r)
to represent the number of queries used byUS .
Comparing Definition 4.1 with Definition 2.4, Definition

4.1 looses the first condition and allows the unsafe question
selection function to łguess" a program at any time. Besides,
the second condition remains unchanged, which guarantees
the termination of an unsafe question selection function.
Then we define the concept of error rate and bound the

error rate for unsafe question selection functions.

Definition 4.2 (Error Rate). Let P be a program domain,
φ be a distribution on the programs in P, US be an unsafe
question selection function. The error rate e (US,φ) is the
probability for US to return an incorrect program, i.e., a
program distinguishable from r :

e (US,φ) = Pr
r∼φ

[∃q ∈ Q,D[oup(US, r)](q) , D[r](q)]

Definition 4.3 (ϵ-Unsafe Question Selection Function). Given
program domain P and distribution φ on P, an unsafe ques-
tion selection functionUS is ϵ-unsafe iff e (US,φ) ≤ ϵ .

The optimal ϵ-unsafe question selection problem, denoted
as OUS, is to implement an optimal ϵ-unsafe question se-
lection function which minimizes the expected number of
questions on a prior distribution φ, i.e.,

∑

r ∈P φ (r)len(US, r).

4.2 Algorithm EpsSy

Nowwe come to EpsSy, an efficient algorithm forOUSwhich
is built upon SampleSy. EpsSy is also formed by three parallel
processes:

• Sampler. A background process that continually sam-
ples programs from P|C .
• Recommender. A background process that recom-
mends the most probable program in P|C .
• Controller. The main process of EpsSy.

As we shall show later, the termination condition of EpsSy is
simple enough to be calculated foreground. Therefore EpsSy
does not require a background decider to check termination.

Algorithm 2 The controller of EpsSy

Input: Instance (P,Q,A,φ, ϵ) of OUS, a threshold fϵ , sam-
pler S and recommender R.

Output: Synthesized program p ∈ P

1: r ← R.Recommendation

2: c ← 0
3: do

4: P ← S.Samples

5: if ∃p∗ ∈ P ,OccurNumber(P ,p∗) ≥ (1− ϵ
2) |P | then

6: return p∗

7: end if

8: q∗,v ← GetChallengeableQuery(r , P ,Q,A)

9: a∗ ← Interact(q∗)

10: S.AddExample(q∗,a∗),R.AddExample(q∗,a∗)

11: if D[r](q∗) = a∗ then
12: c ← c +v

13: else

14: c ← 0, r ← R.Recommendation

15: end if

16: while c < fϵ
17: return r

Algorithm 2 shows the pseudo code of the controller. EpsSy
maintains a recommendation r (Line 1) and a confidence
value c to it (Line 2). In each turn (Lines 3 to 16), EpsSy firstly
requires a set P of samples from sampler S and uses an SMT
solver to check whether P contains at least (1−ϵ/2) |P | indis-
tinguishable samples (Line 5). If P does, EpsSy returns one of
them as the answer directly (Line 6). Otherwise, EpsSy uses
a question q∗ to challenge the recommendation (Line 8), and
v is the difficulty of this question. After the developer feeds
back the corresponding answer (Line 9), EpsSy updates S,R
(Line 10) and check whether r survives from this question
(Line 11). If so, the confidence will be increased by the diffi-
culty (Line 12). Otherwise EpsSy will recalculate r and clear
the confidence (Line 14). EpsSy returns r as the answer once
the confidence reaches a threshold fϵ (Line 16).
Now we go into the details of EpsSy.

4.2.1 RecommenderR. EpsSy utilizes the fact that amod-
ern synthesizer is able to accurately infer the program de-
sired by the user. EpsSy relies R to recommend likely pro-
grams and uses questions to verify them.
Note that the recommender can be any synthesizer that

is able to synthesize a program consistent with the answers.
Moreover, as we shall show later, the output of this synthe-
sizer does not affect the bound on the error rate. Despite this,
the more accurate the recommendation is, the earlier the
target program will be found, and the fewer questions will

1148

Question Selection for Interactive Program Synthesis PLDI ’20, June 15ś20, 2020, London, UK

be asked. To reduce the number of questions, EpsSy expects
R to be accurate in recommending the desired program.

4.2.2 TerminationCondition. Comparedwith SampleSy,
EpsSy uses two different termination conditions:

• A certain proportion of the samples is indistinguishable

(Line 5). The samples reflect the distribution on P|C : if
most of the samples are indistinguishable, with high
probability, most of the programs in P|C will be indis-
tinguishable, too.
• The confidence reaches a threshold (Line 16). If the rec-
ommendation r is incorrect, it has non-zero probability
to be excluded in each turn. Therefore, if a recom-
mendation survives from many questions, with high
probability, it will be the correct answer.

Both of these two conditions can be evaluated efficiently:
The first condition can be verified by checking distinguisha-
bility for O (|P |) pairs of samples, which can be efficiently
done by an SMT solver with the following formula:

ψdist (p1,p2) = ∃q ∈ Q,D[p1](q) , D[p2](q)

and the second condition is just a comparison. Therefore
EpsSy puts them in the foreground. In Subsection 4.4, we
shall show the error rate of EpsSy is bounded by these two
conditions.

4.3 Question Selection

This subsection is aboutGetChallengeableQuestion (Line
8) in Algorithm 2. This function aims to find a questionwhich
has a high probability of excluding an incorrect recommen-
dation. To ensure it, EpsSy tries to locate a question where
the proportion of the sample programs returning an answer
different from r is at leastw . In this way, if r is not the desired
program, the developer’s answer will have aroundw proba-
bility to exclude r . More formally, we introduce a formula
ψgood (q,w) as follows (P\r denotes the programs that are
distinguishable from r in P , and can be obtained by checking
the distinguishability between programs in P and r byψdist

since both P and r are known):

ψgood[r](q,w)
def
====

*.
,

∑

p∈P\r

[D[p](q) = D[r](q)]
+/
-
≤ (1 −w) |P |

To faster exclude incorrect recommendations, the question
should satisfyψgood[r](q,w) with a largerw ; to minimize the
size of |P|C |, the question should instead satisfy ψcost (q, t)

with a small t . EpsSy makes a tradeoff between these two
aspects as shown in Algorithm 3. If there exists a question
which is good (Line 1), EpsSy will find the question with the
smallest cost among all good questions, and return it with
difficulty v = 1 (Lines 2, 3). Otherwise, EpsSy does the same
as SampleSy and return with difficulty v = 0 (Lines 5, 6). In-
tuitively, for an incorrect recommendation to be returned, it
has to survive on fϵ good questions, of which the probability
is only around (1 −w)fϵ : thus the error rate is bounded.

Algorithm 3 The question selection in EpsSy

Input: Recommendation r , samples P , question domain Q
and answer domain A.

Output: A question q∗ and the corresponding difficulty v .
1: if ψgood[r](q,w) is satisfiable then
2: q∗ ← argminq t s.t.ψgood[r](q,w) ∧ψ ′cost (q, t)

3: return q∗, 1
4: else

5: q∗ ← argminq t s.t.ψ
′
cost (q, t)

6: return q∗, 0
7: end if

Example 4.4. Assume the program domain is Pe (the pro-
gram domain discussed in Section 1), the samples P are p1,
p2, p4,p5,p7,p8 and the recommendation is p7, then:

• When w = 0.5, one best question is input (−1, 1) on
which p7 performs differently with p1,p4,p5, account-
ing for 60% in P\r , and (−1, 1) can exclude 3 samples
in the worst case.
• When w = 0.9, one best question is input (0,−1) on
which p7 performs differently with all samples in P\r ,
and (0,−1) can only exclude 1 sample in the worst
case.

A delicate point is how to determine the value of w . To
achieve a certain error rate, the larger w is, the smaller fϵ
will be, and thus the fewer questions required by EpsSy will
be. On the other hand, the largerw is, the fewer questions
on which ψgood[r](q,w) is satisfiable will be: it may affect
the performance of EpsSy on excluding samples, as shown in
Example 4.4. Lemma 4.5 shows thatw = 1/2 is a threshold
of the satisfiability ofψgood[r](q,w).

Lemma 4.5. For any program set P and constant w , define

B (P) ⊆ P as the set of programs which makesψgood[p](q,w)

unsatisfiable, i.e., B (P) = {p ∈ P |∀q ∈ Q,¬ψgood[p](q,w)}:

• w ≤ 1/2 =⇒∀P , programs in B (P) are indistinguishable

from each other.

• w > 1/2 =⇒ ∀t > 0,∃P s.t. B (P) contains at least t

programs which are distinguishable from each other.

Lemma 4.5 shows that ifw ≤ 1
2 , whatever P is, the proba-

bility thatψgood[r](q,w) is unsatisfiable is always small; but
once w is larger than 1

2 , this probability can be extremely
large. Therefore, in our implementation, EpsSy setsw to 1/2.

4.4 Properties of EpsSy

Theorem 4.6 demonstrates the most important property of
EpsSy: it can reach an arbitrarily small error rate with loga-
rithmic level fϵ .

Theorem 4.6. For an OUS instance (P,Q,A,φ, ϵ), let n be a

lower bound of the number of samples in each turn, β be an

1149

PLDI ’20, June 15ś20, 2020, London, UK Ruyi Ji, Jingjing Liang, Yingfei Xiong, Lu Zhang, and Zhenjiang Hu

upper bound of questions required by EpsSy, then:

∀n > max

(

18 ln

(

2β |Q|

ϵ

)

,
16 ln 2

ϵ2
+

8

ϵ2
ln

(1

ϵ

)

)

,

∀fϵ > log3/2

(

2β

ϵ

)

, e (EpsSy,p) ≤ ϵ

5 Sampler

In this section, we shall introduce a sampler VSampler which
uses version space algebra to represent the set of valid pro-
grams P|C and can efficiently sample programs from distribu-
tions defined by probabilistic context-free grammars. VSam-

pler supports input-output questions, one of the most com-
monly used type of questions.

5.1 Preliminaries

We start from Context-free Grammar (CFG).

Definition 5.1 (Context-Free Grammar). Context-free gram-

mar (CFG) G is a 4-tuple (N , Σ,R, S) where N is a set of
non-terminal symbols, Σ is a set of terminal symbols, R is a
subset of N × (N ∪ Σ)∗ which represents a set of rules and
S is the start symbol. A rule (α , β) (or denoted as α := β)
represents the nonterminal symbol α can produce sequence
β . G contains all the sequences comprised of only terminal
symbols that can be produced by the start symbol S directly
or indirectly.

Throughout this section, we assume the grammar is al-
ways unambiguous, i.e., for any sequence contained in the
grammar, there exists a unique leftmost derivation from the
start symbol to the sequence.

VSampler assumes the program space can be represented
by a version space algebra (VSA). VSA is a subset of CFG
where only the following three kinds of rules are allowed
and each non-terminal can only appear in the left once:

s ≔ p1 |p2 | . . . |pk s ∈ N ,pi ∈ Σ
∗

s ≔ s1 |s2 | . . . |sk s ∈ N , si ∈ N

s ≔ F (s1, . . . , sk) s ∈ N , F ∈ Σ, si ∈ N

Note that the first two kinds of rules can be split into k
different rules s ≔ pi (s ≔ si) in CFG.

Example 5.2. The program domain Pe can be represented
by the following VSA:

S ≔ E |S1 S1 ≔ if (E,E) E ≔ 0|x |y

where if (E,E) is an abbreviation for if (E ≤ E) then x else y
and the start symbol is S .

Now we come to the PCFG model which is an extension
of CFG by assigning probabilities to the rules.

Definition 5.3 (Probabilistic Context-free Grammar). Aprob-
abilistic context-free grammar G is a context-free grammar
(CFG) (N , Σ,R, S) combined with a function γ : R 7→ R+,
which satisfies ∀α ∈ V ,

∑

(α,β)∈R γ (α , β) = 1.

The PCFG model uses γ (α , β) to represent the probability
of choosing rule (α , β) to expand a non-terminal symbol α .
Therefore, for a program which is produced by rule (α1, β1),
. . . , (αn , βn), its probability is equal to

∏n
i=1 γ (αi , βi).

Since VSA is a subset of CFG, the PCFG model can also
be defined on a VSA.

Example 5.4. The following PCFG defines a uniform distri-
bution on the VSA in Example 5.2.

S ≔ E 1/4 S ≔ S1 3/4 S1 ≔ if (E,E) 1

E ≔ 0 1/3 E ≔ x 1/3 E ≔ y 1/3

Rule łS ≔ E" and łE ≔ 0" are used to obtain ł0", therefore
the probability of ł0" is equal to 1

4 ×
1
3 =

1
12 . For program

łif x ≤ x then x else y", łS ≔ S1" and łS1 ≔ if (E,E)" are
used once while łE ≔ xâĂĲ is used twice, therefore its
probability is 3

4 ×
1
3 ×

1
3 =

1
12 .

In program synthesis frameworks such as FlashMeta [17,
29, 41], a VSA is transformed to represent a subset of the
program domain that satisfies the specification. Such a trans-
formation is performed by annotating the non-terminals in a
VSA with constraints that the programs expanded from the
non-terminal must satisfy. When a non-terminal represents
an expression and the specification is given as input-output
examples, a common annotation is the return value of the
expression. More concretely, given a VSA G = (N , Σ,R, S)

and a set of input-output examples {Ii → Oi }
n
i=1, a new VSA

G ′ is constructed to represent programs in G which are con-
sistent with all examples. In the new G ′, each symbol has
the form ⟨s,o1, . . . ,on⟩ which represents a set of programs
which (1) can be produced by non-terminal symbol s in G,
and (2) output oi on the ith input Ii . As a result, symbol
⟨S,O1, . . . ,On⟩ represents a set of programs consistent with
all examples. The rules in G ′ are constructed according to
the rules in G and the semantics of the operators: every rule
in G ′ can be mapped back to some rule in G. Example 5.5
demonstrates this process.

Example 5.5. The following grammar is the transformed
version from the VSA in Example 5.2 based on input-output
pair (0, 1) → 0.We take ⟨S, 0⟩ as an example to show how the
rules are constructed. ⟨S, 0⟩ represents programs which are
expanded from S and output 0 on input (0, 1), and there are
two ways to get such programs: either through sub-rule S →
E or through sub-rule S → S1. Both cases require a program
which is expanded from the right symbol and still outputs 0.
Therefore the rule of ⟨S, 0⟩ should be ⟨E, 0⟩ | ⟨S1, 0⟩.

⟨S, 0⟩ ≔ ⟨E, 0⟩ | ⟨S1, 0⟩ ⟨E, 0⟩ ≔ x | 0 ⟨E, 1⟩ ≔ y

⟨S1, 0⟩ ≔ if (⟨E, 0⟩, ⟨E, 0⟩) | if (⟨E, 0⟩, ⟨E, 1⟩) | if (⟨E, 1⟩, ⟨E, 1⟩)

Strictly speaking, this grammar is not a VSA, but it can
be converted to a VSA by adding auxiliary non-terminal
symbols to split the last rule.

1150

Question Selection for Interactive Program Synthesis PLDI ’20, June 15ś20, 2020, London, UK

5.2 Sampling from VSA

Given program domain P defined on VSAG , examplesC and
a distribution φ over P defined by a PCFG, VSampler firstly
transforms G to the VSA G ′ representing P|C as in existing
approaches [17, 29, 41], and then samples programs fromG ′

according to the distribution φ |C .
VSampler uses two functions GetPr(N) and Sample(N)

to perform sampling. Given a PCFG (V , Σ,R, S,γ), the def-
initions of these two functions are shown in Figure 1. For
each non-terminal symbol N , VSampler firstly uses GetPr
to preprocess the sum of the probabilities of the programs
in N . Utilizing those probabilities, function Sample samples
programs according to φ |C by recursively sampling the sub-
programs.

Example 5.6. Assume VSampler is going to sample pro-
grams from VSA in Example 5.5 and the PCFG in Example
5.4. Firstly, it usesGetPr to calculate the probability for each
non-terminal symbol. and the results are:

GetPr(⟨E, 0⟩) = 2/3 GetPr(⟨E, 1⟩) = 1/3

GetPr(⟨S1, 0⟩) = 7/9 GetPr(⟨S, 0⟩) = 3/4

Now consider the probability forłif x ≤ y then x else y"
to be sampled. Starting from ⟨S, 0⟩, with probability 7/9,
Sample selects programs from ⟨S1, 0⟩. Then, with probability
2/7, it recurses into łif (⟨E, 0⟩, ⟨E, 1⟩)": The first parameter
has 1/2 chance to be x while the second parameter must be
y. In conclusion, the probability of łif x ≤ y then x else y" is
7/9 × 2/7 × 1/2 = 1/9, which is consistent with φ |C .

5.3 Properties of VSampler

Theorem 5.7 demonstrates the correctness of VSampler on
finite program domains.

Theorem 5.7. For a program domain P, an example sequence

C and a distribution φ defined by a PCFG, let G be an acyclic

VSA that represents P|C , then Sample(S) is subject to the con-

ditional distribution φ |C , where S is the start symbol of V .

Besides the correctness, VSampler is also efficient on the
time cost. Letm be the number of rules in the VSA, k0 be
the maximum k among all rules and s0 be an upper bound of
the programs’ size, then the time complexities of GetPr and
Sample are O (mk0) and O (s0k0), respectively. So the time
complexity for VSampler to generate t samples is O (mk0 +

ts0k0). Note that constructing such a VSA requires at least
Ω(mk0) time, which means performing sampling is not the
bottleneck of VSampler , especially when the number of sam-
ples is not large.

5.4 Representing Size-Related Distribution

The success of enumeration based synthesizers [3, 4] has
shown that the size of a program is an important indicator
of finding the most probable program. However, the PCFG

model cannot encode any size-related distribution, since it
is based on a context-free grammar. VSampler resolves this
problem by constructing an auxiliary CFG which encodes
size information into non-terminals.

Definition 5.8 (Auxiliary CFG). Given a CFG (V , Σ,R, S)

and a size limit n, its auxiliary CFG is a context-free grammar
((V × [n]) ∪ {S ′}, Σ,R′, S ′), where R′ is defined as:

• For any (α , β) ∈ R with k non-terminals in β , for any
positive integers s1, . . . , sk ∈ [n], (⟨α , 1 +

∑

i si ⟩, β
′) is

added to R′, where β ′ is constructed from β by replac-
ing the ith non-terminal vi with ⟨vi , si ⟩.
• For any s ∈ [n], (S ′, ⟨S, s⟩) is added to R′.

For any CFG G and size limit n, its auxiliary CFG G ′ con-
tains exactly all programs in G with size at most n. Thus
PCFGs on G ′ can represent size-related distributions on G.

Example 5.9. The following PCFG represents a distribu-
tion on the VSA in Example 5.2, where the probability of a
program is inversely proportional to its size:

S ′ ≔ ⟨S, 1⟩ 1/2 S ′ ≔ ⟨S, 3⟩ 1/2 ⟨S, 1⟩ ≔ ⟨E, 1⟩ 1

⟨S, 3⟩ ≔ ⟨S1, 3⟩ 1 ⟨S1, 3⟩ ≔ if (⟨E, 1⟩, ⟨E, 1⟩) 1

⟨E, 1⟩ ≔ 0 1/3 ⟨E, 1⟩ ≔ x 1/3 ⟨E, 1⟩ ≔ y 1/3

In this model, the probability of ł0" is 1
2
× 1 × 1

3
=

1
6
and

the probability of łif x ≤ x then x else y" is 1
2
× 12 × 1

9
=

1
18
.

6 Evaluation

To evaluate SampleSy and EpsSy, we report several experi-
ments designed to answer the following research questions:

• RQ1: How do SampleSy and EpsSy compare against
existing strategies?
• RQ2: How does the prior distribution affect the per-
formance of SampleSy?
• RQ3: How does the number of the samples affect the
performance of SampleSy and EpsSy?
• RQ4: How does the value of fϵ affect the performance
of EpsSy?

6.1 Implementation

We implemented SampleSy and EpsSy in C++ and used Z3 [13]
as the underlying SMT solver for them. Our implementation
uses the SyGuS format to specify the synthesis task, and
all the questions are in the form of input-output examples.
Our implementation is open source and can be found in the
supplementary material [1].

ForVSampler , we implemented the algorithm in FlashMeta
[41] to construct VSAs. For SampleSy, we used Second Order

Solver [37], a state-of-the-art solver-based synthesizer, to
implement the decider. For EpsSy, we chose Euphony [31], a
synthesizer utilizing learned probabilistic models to find the
best program, to be the recommender; for the benchmarks
which are not supported by Euphony, we took Eusolver [4],
an efficient enumerative based synthesizer, instead.

1151

PLDI ’20, June 15ś20, 2020, London, UK Ruyi Ji, Jingjing Liang, Yingfei Xiong, Lu Zhang, and Zhenjiang Hu

GetPr(s) =



∑k
i=1 γ (σ (s,pi))

∑k
i=1 (γ (σ (s, si))GetPr(si))

γ (σ (s, F))
∏k

i=1 GetPr(si)

Sample(s) =



pi , i ∝ γ (σ (s,pi)) s := p1 | . . . |pk
Sample(si), i ∝ (γ (σ (s, si))GetPr(si)) s := s1 | . . . |sk
F (Sample(s1), . . . , Sample(sk)) s := F (s1, . . . , sk)

Figure 1. The definitions of function GetPr and Sample used by VSampler . i ∝ f (i) represents i is sampled from a distribution
where Pr[i = a] is proportional to f (a), and σ is a function maps annotated rules in G ′ back to the origin rules in G.

6.2 Compared Approach and Configuration

We implemented the random strategy used by Mayer et al.
[36], denoted as RandomSy, as the baseline for RQ1. In each
turn, RandomSy repeatedly selects a question q from Q ran-
domly, until there are two remaining programs perform-
ing differently on q, i.e., ∃p1,p2 ∈ P|C ,D[p1](q) , D[p2](q).
Such a formula can be evaluated by the decider described in
Subsection 3.3, and in our implementation, RandomSy and
SampleSy share the same decider.
For all strategies, we used a simulator to simulate the

human-computer interaction: For each question (Line 4 in
Algorithm 1 and Line 9 in Algorithm 2), the simulator firstly
delays 1 minute to simulate the time cost for the developer
to calculate the answer, and then sends the correct answer
to the controller. Since this paper focuses on selecting the
best question, we ignored other potential problems during
the human-computer interaction, e.g., the user may make
mistakes, for simplicity. Designing solutions for these prob-
lems is orthogonal to question selection and is future work.
Besides, the response time, i.e., the time cost of Minimax in
Algorithm 1 and GetChallengableQuery in Algorithm 2,
are limited to 2 seconds: when the number of samples is too
large, starting from a small subset, we gradually extend the
set until the time is used up.

For EpsSy, we set the threshold fϵ to 5 by default. For Sam-

pleSy and EpsSy, we constructed a size-related distribution
φs as the default prior distribution: φs (p) = (S × nsize(p))

−1,
where S is the maximum size of programs in P and ni is
the number of programs with the size i in P. φs has two
advantages: (1) The size of p is subject to a uniform distri-
bution, i.e., φs does not have any preference on size, which
lets the samples better represent the whole space. (2) For a
program space defined by a grammar, ni increases exponen-
tially when i increases. Therefore the smaller the size is, the
more probable a program will be chosen.

All of the following experiments were conducted on Intel
Core i7-8700 3.2 GHz 6-Core Processor with 32GB of RAM.
Our experiment data are available in the supplementary
material [1].

6.3 Benchmarks and Experiments

We constructed two datasets Repair and String correspond-
ing to two promising applications of interactive synthesis:
program repair and string manipulation (e.g., data wrangling
tasks in spreadsheets):

Repair . This dataset is based on the Program Repair track
in SyGuS competition which contains 18 benchmarks ex-
tracted from the program repair process of real-word Java
bugs. In each benchmark, a program needs to be synthesized
from a given grammar G to satisfy a set of input-output ex-
amples. We used the following way to construct interactive
synthesis benchmarks: (i) The program domain P is defined
by G plus a depth limitation. (ii) The question domain Q is
defined by the parameters of the target program, e.g. if the
program takes two integers as the input, then Q = Z × Z
where Z represents the set of integers. (iii) The target pro-
gram r is a program satisfying the input-output examples.
Please note that the input-output examples are not available
to the interactive synthesis systems.
String. This dataset is based on the string benchmarks

collected by Lee et al. [31], which contains 108 string-related
benchmarks in SyGuS, 37 questions by spreadsheet users in
StackOverflow, and 60 articles about Excel programming in
Exceljet. All the benchmarks correspond to common data
manipulation tasks in spreadsheet and a set of input-output
examples are given for each benchmark. We converted those
benchmarks into interactive synthesis tasks in the following
way: (i) The program domain P is defined by the grammar
used in FlashFill [17] plus a depth limitation. We did not
use the original grammars in the benchmarks because they
contain int/string conversions that are not supported by
FlashMeta framework, which is used to implement VSam-

pler . (ii) The question domain Q contains all inputs in given
examples. The maximum number of examples per bench-
mark is 400 and the average number is 45.8. We did not
include inputs beyond the examples, because the tasks in
string benchmarks are all data wrangling tasks, where it is
not necessary to process data outside the benchmark. (iii)
The target program r is a program satisfying all input-output
examples.

While constructing benchmarks, a depth limit d was used
to make the program space finite, and for all benchmarks,
we set d to the maximum value that can be dealt by the
client synthesizers within 1 minute: FlashFill in the sampler,
Second-order Solver in the decider, EuSolver and Euphony

in the recommender. Besides, we filter out all benchmarks
which cannot be solved by those solvers even with smallest
possible d . Table 1 lists the information of the final datasets.
Based on the two datasets, we conducted four sets of ex-

periments to answer the four research questions. In all the
experiments, we repeated each single execution 5 times and

1152

Question Selection for Interactive Program Synthesis PLDI ’20, June 15ś20, 2020, London, UK

Table 1. The overview of Repair and String

Name #Benchmarks Average |P| Maximum |P|
Repair 16 2.4 × 108 3.8 × 1014

String 150 4.0 × 1025 5.3 × 1091

The second column lists the number of benchmarks in each set. The third
column shows the geometric mean of |P | in each set while the forth column
shows the largest one.

measured the average value, since all the approaches have
randomness.

6.4 Exp 1: Comparison of Approaches (RQ1)

Procedure. In this experiment, we ran SampleSy, RandomSy

and EpsSy on all benchmarks in two datasets until a pro-
gram is synthesized and measured the number of questions
required by them.

Results. Figure 2 shows the results of this experiment. From
this figure, we make the following observations.

For each approach, we sort the benchmarks in the increasing order of the
number of questions and plot the ith benchmark as a point (i, yi) where
yi is the average number of questions on it.

Figure 2. The results of experiment 1

SampleSy. On average, RandomSy requires 38.5% and 13.9%

more questions than SampleSy in Repair and String dataset re-
spectively. Besides, Figure 2 shows that the performance gap
between SampleSy and RandomSy increases as the difficulty
of the benchmark rises: On the hardest 30% benchmarks,
RandomSy requires 117% more questions than SampleSy in
Repair and 24.8% more questions in String.
EpsSy. The overall error rate of EpsSy is 0.60%. On average,
RandomSy requires 54.4% and 35.0% more quires than EpsSy

in the two datasets. When only the hardest 30% benchmarks
are considered, those ratios rise to 269% and 84.6%, respec-
tively. Comparing to SampleSy, EpsSy can further reduce the
number of questions even with a small error rate.

The tendency that SampleSy and EpsSy perform better on
hard tasks is caused by the internal greedy strategy:minimax

branch aims to improve the quality of each question, and its
benefits accumulate during the interaction. Therefore, the
more the questions are, the longer the interaction will be,
and thus the more significant the accumulated advantages
of SampleSy and EpsSy will be.

6.5 Exp 2: Comparison of Prior Distributions (RQ2)

Procedure. In this experiment, we tested the sensitivity
of our approaches on the choice of prior distribution. As
discussed in Section 6.2, SampleSy and EpsSy take φs (p) =
(S × nsize(p))

−1 as the prior distribution by default, where S
is the maximum size of programs in P and ni is the number
of programs with size i in P. Besides, we further considered
the following distributions:

• Enhanced φs , in whichwemanually enhanced the accuracy
of φs . At each sampling, with a probability of 0.1, the
sampler directly returns the target program, and samples
a program according to φs otherwise.
• Weakened φs , in which we manually weakened the accu-
racy of φs . At each sampling, the sampler firstly samples
a program p according to φs . If p is indistinguishable from
the target program, with a probability of 0.5, the sampler
resamples a program, and returns p otherwise.
• Uniform Distribution φu , in which the probability of all
programs are equal.

Instead of sampling programs from a given distribution,
many state-of-the-art synthesizers find the top-k programs
according to a given ranking function [31, 41]. Therefore,
we also explored the possibility of directly using these syn-
thesizers as samplers: we evaluated a strategy, denoted as
Minimal, in which the sampler enumerates programs in the
increasing order of the size instead of truly sampling.

For each distribution mentioned above, we measured the
average number of questions required by SampleSy and
EpsSy on both datasets.

Results. The results are summarized in Table 2. In general,
the effectiveness ranking of these distributions is: Enhanced
φs > Default φs >Weakened φs > Uniform φu ≈ Minimal,
which demonstrates that the accuracy of the prior distri-
bution does have a positive correlation to the performance
of SampleSy and EpsSy. On the other hand, the impact is
not significant: even when the distribution is Uniform φu
or Minimal, SampleSy and EpsSy still perform much better
than RandomSy. This result suggests that even if the dis-
tribution cannot be precisely determined, our algorithms
can still perform well by either using a coarse distribution
like the uniform distribution or directly using off-the-shelf
synthesizers as samplers.
One surprising result is that in String, SampleSy with

Uniform φu performs better than φs . A possible reason is
that in the last few rounds, most incorrect programs (pro-
grams distinguishable from the target) have been excluded,
and thus the probability of sampling remaining incorrect

1153

PLDI ’20, June 15ś20, 2020, London, UK Ruyi Ji, Jingjing Liang, Yingfei Xiong, Lu Zhang, and Zhenjiang Hu

Table 2. The average number of required questions for SampleSy and EpsSy with each considered distribution on each dataset.

Distribution
SampleSy EpsSy

Repair String Combined Repair String Combined

Weakened φs 8.100 3.511 3.947 6.538 2.937 3.278

Default φs 7.375 3.463 3.835 6.538 2.910 3.254

Enhanced φs 7.113 3.477 3.822 6.025 2.846 3.147

Uniform φu 9.938 3.327 3.958 6.337 3.227 3.520

Minimal 7.950 3.660 4.067 6.050 3.235 3.500

RandomSy 12.963 4.082 4.938 12.963 4.082 4.938

programs becomes extremely small. Note that the target of
SampleSy is to exclude all incorrect programs: the lack of
incorrect samples may mislead its decision. Since the size
of an incorrect program is often large and φu is the most
concentrated on large programs among all distributions in
this experiment, φu suffers less on this issue. In String, φu
sampled less than 5 incorrect programs in only 3% of the
turns, while φs did the same for 9% of the turns. Please note
that this issue does not exist for EpsSy since EpsSy directly
returns when some semantics occurs too many times among
samples.

6.6 Exp 3: Comparison of the Sample Size (RQ3)

Procedure. In this experiment, we ran SampleSy on all
benchmarks with a limitation w on the number of sam-
ples, i.e., the sampler only returns at most w samples to
the controller in each turn. We ran SampleSy three times
withw = 2, 20, 5000, respectively and measured the number
of questions required.

Figure 3. The results of experiment 3. The figure are drawn
in the same way as Figure 2.

Results. The results are summarized in Figure 3. For conve-
nience, we use S (k) to represent SampleSy withw equal to k .
Figure 3 shows that S (2) performs significantly worse than

S (5000): On the hardest 30% benchmarks, S (2) takes 50.0%
more questions than S (5000) in Repair and 12.7% more ques-
tions in String. However, such a performance gap disappears
whenw is only increased by 18: the curves representing for
S (20) and S (5000) almost coincide in Figure 3. More precisely,
S (20) only uses 3.6% more questions than S (5000) in Repair

and 0.5% more questions in String.
This result shows that the performance of SampleSy con-

verges rapidly whenw increases, which is consistent with
Theorem 3.2.

6.7 Exp 4: Comparison of Values of fϵ (RQ4)

Procedure. In this experiment, for each fϵ ∈ [0, 5], we ran
EpsSy on all benchmarks, and recorded whether the result is
correct and the number of questions required.

Results. The results of the experiment are summarized in
Figure 4. We make the following observations from it:

Figure 4. The results of experiment 4 The x-axis represents
the value of fϵ , the left y-axis represents the error rate while
the right y-axis represents the average number of questions
required by EpsSy.

• For both datasets, the error rate drops exponentially when
fϵ increases, we are able to obtain a high accuracy with
a small fϵ . This result is consistent with Theorem 4.6.
Moreover, the average number of questions only increases
linearly (or even sub-linearly) when fϵ increases, which
means a much better accuracy can be obtained with only
a small loss on the number questions.

1154

Question Selection for Interactive Program Synthesis PLDI ’20, June 15ś20, 2020, London, UK

• The error rate in String drops much faster than that in
Repair while the number of questions increases much
slower in String. This is because different termination
conditions dominate EpsSy in the two datasets: For Re-
pair, since the numbers of questions required are gener-
ally large, EpsSy terminates mainly when the confidence
reaches fϵ . Therefore the number of questions grows
around linearly with fϵ while the error rate drops rel-
atively more slowly. For String, EpsSy terminates mainly
when the conditional probability of some semantics is too
large. Therefore the number of questions and the error
rate is more independent with fϵ than Repair.

7 Related Work

Question selection in interactive synthesis. As men-
tioned before, multiple existing interactive synthesis systems
[36, 49] already contain a question selection component. In
those systems, the question selection components try to
select a distinguishing question, i.e., at least two programs
have different answer. Among all distinguishing questions,
the selection is random. For example, Mayer et al. [36] use
input-output questions and randomly select input within a
test suite until a distinguishing input is found. Wang et al.
[49] also use input-output questions and randomly mutate
existing inputs until a distinguishing input is found. Such
a selection component is equivalent to RandomSy in our
evaluation. Compared to the existing approaches, our ap-
proach selects a question within the whole question space
that approximates an optimal question, which significantly
outperforms RandomSy as our evaluation indicates.

Padhi et al. [39] explore another form of question selection
problem for input-output questions. Their approach, called
Significant Inputs, returns a set of questions in each turn and
lets the user select which questions to answer among all
selected questions. Significant Inputs uses a syntactic profile
over structured inputs to perform the selection. Compared
with Significant Inputs, our approach returns one question
each turn and does not require a syntactic profile, applicable
to unstructured inputs such as integers. Furthermore, our
approach is the first to give the theoretical guarantees on
disambiguation and the number of required queries. The two
approaches can potentially be combined: Significant Inputs
selects a set of questions while our approaches choose among
these questions.

User-driven interactive synthesis. Besides asking easy-
to-answer questions, another form of interaction in pro-
gram synthesis is to demonstrate a set of solutions to the
user, and the user decides what actions to take to reduce
the ambiguity. The actions include (1) selects a program
from the demonstrated programs [36, 52], (2) provides input-
output examples to refine the specification [16, 26, 52], and
(3) changes some configuration options of the synthesis algo-
rithm [5, 22, 26, 32]. In such interactions there is no question

selection problem, as it is the user who decides what action
to take. In contrast to these approaches that give an open
task to the user, our algorithms shift the burden of question
selection from the user to the system, and the user only has
to answer deterministic questions.

General framework of interactive program synthesis.

Le et al. [30] build an abstract model of interactive program
synthesis along three dimensions: incrementality, step-based
formulation, and feedback-based interaction. Our algorithms
can be viewed as instantiations of the framework, providing
feed-back interaction by selecting questions.

Counterexample guided inductive synthesis. Counterex-
ample guided inductive synthesis (CEGIS) [3, 19, 47, 48] as-
sumes the existence of a verification oracle, which could
verify whether a synthesized program is correct, and returns
a counterexample if it is not. Oracle-guided inductive pro-
gram synthesis (OGIS) [24] is a generalization of CEGIS,
which allows more types of questions to be asked to the
oracle. CEGIS and OGIS are similar to interactive program
synthesis as humans can be considered as an oracle. However,
since OGIS and CEGIS focus on automated oracles, so far
there is no practical algorithm for CEGIS/OGIS to minimize
the number questions as far as we are aware. Furthermore,
many questions considered in CEGIS/OGIS are not easy for
human to answer, such as determining whether a program
is correct.

Optimization Modulo Theories Solvers. Optimization
Modulo Theories (OMT) is an extension of SMT which al-
lows for finding models that optimize given objectives. Since
finding the best question according to minimax branch is an
optimization problem, OMT solvers [6, 7, 27, 33, 44, 45] are
related to our work. To deal with an optimization problem,
existing OMT solvers require to encode the problem into
some pre-designed domain-specific languages. However, en-
coding minimax branch, i.e., Definition 2.7, is a non-trivial

challenge: w
(

P|C∪{(q,a) }

)

is an instance of weighted model

counting, which is not supported by any existing OMT solver.
Therefore, instead of using OMT solvers to find the best
question, we designed SampleSy and EpsSy to approximate
minimax branch via sampling.

Optimal decision trees. Previously sections have discussed
optimal decision trees [28] and optimal question selection
are mutually polynomial-time transformable. However, com-
pared with interactive synthesis, the program/question/an-
swer domains in optimal decision tree are usually much
smaller, and thus strategies like minimax branch can be di-
rectly applied. Our work starts from minimax branch, and
proposes a set of approximation algorithms to make it prac-
tical in interactive synthesis.

Active learning. Active learning is a research domain about
finding objects with some target properties from a candidate
domain by interactively asking questions to some oracle. In

1155

PLDI ’20, June 15ś20, 2020, London, UK Ruyi Ji, Jingjing Liang, Yingfei Xiong, Lu Zhang, and Zhenjiang Hu

this domain, the question selection problems are also stud-
ied to reduce the number of questions or to enhance the
efficiency of a fixed number of questions. However, none of
them can be directly applied to interactive program synthe-
sis: (i) Some of them focus on specific models and utilizes
concrete properties which do not hold in program synthe-
sis, e.g., Bshouty [8] studies exact learning, a sub problem
of active learning that focuses on learning an exact model,
but for only boolean functions; Schohn and Cohn [43] study
specifically for support vector machines(SVM). (ii) Some of
the previous works focus on general question selection prob-
lems and their results cannot be applied to interactive pro-
gram synthesis due to the scalability, e.g., Dasgupta [12]
analyzes a greedy strategy of which the time complexity is
polynomial to the number of candidates, i.e., the size of the
program space. (iii) Others only focus on theoretic results,
e.g., Bshouty et al. [9] proves multiple theoretic properties of
exact learning, but these properties cannot be directly used
to design algorithms. As we are aware, this paper is the first
work studying the question selection problem for interactive
program synthesis.

8 Conclusion

In this paper, we address the question selection in interactive
program synthesis with the goal of minimizing the number
of questions to the user. Staring from the minimax branch

strategy, we design two efficient algorithms SampleSy and
EpsSy for two different scenarios: SampleSy ensures the re-
sult to be correct while EpsSy has a bounded error rate. On
the theoretical side, we show that both the loss of SampleSy

comparing with minimax branch and the error rate of EpsSy
are bounded. On the practical side, we implement these two
approaches and our evaluation shows that both algorithms
outperform the existing strategies significantly.

Appendices

The appendix can be found in the supplementary material [1]
and consists of two parts. The first part discusses the relation
between optimal question selection and optimal decision tree,
and the second part gives the proofs for all other theorems
in the paper.

Acknowledgements

We thank Yican Sun and the anonymous PLDI reviewers for
valuable feedback on this work. This work is supported in
part by theNational Key Research andDevelopment Program
of China under Grant No. 2017YFB1001803, National Natural
Science Foundation of China under Grant Nos. 61922003 and
61672045.

References
[1] [n. d.]. Supplementary Material. https://github.com/jiry17/IntSy.

[2] Micah Adler and Brent Heeringa. 2008. Approximating optimal binary
decision trees. In Approximation, Randomization and Combinatorial

Optimization. Algorithms and Techniques. Springer, 1ś9.
[3] Rajeev Alur, Rastislav Bodík, Garvit Juniwal, Milo M. K. Martin,

Mukund Raghothaman, Sanjit A. Seshia, Rishabh Singh, Armando
Solar-Lezama, Emina Torlak, and Abhishek Udupa. 2013. Syntax-
guided synthesis. In Formal Methods in Computer-Aided Design, FM-

CAD 2013, Portland, OR, USA, October 20-23, 2013. 1ś8.
[4] Rajeev Alur, Arjun Radhakrishna, and Abhishek Udupa. 2017. Scaling

Enumerative Program Synthesis via Divide and Conquer. In Tools

and Algorithms for the Construction and Analysis of Systems - 23rd

International Conference, TACAS 2017, Held as Part of the European Joint

Conferences on Theory and Practice of Software, ETAPS 2017, Uppsala,

Sweden, April 22-29, 2017, Proceedings, Part I. 319ś336. https://doi.org/

10.1007/978-3-662-54577-5_18

[5] Shaon Barman, Rastislav Bodík, Satish Chandra, Emina Torlak,
Arka Aloke Bhattacharya, and David Culler. 2015. Toward tool support
for interactive synthesis. In 2015 ACM International Symposium on New

Ideas, New Paradigms, and Reflections on Programming and Software,

Onward! 2015, Pittsburgh, PA, USA, October 25-30, 2015. 121ś136.
[6] Nikolaj Bjùrner and Anh-Dung Phan. 2014. νZ - Maximal Satisfaction

with Z3. In 6th International Symposium on Symbolic Computation in

Software Science, SCSS 2014, Gammarth, La Marsa, Tunisia, December

7-8, 2014. 1ś9. http://www.easychair.org/publications/paper/200953

[7] Nikolaj Bjùrner, Anh-Dung Phan, and Lars Fleckenstein. 2015. νZ - An
Optimizing SMT Solver. In Tools and Algorithms for the Construction

and Analysis of Systems - 21st International Conference, TACAS 2015,

Held as Part of the European Joint Conferences on Theory and Practice

of Software, ETAPS 2015, London, UK, April 11-18, 2015. Proceedings.
194ś199. https://doi.org/10.1007/978-3-662-46681-0_14

[8] Nader H. Bshouty. 1995. Exact Learning Boolean Functions via the
Monotone Theory. Electronic Colloquium on Computational Complexity

(ECCC) 2, 8 (1995). http://eccc.hpi-web.de/eccc-reports/1995/TR95-

008/index.html

[9] Nader H. Bshouty, Richard Cleve, Ricard Gavaldà, Sampath Kannan,
and Christino Tamon. 1996. Oracles and Queries That Are Sufficient
for Exact Learning. J. Comput. Syst. Sci. 52, 3 (1996), 421ś433. https:

//doi.org/10.1006/jcss.1996.0032

[10] Venkatesan T Chakaravarthy, Vinayaka Pandit, Sambuddha Roy, Pran-
jal Awasthi, and Mukesh Mohania. 2007. Decision trees for entity
identification: Approximation algorithms and hardness results. In Pro-

ceedings of the twenty-sixth ACM SIGMOD-SIGACT-SIGART symposium

on Principles of database systems. ACM, 53ś62.
[11] Venkatesan T Chakaravarthy, Vinayaka Pandit, Sambuddha Roy, and

Yogish Sabharwal. 2009. Approximating decision trees with multiway
branches. In International Colloquium on Automata, Languages, and

Programming. Springer, 210ś221.
[12] Sanjoy Dasgupta. 2004. Analysis of a greedy active learning strategy.

In Advances in Neural Information Processing Systems 17 [Neural Infor-

mation Processing Systems, NIPS 2004, December 13-18, 2004, Vancouver,

British Columbia, Canada]. 337ś344. http://papers.nips.cc/paper/2636-

analysis-of-a-greedy-active-learning-strategy

[13] Leonardo De Moura and Nikolaj Bjùrner. 2008. Z3: An efficient SMT
solver. In International conference on Tools and Algorithms for the Con-

struction and Analysis of Systems. Springer, 337ś340.
[14] Yu Feng, Ruben Martins, Osbert Bastani, and Isil Dillig. 2018. Pro-

gram synthesis using conflict-driven learning. In Proceedings of the

39th ACM SIGPLAN Conference on Programming Language Design and

Implementation, PLDI 2018, Philadelphia, PA, USA, June 18-22, 2018.
420ś435.

[15] Yu Feng, Ruben Martins, Jacob Van Geffen, Isil Dillig, and Swarat
Chaudhuri. [n. d.]. Component-based synthesis of table consolida-
tion and transformation tasks from examples. In Proceedings of the

38th ACM SIGPLAN Conference on Programming Language Design and

1156

https://github.com/jiry17/IntSy
https://doi.org/10.1007/978-3-662-54577-5_18
https://doi.org/10.1007/978-3-662-54577-5_18
http://www.easychair.org/publications/paper/200953
https://doi.org/10.1007/978-3-662-46681-0_14
http://eccc.hpi-web.de/eccc-reports/1995/TR95-008/index.html
http://eccc.hpi-web.de/eccc-reports/1995/TR95-008/index.html
https://doi.org/10.1006/jcss.1996.0032
https://doi.org/10.1006/jcss.1996.0032
http://papers.nips.cc/paper/2636-analysis-of-a-greedy-active-learning-strategy
http://papers.nips.cc/paper/2636-analysis-of-a-greedy-active-learning-strategy

Question Selection for Interactive Program Synthesis PLDI ’20, June 15ś20, 2020, London, UK

Implementation, PLDI 2017, Barcelona, Spain, June 18-23, 2017.

[16] Joel Galenson, Philip Reames, Rastislav Bodik, Bjorn Hartmann, and
Koushik Sen. 2014. CodeHint: dynamic and interactive synthesis of
code snippets. In 36th International Conference on Software Engineering,

ICSE ’14, Hyderabad, India - May 31 - June 07, 2014. 653ś663.
[17] Sumit Gulwani. 2011. Automating string processing in spreadsheets

using input-output examples. In Proceedings of the 38th ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages, POPL

2011, Austin, TX, USA, January 26-28, 2011. 317ś330.
[18] Sumit Gulwani and Prateek Jain. 2017. Programming by Examples: PL

meets ML. In APLAS.
[19] Sumit Gulwani, Susmit Jha, Ashish Tiwari, and Ramarathnam Venkate-

san. 2011. Synthesis of loop-free programs. In Proceedings of the 32nd

ACM SIGPLAN Conference on Programming Language Design and Im-

plementation, PLDI 2011, San Jose, CA, USA, June 4-8, 2011. 62ś73.
[20] Sumit Gulwani, Oleksandr Polozov, and Rishabh Singh. 2017. Program

Synthesis. Foundations and Trends in Programming Languages 4, 1-2
(2017), 1ś119.

[21] Anupam Gupta, Viswanath Nagarajan, and R Ravi. 2017. Approxima-
tion algorithms for optimal decision trees and adaptive TSP problems.
Mathematics of Operations Research 42, 3 (2017), 876ś896.

[22] Tihomir Gvero, Viktor Kuncak, and Ruzica Piskac. 2011. Interactive
Synthesis of Code Snippets. In Computer Aided Verification - 23rd

International Conference, CAV 2011, Snowbird, UT, USA, July 14-20,

2011. Proceedings. 418ś423.
[23] Susmit Jha, Sumit Gulwani, Sanjit A. Seshia, and Ashish Tiwari. 2010.

Oracle-guided component-based program synthesis. In Proceedings of

the 32nd ACM/IEEE International Conference on Software Engineering -

Volume 1, ICSE 2010, Cape Town, South Africa, 1-8 May 2010. 215ś224.
[24] Susmit Jha and Sanjit A. Seshia. 2017. A theory of formal synthesis

via inductive learning. Acta Inf. 54, 7 (2017), 693ś726.
[25] Mark Johnson. 1998. PCFG Models of Linguistic Tree Representations.

Computational Linguistics 24, 4 (1998), 613ś632.
[26] Sean Kandel, Andreas Paepcke, Joseph M. Hellerstein, and Jeffrey Heer.

2011. Wrangler: interactive visual specification of data transformation
scripts. In Proceedings of the International Conference on Human Factors

in Computing Systems, CHI 2011, Vancouver, BC, Canada, May 7-12,

2011. 3363ś3372.
[27] Daniel Larraz, Albert Oliveras, Enric Rodríguez-Carbonell, and Albert

Rubio. 2014. Minimal-Model-Guided Approaches to Solving Polyno-
mial Constraints and Extensions. In Theory and Applications of Satisfi-

ability Testing - SAT 2014 - 17th International Conference, Held as Part of

the Vienna Summer of Logic, VSL 2014, Vienna, Austria, July 14-17, 2014.

Proceedings. 333ś350. https://doi.org/10.1007/978-3-319-09284-3_25

[28] Hyafil Laurent and Ronald L Rivest. 1976. Constructing optimal binary
decision trees is NP-complete. Information processing letters 5, 1 (1976),
15ś17.

[29] Vu Le and Sumit Gulwani. 2014. FlashExtract: a framework for data
extraction by examples. In ACM SIGPLAN Conference on Programming

Language Design and Implementation, PLDI ’14, Edinburgh, United

Kingdom - June 09 - 11, 2014. 542ś553.
[30] Vu Le, Daniel Perelman, Oleksandr Polozov, Mohammad Raza, Ab-

hishek Udupa, and Sumit Gulwani. 2017. Interactive Program Synthe-
sis. CoRR abs/1703.03539 (2017).

[31] Woosuk Lee, Kihong Heo, Rajeev Alur, and Mayur Naik. 2018. Accel-
erating search-based program synthesis using learned probabilistic
models. In Proceedings of the 39th ACM SIGPLAN Conference on Pro-

gramming Language Design and Implementation, PLDI 2018, Philadel-

phia, PA, USA, June 18-22, 2018. 436ś449. https://doi.org/10.1145/

3192366.3192410

[32] Alan Leung, John Sarracino, and Sorin Lerner. 2015. Interactive parser
synthesis by example. In Proceedings of the 36th ACM SIGPLAN Confer-

ence on Programming Language Design and Implementation, Portland,

OR, USA, June 15-17, 2015. 565ś574.

[33] Yi Li, Aws Albarghouthi, Zachary Kincaid, Arie Gurfinkel, and Marsha
Chechik. 2014. Symbolic optimization with SMT solvers. In The 41st

Annual ACM SIGPLAN-SIGACT Symposium on Principles of Program-

ming Languages, POPL ’14, San Diego, CA, USA, January 20-21, 2014.
607ś618. https://doi.org/10.1145/2535838.2535857

[34] Fan Long and Martin Rinard. 2016. Automatic patch generation by
learning correct code. In Proceedings of the 43rd Annual ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages. 298ś312.
https://doi.org/10.1145/2837614.2837617

[35] Ruben Martins, Jia Chen, Yanju Chen, Yu Feng, and Isil Dillig. 2019.
Trinity: An Extensible Synthesis Framework for Data Science. PVLDB
12, 12 (2019), 1914ś1917.

[36] Mikaël Mayer, Gustavo Soares, Maxim Grechkin, Vu Le, Mark Mar-
ron, Oleksandr Polozov, Rishabh Singh, Benjamin G. Zorn, and Sumit
Gulwani. 2015. User Interaction Models for Disambiguation in Pro-
gramming by Example. In UIST. ACM, 291ś301.

[37] Sergey Mechtaev, Alberto Griggio, Alessandro Cimatti, and Abhik
Roychoudhury. 2018. Symbolic executionwith existential second-order
constraints. In Proceedings of the 2018 ACM Joint Meeting on European

Software Engineering Conference and Symposium on the Foundations of

Software Engineering, ESEC/SIGSOFT FSE 2018, Lake Buena Vista, FL,

USA, November 04-09, 2018. 389ś399. https://doi.org/10.1145/3236024.

3236049

[38] Hong Mei and Lu Zhang. 2018. Can big data bring a breakthrough
for software automation? Sci. China Inf. Sci. 61, 5 (2018), 056101:1ś
056101:3. https://doi.org/10.1007/s11432-017-9355-3

[39] Saswat Padhi, Prateek Jain, Daniel Perelman, Oleksandr Polozov, Sumit
Gulwani, and Todd D. Millstein. 2018. FlashProfile: a framework for
synthesizing data profiles. PACMPL 2, OOPSLA (2018), 150:1ś150:28.

[40] Phitchaya Mangpo Phothilimthana, Aditya Thakur, Rastislav Bodík,
and Dinakar Dhurjati. 2016. Scaling up Superoptimization. In Pro-

ceedings of the Twenty-First International Conference on Architectural

Support for Programming Languages and Operating Systems, ASPLOS

’16, Atlanta, GA, USA, April 2-6, 2016. 297ś310. https://doi.org/10.1145/

2872362.2872387

[41] Oleksandr Polozov and Sumit Gulwani. 2015. FlashMeta: a frame-
work for inductive program synthesis. In Proceedings of the 2015 ACM

SIGPLAN International Conference on Object-Oriented Programming,

Systems, Languages, and Applications, OOPSLA 2015, part of SPLASH

2015, Pittsburgh, PA, USA, October 25-30, 2015. 107ś126.
[42] Zichao Qi, Fan Long, Sara Achour, and Martin Rinard. 2015. An Anal-

ysis of Patch Plausibility and Correctness for Generate-and-validate
Patch Generation Systems (ISSTA 2015). 24ś36.

[43] Greg Schohn and David Cohn. 2000. Less is More: Active Learning with
Support Vector Machines. In Proceedings of the Seventeenth Interna-

tional Conference on Machine Learning (ICML 2000), Stanford University,

Stanford, CA, USA, June 29 - July 2, 2000. 839ś846.
[44] Roberto Sebastiani and Patrick Trentin. 2015. OptiMathSAT: A Tool

for Optimization Modulo Theories. In Computer Aided Verification -

27th International Conference, CAV 2015, San Francisco, CA, USA, July

18-24, 2015, Proceedings, Part I. 447ś454. https://doi.org/10.1007/978-

3-319-21690-4_27

[45] Roberto Sebastiani and Patrick Trentin. 2015. Pushing the Enve-
lope of Optimization Modulo Theories with Linear-Arithmetic Cost
Functions. In Tools and Algorithms for the Construction and Analy-

sis of Systems - 21st International Conference, TACAS 2015, Held as

Part of the European Joint Conferences on Theory and Practice of Soft-

ware, ETAPS 2015, London, UK, April 11-18, 2015. Proceedings. 335ś349.
https://doi.org/10.1007/978-3-662-46681-0_27

[46] Armando Solar-Lezama, Rodric M. Rabbah, Rastislav Bodík, and Kemal
Ebcioglu. 2005. Programming by sketching for bit-streaming programs.
In Proceedings of the ACM SIGPLAN 2005 Conference on Programming

Language Design and Implementation, Chicago, IL, USA, June 12-15,

2005. 281ś294. https://doi.org/10.1145/1065010.1065045

1157

https://doi.org/10.1007/978-3-319-09284-3_25
https://doi.org/10.1145/3192366.3192410
https://doi.org/10.1145/3192366.3192410
https://doi.org/10.1145/2535838.2535857
https://doi.org/10.1145/2837614.2837617
https://doi.org/10.1145/3236024.3236049
https://doi.org/10.1145/3236024.3236049
https://doi.org/10.1007/s11432-017-9355-3
https://doi.org/10.1145/2872362.2872387
https://doi.org/10.1145/2872362.2872387
https://doi.org/10.1007/978-3-319-21690-4_27
https://doi.org/10.1007/978-3-319-21690-4_27
https://doi.org/10.1007/978-3-662-46681-0_27
https://doi.org/10.1145/1065010.1065045

PLDI ’20, June 15ś20, 2020, London, UK Ruyi Ji, Jingjing Liang, Yingfei Xiong, Lu Zhang, and Zhenjiang Hu

[47] Armando Solar-Lezama, Liviu Tancau, Rastislav BodÃŋk, Sanjit A.
Seshia, and Vijay A. Saraswat. 2006. Combinatorial sketching for finite
programs. ACM SIGOPS Operating Systems Review 40, 5 (2006), 404.

[48] Armando Solarlezama. 2008. Program synthesis by sketching. Disser-
tations & Theses - Gradworks (2008).

[49] ChenglongWang, Alvin Cheung, and Rastislav Bodík. 2017. Interactive
Query Synthesis from Input-Output Examples. In Proceedings of the

2017 ACM International Conference on Management of Data, SIGMOD

Conference 2017, Chicago, IL, USA, May 14-19, 2017. 1631ś1634.
[50] Yuepeng Wang, Xinyu Wang, and Isil Dillig. 2018. Relational program

synthesis. PACMPL 2, OOPSLA (2018), 155:1ś155:27.

[51] Yingfei Xiong, Jie Wang, Runfa Yan, Jiachen Zhang, Shi Han, Gang
Huang, and Lu Zhang. 2017. Precise Condition Synthesis for Program
Repair. In Proceedings of the 39th International Conference on Software

Engineering, ICSE 2017, Buenos Aires, Argentina, May 20-28, 2017. https:
//doi.org/10.1109/ICSE.2017.45

[52] Kuat Yessenov, Shubham Tulsiani, Aditya Krishna Menon, Robert C.
Miller, Sumit Gulwani, Butler W. Lampson, and Adam Kalai. 2013. A
colorful approach to text processing by example. In The 26th Annual

ACM Symposium on User Interface Software and Technology, UIST’13,

St. Andrews, United Kingdom, October 8-11, 2013. 495ś504.

1158

https://doi.org/10.1109/ICSE.2017.45
https://doi.org/10.1109/ICSE.2017.45

	Abstract
	1 Introduction
	2 Question Selection Problem in Interactive Program Synthesis
	2.1 Question Selection Problem
	2.2 A Greedy Strategy: Minimax Branch

	3 Optimized Algorithm I: SampleSy
	3.1 Overwiew
	3.2 Sampler S
	3.3 Decider D
	3.4 Question Selection
	3.5 Parallelization
	3.6 Properties of SampleSy

	4 Optimized Algorithm II: EpsSy
	4.1 Question Selection with Bounded Error
	4.2 Algorithm EpsSy
	4.3 Question Selection
	4.4 Properties of EpsSy

	5 Sampler
	5.1 Preliminaries
	5.2 Sampling from VSA
	5.3 Properties of VSampler
	5.4 Representing Size-Related Distribution

	6 Evaluation
	6.1 Implementation
	6.2 Compared Approach and Configuration
	6.3 Benchmarks and Experiments
	6.4 Exp 1: Comparison of the approaches (RQ1)
	6.5 Exp 2: Comparison of prior distributions (RQ2)
	6.6 Exp 3: Comparison of the sample size (RQ3)
	6.7 Exp 4: Comparison of the values of f (RQ4)

	7 Related Work
	8 Conclusion
	References

