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Intermediate data structures are a common cause of inefficiency in functional programming. Fusion attempts
to eliminate intermediate data structures by combining adjacent data traversals into one; existing fusion
techniques, however, are based on predefined rewrite rules and hence are limited in expressiveness.

In this work we explore a different approach to eliminating intermediate data structures, based on inductive
program synthesis. We dub this approach superfusion (by analogy with superoptimization, which uses inductive
synthesis for program optimization). Starting from a reference program annotated with data structures to be
eliminated, superfusion first generates a sketch where program fragments operating on those data structures
are replaced with holes; it then fills the holes with constant-time expressions such that the resulting program
is equivalent to the reference. The main technical challenge here is scalability because optimized programs
are often complex, making the search space intractably large for naive enumeration. To address this challenge,
our key insight is to first synthesize a ghost function that describes the relationship between the original
intermediate data structure and its compressed version; this function, although not used in the final program,
serves to decompose the joint sketch filling problem into independent simpler problems for each hole.

We implement superfusion in a tool called SuFu and evaluate it on a dataset of 290 tasks collected from
prior work on deductive fusion and program restructuring. The results show that SuFu solves 264 out of 290
tasks, exceeding the capabilities of rewriting-based fusion systems and achieving comparable performance
with specialized approaches to program restructuring on their respective domains.
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1 INTRODUCTION
Simplicity and efficiency are often at odds in programming. This is especially true in functional
languages, where the idiomatic programming style is to compose library functions that operate on
lists and other data structures. Programs written in this compositional style, however, are often
inefficient because they have to allocate and traverse intermediate data structures.

Consider a function mts that returns the maximum tail sum of a (possibly negative) integer list,
for example, mts [1,−2, 3,−1, 2] = 4, the sum of the last three elements [3,−1, 2]. This function can
be implemented by composing list functions, like so:� �

mts xs = maximum (map sum (tails xs))� �
where tails returns a (nested) list of all tails of the input, map applies the function sum to each tail
and obtains the list of all tail sums, and maximum returns the maximum among these sums.
This program is short and idiomatic. All four list functions it uses are commonly available in

standard libraries, such as Data.List in Haskell. However, this program is also inefficient due to
the large intermediate data structure constructed by tails, the list of all tails: the size of this data
structure is quadratic in the size of the input list, causing mts to take quadratic time.� �

mts' xs = (tails' xs).1

where

tails' Nil = (0, 0)

tails' Cons(h, t) =

let (tmts, tsum) = tails' t in

(max tmts (tsum + h), tsum + h)� �

The inefficiency of compositional programs can often be ad-
dressed by eliminating intermediate data structures, replacing
them with scalar attributes that are sufficient to compute the final
result. For example, in the mts program, we can replace the list
of all tails with a pair of attributes: (1) the maximum tail sum,
and (2) the sum of the whole list. The intuition is that the mts of
a non-empty list is either the mts of its tail, or the sum of the tail
plus the head element. Using this observation, we can rewrite mts into an efficient program mts’,
shown on the right, which only takes linear time. This program, however, is harder to write and
understand than the original one. Hence we would like to write programs in the style of mts, and
then transform them into efficient programs like mts’ automatically.

Deductive Fusion. Automatic elimination of intermediate data structures is a well-studied problem
in functional programming, also known as fusion or deforestation [Chin 1992; Coutts et al. 2007;
Fokkinga 1992; Gill et al. 1993; Hamilton 2001; Hu et al. 1996; Meijer et al. 1991; Takano and Meijer
1995; Wadler 1988]. Existing approaches to fusion are deductive, i.e. based on a predefined set of
rewrite rules that transform the reference program into an optimized one. Deductive fusion is fast
and its results are correct by construction, but its main downside is limited expressiveness: it only
applies to programs that match the rewrite rules. The state-of-the-art deductive approach [Hinze
et al. 2010] can only handle around 50% of our benchmark suite, which we collected from the
literature, and to our knowledge, no existing automatic fusion system can handle the mts example.

Superfusion. When faced with a similar expressiveness limitation of traditional compiler opti-
mizations, Massalin [Massalin 1987] proposed superoptimization, an approach that abandoned
deductive rewrite rules in favor of inductive synthesis, i.e. constructing an optimized program from
scratch, by searching the space of all programs, until one is found that matches the input-output
behavior of the reference implementation. In this paper, we take a similar approach to eliminating
intermediate data structures, which we refer to accordingly, as superfusion.

The input to superfusion is a reference program annotated with data structures to be eliminated;
e.g. the nested list returned by tails in the mts example. The first step is to turn the reference
program into a sketch [Solar-Lezama et al. 2006], where any program fragment that consumes or
produces the undesirable intermediate data structure is replaced with a hole. The second step is to
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solve the sketch, filling the holes with new expressions that operate only on scalar attributes, while
ensuring that the input-output behavior of the whole program is unchanged.1

Challenge 1: Scalability. The main technical challenge of superfusion is the scale of the search
space. The target program of superfusion is often large because optimized programs are typically
much more complex than idiomatic programs. Moreover, even when the solution to each single
hole has a manageable size, there is still an issue that all holes have to be solved jointly, since our
specification—equivalence to the reference program—is global. This scalability challenge makes a
direct application of existing inductive synthesizers infeasible.
To address this challenge, our first insight is to synthesize a “ghost” compression function,

denoted as ?compress, which maps the intermediate data structure to be eliminated to its scalar
attributes required in the optimized program. For example, the compression function for mts takes
a list of tails and returns the maximum tail sum and the sum of the first tail (i.e. the full list):� �

?compress ts = (maximum (map sum ts), sum (head ts))� �
This is a “ghost” function, since it does not appear in the final solution mts’; its sole purpose is to
decompose the global specification into local input-output specifications for each sketch hole, which
can then be solved independently using existing programming-by-example (PBE) solvers [Alur
et al. 2017b; Ji et al. 2021]. For example, with the definition of ?compress above, it is straightforward
to get input-output examples for the base case of tails’ (the optimized version of tails): since
tails [] = [[]] and ?compress [[]] = (0, 0), so tails′ [] should return (0, 0).
Challenge 2: Synthesizing Compression Functions. At this point, the reader might be wonder-
ing why synthesizing ?compress is any easier than synthesizing the optimized program directly.
After all, the only specification we have for ?compress is that all sketch holes can be filled cor-
rectly while only operating on the scalar attributes. This appears to be a chicken-and-egg problem:
we need the definition of ?compress to efficiently fill the holes, but to decide if we got the right
?compress, we need to know whether the holes can be filled! Our second insight is that, as long as
the program space of sketch holes is rich enough, this apparent circular dependency can be broken
using second-order quantifier elimination, resulting in an independent synthesis task for ?compress.
In comparison, this task is simpler than the original superfusion task because ?compress does not
need to be efficient, and hence is smaller (and easier to synthesize) than the sketch holes.
Evaluation. We implement superfusion in a tool called SuFu and evaluate it on a suite of 290
benchmarks collected from prior work. Our first source of benchmarks are fusion tasks from the
deductive fusion literature [Bird 1989; Bird and de Moor 1997; Gill et al. 1993; Hu et al. 1997; Wadler
1988]. For our second source of benchmarks, we turns to prior work on program restructuring [Acar
et al. 2005; Farzan et al. 2022; Farzan and Nicolet 2017, 2021a,b; Ji et al. 2024b; Morita et al. 2007; Pu
et al. 2011], where the problem is to transform a reference program into a specific target form, such
as “divide-and-conquer” or “single pass”. We show that for several specific target forms studied in
the literature, program restructuring can be reduced to fusion.

Our evaluation results show that SuFu can solve 264 out of 290 problems, at least half of which
are beyond the reach of deductive fusion techniques. Moreover, while being general, SuFu is also
competitive with two specialized synthesizers for program restructuring [Farzan et al. 2022; Ji
et al. 2024b] on their respective domains, in terms of the number of solved problems (although it is
somewhat slower in terms of synthesis times).
Contributions. To sum up, this paper makes the following main contributions.
1Like many inductive synthesizers [Solar-Lezama et al. 2006; Torlak and Bodík 2013] our technique only performs bounded
verification, i.e. it only checks that the two programs are equivalent on a finite set of inputs; an external unbounded verifier
can be integrated into superfusion if one is available.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 185. Publication date: June 2024.



185:4 Ruyi Ji, Yuwei Zhao, Nadia Polikarpova, Yingfei Xiong, and Zhenjiang Hu

� �
List = Nil | Cons(Int, List)

NList = NNil | NCons(List, NList)

tails Nil = NCons(Nil, NNil)

tails Cons(_, t)@xs = NCons(xs,

tails t)� �� �
tails :: List -> Packed NList

mts xs = maximum (map sum (tails

xs))� �
(a) The input to SuFu. (b) Sketch generation. (c) Sketch solving.

Fig. 1. The workflow of SuFu on the mts example. (a) The input to SuFu: a reference implementation of mts

with the output type of tails annotated for elimination. (b) Sketch generation: subterms highlighted in red

produce or consume NList and hence are replaced with holes. (c) Sketch solving: the optimized program

synthesized by SuFu where terms filled into sketch holes are highlighted.

• A sketch generation method (Sec. 3) that takes a reference program as the input and infers
minimal sketch holes for eliminating intermediate data structures, guided by the type.
• A sketch solving method (Sec. 4) that decomposes the global sketch problem into local tasks
for each sketch hole by synthesizing a ghost function and performing quantifier elimination.
• An extensive evaluation of SuFu (Sec. 7) on 290 benchmarks collected from the literature,
which demonstrates the effectiveness of SuFu in eliminating intermediate data structures.

2 OVERVIEW
This section gives an overview of our tool SuFu, using the mts example from the introduction; the
workflow of SuFu on this example is shown in Fig. 1. Recall that the idiomatic implementation
of mts is inefficient because of the intermediate data structure produced by tails. To get a more
efficient program, the user annotates the output type of tails with Packed to specify that it should
be eliminated (Fig. 1a). SuFu then replaces the annotated data structure with scalar attributes and
rewrites all related program fragments, generating a more efficient implementation (Fig. 1c).

2.1 Superfusion as Program Sketching
The first step in SuFu’s workflow is to turn the annotated reference program into a sketch [Solar-
Lezama et al. 2006], as shown in Fig. 1b. To this end, SuFu uses a type-directed approach, which
we detail in Sec. 3, to identify the subterms that produce or consume data structures annotated
with Packed—in our case, the NList generated by tails. There are three such terms in mts, labeled
?t1, ?t2, and ?t3 in Fig. 1b: ?t1 and ?t2 produce an NList, while ?t2 and ?t3 consume an NList. Each
of these three terms is replaced with a sketch hole, which the synthesizer will need to fill with a
new term, only operating on scalar attributes of the original NList.

To make the synthesizer’s job easier, SuFu attempts to reuse as much of the original program as
possible, moving subterms that do not directly operate on Packed data structures out of the holes,
into let-bindings. For example, the two invocations of tails in Fig. 1b are moved out, because they
do not contain any NList-specific operations.
Once the sketch has been generated, SuFu’s task is to solve it, i.e. to fill the holes so that the

resulting program is both correct and efficient:
• Correctness requires that the final program has the same input-output behavior as the ref-
erence. SuFu is based on the CEGIS framework [Solar-Lezama et al. 2006] and assumes
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Table 1. Local examples collected by executing mts [2]. From left to right: hole id and the variables it has in

scope; the original term for this hole; IO behavior of the original term (with intermediate data structures

marked in blue); symbolic local examples obtained by “compressing” intermediate data structures with an

unknown program ?compress; concrete local examples obtained using the ?compress in Eq. 1.

Hole Original Term Original IO Behavior Local Examples
Symbolic Form Concrete From

?t1 () NCons(Nil, NNil) ?t1 () = [[]] ?t1 () = ?compress [[]] ?t1 () = (0, 0)

?t2 (xs, ts) NCons(xs, ts)
?t2 ([2],[[]])

=[[2], []]
?t2 ([2],?compress [[]])

=?compress [[2], []]
?t2 ([2], (0, 0))

= (2, 2)

?t3 ts maximum (map sum ts) ?t3 [[2], []] = 2 ?t3 (?compress [[2], []]) = 2 ?t3 (2, 2) = 2

the existence of an external verifier capable of generating counter-examples for incorrect
programs; hence the synthesizer only needs to ensure correctness on a finite set of inputs.
• Efficiency. Fusion is only helpful if the resulting program is more efficient than the reference,
but without any restrictions on the program space for the holes, this is not guaranteed: for
example, the solution for ?t3 could ignore the new optimized tails and simply recreate the
original implementation from scratch. To prevent this, we restrict the program space of sketch
holes to include only recursion-free programs that run inO (1) time. With this restriction, we
can prove an efficiency guarantee on the resulting program (Thm. 4.11).

2.2 Sketch Solving with Compression Functions
Superfusion sketches are challenging to solve because optimized programs are often much more
complex than idiomatic programs, so the expressions that need to be synthesized for each hole
are relatively large. In our dataset, the average size of these expressions is 45.5 AST nodes, with
a maximum of 559. This scale exceeds the capabilities of general-purpose sketch solvers [Solar-
Lezama et al. 2006; Torlak and Bodík 2013], especially given that a superfusion sketch typically
contains multiple holes, which must jointly satisfy the global IO specification. In our experiments,
a state-of-the-art sketch solver [Lu and Bodík 2023] can only solve ∼30% of tasks in our dataset.

To overcome this challenge, SuFu decomposes the global IO examples for the whole sketch into
local IO examples for each hole. With these local examples, SuFu uses off-the-shelf PBE solvers for
recursion-free programs [Alur et al. 2017b; Ji et al. 2021] to solve each hole independently.
To generate the local examples, we leverage the reference program. Specifically, we start by

observing the IO behavior of the original terms that were replaced by holes. For example, Tab. 1
illustrates the behavior of the three terms in the original mts program, corresponding to sketch
holes ?t1, ?t2, and ?t3, when executed on the input list [2]. Of course, these IO behaviors cannot
directly be used as the specification for the holes because they involve intermediate data structures
to be eliminated—the nested lists, shown in the table in blue.
Our first key insight is to bridge the gap between the behavior of the original and the target

programs by introducing an unknown compression function, ?compress, which maps the undesired
intermediate data structure to scalar attributes. Using this function, we can express local examples
for each hole in a symbolic form, by simply compressing the intermediate data structure in each
original behavior, as shown in the fourth column of Tab. 1.
Assume for a second we had an oracle for ?compress, which knew to compress the list of tails

intro two scalar attributes, the maximum tail sum and the sum of list elements:

?compress ts B
(
maximum (map sum ts), sum (head ts)

)
(1)
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This definition can now be substituted into the symbolic local examples to obtain concrete local
examples for each sketch hole, as shown in the last column of Tab. 1. With enough local examples
(collected by executing mts on enough inputs), an off-the-shelf PBE solver can efficiently synthesize
the correct solution to each hole, shown in Fig. 1c.
The remaining challenge is to synthesize a suitable compression function, i.e. to guess which

scalar attributes are sufficient to implement the sketch holes in O (1) time; the rest of this section is
devoted to this task.

2.3 Synthesizing the Compression Function
The only specification we have for ?compress are symbolic local examples, such as those in Tab. 1.
The issue with this specification, of course, is that it also refers to the unknown sketch holes, ?t1,
?t2, and ?t3. The naive way to approach this problem is to synthesize ?compress and all sketch holes
simultaneously, but that defeats the purpose of introducing ?compress in the first place.
Our second key insight is that domain-specific properties of superfusion enable an efficient

synthesis algorithm that combines enumeration and (quantifier) elimination. Specifically, we ob-
serve that the unknown programs (?compress and sketch holes) can be further decomposed into
components that can be classified into two categories:

(1) components with a small implementation, which can be efficiently enumerated;
(2) components that can be quantified over as uninterpreted functions and eliminated.

This observation leads to the following synthesis algorithm:

• The top-level algorithm iteratively refines ?compress, adding scalar attributes as required by
local examples for a single hole.
• In each iteration, SuFu uses a second-order quantifier elimination method inspired by Acker-

mann’s reduction [Lewis 1978] to obtain a simpler specification involving only the new scalar
attributes plus at most a small component of a sketch hole, allowing efficient enumeration.

Next, we discuss the iterative refinement and the quantifier elimination method in more detail.

2.3.1 Iterative Refinement of the Compression Function. Consider again the compression function
in Eq. 1, which computes two scalar attributes from a list of tails. Instead of having to guess both
attributes at once (by enumerating a tuple of terms), SuFu iteratively refines the definition of this
function, starting from an empty tuple and adding an attribute whenever the specification for one
of the sketch holes is found unrealizable.

Let us walk through this iterative refinement for mts; in the following, we assume that SuFu has
extracted examples from multiple executions of mts, including mts [2] (in Tab. 1) and mts [2,−1].

Iteration 1. We start with the empty compression function, i.e. ?compress ts B (). Substituting this
definition into the local examples, we find that the constraints for hole ?t3 are unrealizable:

∃?t3 ∈ Lint
O (1) . ?t3 () = 2 ∧ ?t3 () = 1 ∧ . . .

Here Lint
O (1) is the space of all constant-time programs with integer output, and the two conjuncts

originate from the two executions of mtsmentioned above. Clearly such a ?t3 does not exist because
it produces different outputs for the same input. Hence we need to add a new scalar attribute to
?compress that provides enough information to differentiate between the two executions.

More formally, we need to find a function ?compress1 that satisfies the following specification:

∃?t3 ∈ Lint
O (1) . ?t3 (?compress1 [[2], []]) = 2 ∧ ?t3 (?compress1 [[2,−1], [−1], []]) = 1 ∧ . . . (2)
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Our quantifier elimination procedure, detailed below, can eliminate ?t3 from this specification, and,
assuming enough local examples are available, will discover the correct definition for ?compress1:

?compress1 ts B maximum (map sum ts)

Iteration 2. Since a new attribute has been added, we need to check whether it made any other
sketch holes unrealizable. Indeed, by substituting our new definition ?compress B ?compress1 into
the local examples, we get the following for hole ?t2:

∃?t2 ∈ Lint
O (1) . ?t2 ([2], 0) = 2 ∧ ?t2 ([2,−1], 0) = 1 ∧ . . .

This specification is also unrealizable. Intuitively, this is because the mts of the tail (i.e., the second
input of ?t2, which is 0 in both cases) clearly does not contain enough information to compute the
mts of the whole list, which is 2 in the first case and 1 in the second case; and although ?t2 also has
access to the input list xs through its first input, it cannot compute mts from xs in O (1) time since
xs can be arbitrarily long.
To fix this unrealizable hole, we need to add another attribute, ?compress2, to the compression

function, satisfying the specification:

∃?t2 ∈ Lint
O (1) . ?t2

(
[2], (0, ?compress2 [[]])

)
= 2 ∧

?t2
(
[2,−1], (0, ?compress2 [[−1], []])

)
= 1 ∧ . . .

(3)

Once again, given enough examples, our quantifier elimination will discover that the additional
attribute required here is the sum of the list elements:

?compress2 ts B sum (head ts)

Iteration 3. Once we substitute ?compress ts B (?compress1 ts, ?compress2 ts) into local examples,
we find that all sketch holes are realizable, which concludes the synthesis of ?compress.

2.3.2 Quantifier Elimination. We conclude this section by explaining how SuFu synthesizes each
scalar attribute of ?compress from the specifications Eq. 2 and Eq. 3.
Iteration 1. Let us consider the specification for ?compress1 in Eq. 2. This specification involves
two unknown programs, ?compress1 and ?t3, and our goal is to avoid synthesizing both of them
simultaneously. To this end, we observe that:
(1) to synthesize ?compress1, we do not need to know the implementation of ?t3, only that such

a function exists.
(2) a function exists if and only if it maps every input to a unique output.

These observations suggest a simple second-order quantifier elimination procedure2, which trans-
forms Eq. 2 into the following equivalent form that involves only ?compress1:

∀(ts, out), (ts′, out′) ∈ E3. (?compress1 ts = ?compress1 ts
′) → (out = out

′) (4)

where E3 is the set of local examples collected for ?t3 from the executions of mts (such as the last
row, the Example column of Tab. 1).

We can now enumerate candidate ?compress1 from smaller to larger, checking them against the
specification Eq. 4. SuFu can find the desired program ?compress1 ts B maximum (map sum ts)
from 21 executions of mts. Tab. 2 illustrates three smaller but incorrect candidates for ?compress1,
together with a pair of executions sufficient to reject them.
A careful reader might object that Eq. 4 is only equivalent to Eq. 2 when the space of ?t3 can

implement all possible functions, whereas in our case ?t3 is restricted to the space of O (1)-time
2In fact, this is a special case of Ackermann’s reduction [Lewis 1978], used to eliminate uninterpreted functions from a
formula by replacing their invocations with fresh variables and adding constraints that equal inputs produce equal outputs.
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Table 2. Three invalid candidates for ?compress1 and examples sufficient to reject them based on Eq. 4.

Candidate Program Execution Symbolic Local Example for ?t3 Conflict
length of the list of tails mts [2] ?t3 (?compress [[2], []]) = 2 ?t3 2 = 2
?compress1 ts B length ts mts [1] ?t3 (?compress [[1], []]) = 1 ?t3 2 = 1

sum of elements mts [2] ?t3 (?compress [[2], []]) = 2 ?t3 2 = 2
?compress1 ts B sum (head ts) mts [−1, 3] ?t3 (?compress [[−1, 3], [3], []]) = 3 ?t3 2 = 3

maximum of elements mts [2] ?t3 (?compress [[2], []]) = 2 ?t3 2 = 2
?compress1 ts B maximum (head ts) mts [2,−1] ?t3 (?compress [[2,−1], [−1], []]) = 1 ?t3 2 = 1

programs. In this case, however, it is reasonable to assume that theO (1)-time requirement imposes
no extra restrictions on the space of ?t3, because both its inputs and outputs are scalar values, and
most scalar calculations can be done in O (1) time.
Iteration 2. The specification Eq. 3 for ?compress2 is a little more involved. The main difference is
that we cannot eliminate ?t2 using the same reasoning as above, because ?t2 no longer operates
only on scalar values: it takes the list xs as its first input, and many list-processing functions do not
have any O (1)-time implementation.

Fortunately, this issue can be addressed by further decomposing ?t2. Specifically, since ?t2 is an
O (1)-time program, it can only access a constant number of scalar values in the input. Therefore,
without loss of generality, we can assume that ?t2 has the form:

?t2 (xs, ts) B ?comb (?extract (xs, ts))

where ?extract extracts a tuple of scalar values from the input variables and ?comb combines them
into the final result. With this decomposition in place, we can now use our previous technique to
eliminate ?comb (which operates on scalars), and then enumerate ?extract jointly with ?compress2
(note that ?extract is small because it does not perform any actual computation), resulting in:

?extract (xs, ts) B (ts.1, ts.2, head xs) ?compress2 ts B sum (head ts)

3 SKETCH GENERATION
Given a reference program whose intermediate data structures have been annotated with Packed,
SuFu’s first step is to translate this program into a sketch by replacing some of its subterms with
holes. Intuitively, sketch holes must satisfy the following requirements:
(1) Correctness: the holes must cover all subterms that directly produce or consume intermedi-

ate data structures because these data structures must be replaced with scalar attributes.
(2) Feasibility: the output of each hole must be scalar; otherwise, this hole’s solution will need to

reconstruct a non-scalar data structure from scalar attributes, which is generally impossible.
(3) Minimality: the subterms covered by holes should be as small as possible because the larger

they are, the more SuFu needs to synthesize, and thus the harder the synthesis task will be.
To formalize these requirements, we design an intermediate language, dubbed λsk, which makes

the scope of the holes and all uses of intermediate data structures explicit. Importantly, any well-
typed λsk program corresponds to a sketch that is both correct and feasible. Sketch generation is
then reduced to the problem of elaborating the reference program into a well-typed intermediate
representation, while minimizing the scope of the holes.

3.1 Intermediate Language
The syntax of λsk is shown in Fig. 2. The language is a simply typed lambda calculus with inductive
data types, which we augment with the following annotations:
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Fig. 2. SuFu’s intermediate language λ
sk

presented via abstract binding trees [Harper 2016]. We use ind(·) to

denote inductive data types, andC to denote data constructors. Annotations (highlighted in red ) are not part

of the surface language. SuFu automatically introduces term-level annotations (rewrite, label, and unlabel)

given the type-level Packed annotations provided by the user.

Γ ⊢s t : T for scope s ∈ {in, out}
(T-Rewrite)
Γ ⊢in t : S S ∈ ScalarType

Γ ⊢s rewrite(t ) : S

(T-Label)
Γ ⊢in t : B B ∈ BaseType

Γ ⊢in label(t ) : Packed(B)

(T-Unlabel)
Γ ⊢in t : Packed(T )
Γ ⊢in unlabel(t ) : T

Fig. 3. Typing rules for annotations in λ
sk
. The scope s represents whether the current term is inside a rewrite.

• At the type level, we introduce Packed annotations, which are treated as a type constructor:
PackedT is a new type, different fromT . Besides, λsk treats PackedT as a scalar type because,
intuitively, users annotate data structures as Packed to turn them into scalars.
• At the term level, we introduce three annotations—label, unlabel, and rewrite—which are
added automatically during elaboration. label and unlabel are the constructor and destructor
for Packed values; for example, label[1, 2] is of type Packed List and unlabel (label [1, 2]) =
[1, 2]. These constructs make the production and consumption of intermediate data structures
explicit. Finally, the rewrite annotation marks the scope of a hole; rewrite t has the same
type and behavior as t , but is treated as a hole to be replaced with a constant-time term.

The typing rules of λsk are standard apart from those for annotations, shown in Fig. 3. Note
that the typing judgment Γ ⊢s t : T is parameterized by a scope s ∈ {in, out}, which keeps track
of whether the current term t is inside a rewrite. The rules T-Label and T-Unlabel only allow
producing and consuming intermediate data structures inside a rewrite, thereby enforcing the
correctness requirement above. The rule T-Rewrite restricts the argument to rewrite to have a
scalar type, thereby enforcing the feasibility requirement.

Example 3.1. Consider again the mts program from Fig. 1a. Here the user has annotated the
output of tails with Packed, thereby making the program ill-typed in λsk: specifically, the body of
tails is ill-typed because it produces an NList where a Packed NList is expected, and conversely,
the body of mts is ill-typed because tails xs returns a Packed NList where an NList is expected by
map sum. The task of the elaboration process is to insert label, unlabel, and rewrite annotations to
make the program well-typed in λsk. Consider four possible elaborations of the body of mts:

maximum (map sum (unlabel (tails xs))) (A)
maximum (rewrite (map sum (unlabel (tails xs)))) (B)
rewrite (maximum (map sum (unlabel (tails xs)))) (C)

let ts = tails xs in rewrite (maximum (map sum (unlabel ts))) (D)
Term A inserts an unlabel to provide the correct argument type to map sum; it is still ill-typed,

however, because unlabel is not inside a rewrite. Intuitively, this term violates the correctness

requirement: the invocation of tails produces an intermediate data structure, but is not covered
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� �
tails :: List -> Packed NList

tails Nil =

let ts = NCons(Nil, NNil) in

rewrite (label ts)

tails Cons(_, t)@xs =

let ts = tails t in

rewrite (label NCons(xs, unlabel ts))

mts_label xs =

let ts = tails xs in

rewrite (maximum (map sum (unlabel ts)))� �
Fig. 4. The sketch for mts from Fig. 1a.

Algorithm 1: Sketch solving.
Input: A sketch p and inputs I .
Output: A sketch solution (Ti , th ).

1 Esym ←
⋃

in∈I CollectExamples(p, in);
2 compress← CompressSynthesis(Esym);
3 Eio ← Subst(Esym, compress)

4 foreach sketch hole h do
5 ti ← PBESolver(Lscalar

O (1) ,Eio[h]);
6 end
7 return ([output type of compress], ti );

by a hole. Term B does cover the unlabel with a rewrite, but it is nevertheless ill-typed because
the argument type of its rewrite is a List instead of a scalar type. Intuitively, this term violates
the feasibility requirement: if we tried to synthesize a solution for this hole, we would need to
reconstruct the full list of tail sums from only scalar attributes of the input list, which is impossible.
Finally, terms C and D are both well-typed elaborations of mts; the difference is that term D moves
the invocation of tails into a let binding and out of the rewrite, thereby reducing the scope of
the hole and allowing the synthesizer to reuse the recursion structure of the original program.

3.2 Generating Minimal Annotations
With the intermediate language in place, we can now formalize the task of sketch generation:

Definition 3.2 (Sketch Generation). Given a reference program p in λsk (potentially ill-typed due
to Packed annotations), find a sketch, i.e. a program p ′ in λsk, such that: (1) p ′ can be obtained from
p by adding label, unlabel, and rewrite annotations, or extracting sub-terms into let-bindings;
(2) p ′ is well-typed; (3) the total size of arguments to rewrite in p ′ is minimized.

Note that the IO behavior of the sketch is always the same as that of the reference program,
because all the transformations performed during sketch generation are semantics-preserving.

SuFu reduces the sketch generation problem to a MaxSAT instance and solves it using an off-the-
shelf constraint solver (Z3 [de Moura and Bjørner 2008] in our implementation). The encoding is
straightforward: SuFu encodes the search space (condition 1 above) as a symbolic program, where
the choice to insert an annotation or let-bindings for each subterm is controlled by a Boolean
variable; it encodes the typing (condition 2) as a hard constraint by symbolically executing the type
checker on the symbolic program; finally, it encodes the minimality requirement (condition 3) as a
soft constraint by symbolically executing the objective function.

Example 3.3. Among the four different elaborations of mts in Example 3.1, all of them satisfy
condition (1) from definition Def. 3.2, but only terms C and D are well-typed and only term D is
also minimal. The resulting sketch—i.e. the well-typed and minimal elaboration—for the full mts
example from Fig. 1a is shown in Fig. 4.

4 SKETCH SOLVING
In this section, we introduce the sketch solving approach in SuFu. We start with the problem
definition (Sec. 4.1) and a high-level overview of the approach (Sec. 4.2), and then delve into the
details in the following subsections.
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4.1 Synthesis Problem
A solution for a sketch in λsk consists of (1) a list of scalar surface-level types to replace Packed T
types, and (2) a list of constant-time surface-level terms to replace holes, i.e. rewrite t terms. The
restriction to surface level simply means that the solution cannot use any annotations, and the
restriction to scalar types and constant-time terms ensures that the solution is efficient.

Definition 4.1 (Sketch Solution). A solution for a sketch p in λsk is a pair (Ti , th ) of a list of types
Ti and a list of terms th satisfying the following conditions.
• Ti contains only scalar types in the surface language.
• th contains only constant-time terms in the surface language, or formally, terms that can be
evaluated within a fixed number of steps under any well-typed context.
• lengths of Ti and th are respectively equal to the number of Packed and rewrite annotations.

Given a solution (Ti , th ), we obtain a synthesized program from the sketch p by replacing each
Packed T with the corresponding type in Ti and each rewrite t with the corresponding term in th .

Example 4.2. For the sketch mts_label in Fig. 4, the desired solution is to take the singleton list
[Int × Int] as Ti and take the three highlighted terms in Fig. 1c as th .
Our synthesis problem then is to find a sketch solution such that the synthesized program has

the same IO behavior as the sketch (and hence, as the reference program it was generated from).
Definition 4.3 (Sketching Problem). Given a sketch p in language λsk and a finite set I of inputs,

the sketching problem is to find a solution of p such that the synthesized program has the same
output as p on every input in I .
For simplicity, we consider only a finite set of inputs in this definition. In our implementation,

we incorporate the CEGIS framework [Solar-Lezama 2009] to reduce the general case of an infinite
input space to a finite set of representative inputs.

In the remainder of this section, we focus our discussion on a special case where Packed is used
only once (and hence, |Ti | = 1). Our approach extends straightforwardly to the general case with
multiple Packed annotations by synthesizing a separate compression function for each intermediate
data structure. Details on this extension can be found in the appendix [Ji et al. 2024a].

4.2 Top-Level Algorithm
Algorithm 1 is SuFu’s top-level sketch solving algorithm. Given a sketch p and a set of inputs I ,
SuFu evaluates the sketch on each input and collects symbolic local examples Esym for the holes
(Line 1). From the symbolic examples it synthesizes a compression function compress, which maps
intermediate data structures to their scalar attributes (Line 2). It then substitutes compress into the
symbolic examples to obtain concrete local examples Eio (Line 3). Finally, SuFu uses a PBE solver to
synthesize a solution for each sketch h from its concrete examples, Eio[h] (Line 4).

The core of this algorithm is functions CollectExamples and CompressSynthesis. We shall intro-
duce these two functions in order in the next two subsections (Sec. 4.3 and Sec. 4.4).

4.3 Example Collection
We use big-step environment semantics [Dikotter 1990] of λsk to formalize the collection of local
examples. The evaluation in this semantics follows strictly along the syntax, hence local examples
can be directly constructed from the results of evaluating rewrite terms.

Example 4.4. The following shows a part of the derivation for evaluating mts_label[2,−1]. The
judgment has the form of E ⊢ t ⇓ v , where E is an environment assigning values to free variables, t
is the term to be evaluated, and v is the evaluation result.
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. . .

(xs 7→ [2,−1]) ⊢
tails xs ⇓ label [[2,−1], [−1], []]

. . .

(xs 7→ [2,−1], ts 7→ label [[2,−1], [−1], []]) ⊢
rewrite (maximum (map sum (unlabel ts))) ⇓ 1

(xs 7→ [2,−1]) ⊢ let ts = tails xs in rewrite (maximum (map sum (unlabel ts))) ⇓ 1

The right branch here evaluates the third rewrite term in mts_label, corresponding to hole ?t3.
This term evaluates to 1 under the environment (xs 7→ [2,−1], ts 7→ label [[2,−1], [−1], []]). As
you can see, the values collected from a sketch evaluation can contain the label constructor (in this
case, in the input, but generally also in the output); these labelv values correspond to intermediate
data structures that must be “compressed” into scalar attributes. Hence, we replace label with the
unknown function ?compress to obtain a symbolic local example for a hole; for instance:

⟨in, out⟩ =
〈(
xs 7→ [2,−1], ts 7→ ?compress [[2,−1], [−1], []]

)
, 1
〉

is a symbolic local example for ?t3 that corresponds to the sketch evaluation above and is added to
Esym[?t3] by CollectExamples.
To convert symbolic examples to concrete examples, Algorithm 1 uses Subst(Esym, compress),

which substitutes the concrete compression function compress for the variable ?compress, and then
β-reduces the resulting term. For example, invoking Subst on the symbolic example above with
compress = λx .sum (head x) yields the concrete example ⟨(xs 7→ [2,−1], ts 7→ 1), 1⟩.

4.4 Synthesizing the Compression Function
Given the symbolic local examples Esym, our task is to pick an implementation for ?compress such
that each sketch hole is realizable in constant time, or more formally:

n∧
h=1

ρ (h) where ρ (h) = ∃?th ∈ Lscalar
O (1) ,∀⟨in, out⟩ ∈ Esym[h], ?th in = out (5)

Here n is the number of sketch holes and Lscalar
O (1) is the space of constant-time scalar-typed terms in

the surface language. We will refer to the constraint ρ (h) as the realizability constraint for hole h.

Example 4.5. Assume that we have collected a series of local symbolic examples for the hole ?t3,
including the one from Example 4.4. Then the realizability constraint ρ (?t3) for this hole is:

∃?t3 ∈ Lscalar
O (1) , ?t3

(
xs 7→ [2,−1], ts 7→ ?compress [[2,−1], [−1], []]

)
= 1 ∧ . . . (other examples)

If we use a trivial compression function that does not extract any attributes, i.e. ?compress 7→

λx .(), this constraint will be unrealizable since we cannot compute the mts in constant time just
from the input list. However, if we add the attribute of the maximum tail sum, i.e. ?compress 7→

λx .(maximum (map sum x)), this constraint becomes realizable with ?t3 simply returning ts.

SuFu solves realizability constraints by iteratively refining ?compress with new attributes, as
shown in Algorithm 2. This algorithm maintains the current tuple of attributes A. Every attribute
α ∈ A is a term with a free variable x that denotes the intermediate data structure, so that λx .A is a
valid compression function; for example, we might have:

A = (maximum (map sum x), sum (head x))

to denote that the current compression function computes two attributes from the list of tails x—
maximum tail sum and sum of list elements, referred to hereafter as mts and sum, respectively.

The tuple A starts out empty and is iteratively extended with new attributes found by Refine. In
each iteration, SuFu first instantiates the symbolic examples Esym with the current compression
function λx .A to obtain the concrete local examples E (Line 3). The function Refine (Lines 8-12)
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Algorithm 2: Function CompressSynthesis.
Input: Symbolic local examples Esym.
Output: A compression function.

1 A← ();
2 while true do
3 E← Subst(Esym, λx .A);
4 A∗ ← Refine(E);
5 if A∗ is empty then return λx .A;
6 A← A ∪A∗;
7 end

8 Function Refine(E):
9 foreach sketch hole h do

10 Ah ← SolveSingleHole(E[h]);
11 end
12 return ∪hAh ;

Table 3. Workflow of Algorithm 2 on mts. Row sym shows two symbolic local examples collected from for

holes ?t2 and ?t3 (with intermediate data structures in blue). The remaining three rows show concrete versions

of those examples in the first three iterations, with the intermediate data structures replaced by the scalar

attributes added so far. Grayed out examples (and attributes in the output) are ignored because they are

already known to be satisfied by the current compression function.

Iter.
Example for ?t2 Example for ?t3

In Out In Out
sym xs 7→ [2,−1], ts 7→ [[−1], []] [[2,−1], [−1], []] xs 7→ [2,−1], ts 7→ [[2,−1], [−1][]] 1
1 xs 7→ [2,−1], ts 7→ () () xs 7→ [2,−1], ts 7→ () 1
2 xs 7→ [2,−1], ts 7→ (0) (1) xs 7→ [2,−1], ts 7→ (0) 1
3 xs 7→ [2,−1], ts 7→ (0,−1) (1, 1) xs 7→ [2,−1], ts 7→ (0,−1) 1

then iterates through each hole h, synthesizing additional attributes Ah required to make this hole
realizable under the current concrete examples E[h]; the heavy lifting here is done by the function
SolveSingleHole, which will be introduced in Sec. 4.5. In Line 12, Refine returns the union of all
new attributes modulo observational equivalence (two attributes are observationally equivalent if
their value is the same for all intermediate data structures in Esym).

If Refine did not synthesize any new attributes, then all the holes are already realizable with the
current compression function, and the algorithm terminates returning λx .A (Line 5). Otherwise,
SuFu adds the new attributes to A and continues.3

Example 4.6. Let us walk through Algorithm 2 for the mts task. Here we assume that enough
executions of mts are available to avoid spurious solutions and focus on two local examples for
holes ?t2 and ?t3 in Tab. 3; both of these examples are collected from the execution mts_label [2,
-1]. The row sym shows the symbolic local examples (with intermediate data structures in blue),
while the remaining rows show the concrete version in each iteration of Algorithm 2 (Lines 2-7),
where intermediate data structures are replaced according to the current compression function.
Iteration 1. We start with A = (); the corresponding concrete local examples are shown in Row 1
of Tab. 3. At this point, hole ?t3, whose output is a surface-language scalar, is unrealizable for the
reasons explained in Example 4.5. On the other hand, hole ?t2, whose output is an intermediate

data structure, is trivially realizable, since it simply returns unit; hence, Refine can safely ignore ?t2
in this iteration (denoted by its examples being grayed out in the table). Based on the examples for

3Readers familiar with Constrained Horn Clauses (CHC) might recognize the similarity between the iterative refinement of
the compression function and fixpoint CHC solvers [Bjørner et al. 2013; Rondon et al. 2008], which initialize unknown
predicates with a trivial solution and then iteratively weaken (or strengthen) them to resolve invalid clauses.
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?t3, Refine will discover that the attribute mts is necessary to make this hole realizable, resulting in
A = (mts) after the first iteration.
Iteration 2. Since the first iteration synthesized a new attribute mts, we need to call Refine again
with the new concrete examples (shown in Row 2 of Tab. 3), to check whether the new attribute
caused any holes to become unrealizable. This is indeed the case in for hole ?t2: this hole now must
compute the mts of the full list from only the mts of the tail (and the whole input list), which is
impossible in constant time. Note that the hole ?t3 is ignored in this iteration because its output did
not change, so we already know it is realizable. In this round Refine will discover a new attribute
sum—the sum of list elements—for hole ?t2, thus updating tuple A to A = (mts, sum).
Iteration 3. Since a new attribute sum was added, SuFu invokes Refine once again on the new
concrete examples (Row 3 of Tab. 3). This invocation can still ignore the hole ?t3, and additionally
can ignore the old attribute mts in the output of ?t2, because previous iterations already ensure
that it can be calculated in constant time. Hence, Refine focuses on the new output of ?t2, checking
if it is realizable; since this is the case, no new attributes are added, and the algorithm terminates.

4.5 Synthesizing Attributes for a Single Sketch Hole
Algorithm 2 invokes the function SolveSingleHole to discover missing attributes for a hole h based
on the concrete examples E[h] for that hole. In other words, this function needs to synthesize an
additional compression function ?compress

′ such that the examples E[h] would become realizable
after extending their inputs with the new attributes specified by ?compress

′:

∃?th ∈ Lscalar
O (1) ,∀⟨in, out⟩ ∈ E[h], ?th

(
in, ?compress

′
in

orig

i

)
= out (6)

Here we write inorigi denotes the ith intermediate data structure in the original input, which has
been compressed into scalar attributes in the current input in.

Example 4.7. When SolveSingleHole is invoked on ?t2 in the second iteration of Algorithm 2,
the specification of ?compress

′ is as follows (with the example in Row 2 of Tab. 3 shown explicitly):

∃?t2 ∈ Lscalar
O (1) , ?t2

(
(xs 7→ [2,−1], ts 7→ 0), ?compress

′ [[2,−1], [−1], []]
)
= (1) ∧ . . . (other examples)

It is challenging to solve the specification Eq. 6 because it involves the sketch hole ?th , which is
too complex to be synthesized together with ?compress

′. To overcome this challenge, we transform
this specification in two steps to eliminate (most of) the sketch hole.

First, since ?th is limited to constant-time, it can only access a constant number of scalar values
in the input. Hence, it can be decomposed as ?th in B ?comb (?extract in), where ?extract extracts a
tuple of scalar values and ?comb accomplishes the calculation using the extracted values. With this
decomposition, Eq. 6 can be rewritten as follows:

∃?comb, ?extract ∈ Lscalar
O (1) ,∀⟨in, out⟩ ∈ E, ?comb

(
?extract

(
in, ?compress

′
in

orig

i

))
= out

Second, since most common scalar calculations can be accomplished efficiently, we assume that
our program space Lscalar

O (1) is expressive enough to implement all possible scalar functions.

Assumption 4.8. For any function f whose input and output are both scalar values, there always

exists a constant-time term with the same semantics, i.e., ∃t ∈ Lscalar

O (1) ,∀in, f in = t in.

We then use a quantifier elimination procedure to remove ?comb from the specification. Specifi-
cally, by Asm. 4.8, we can regard ?comb as an uninterpreted function and thus apply Ackermann’s
reduction [Lewis 1978] to ?comb. This reduction eliminates an uninterpreted function using its
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congruence property (i.e., identical inputs imply identical outputs), and here, the reduction result is
an equivalent specification without involving ?comb, as shown below.

∃?extract ∈ Lscalar
O (1) ,∀⟨in1, out1⟩, ⟨in2, out2⟩ ∈ E,

?extract

(
in1, ?compress

′
in

orig

1,i

)
= ?extract

(
in2, ?compress

′
in

orig

2,i

)
→ out1 = out2

(7)

SuFu treats Eq. 7 as a joint specification for ?compress
′ and ?extract and synthesizes them simulta-

neously by enumeration. Given a program space for ?compress
′, it enumerates all pairs of candidate

programs for ?compress
′ and ?extract in the increasing order of the total size, until a pair satisfying

Eq. 7 is found. This enumeration method, although straightforward, is effective in practice because
in most cases, the target ?compress

′ and ?extract are both small: ?compress
′ can be constructed

compactly from library functions since its efficiency is not important, while ?extract needs only to
access scalar values in the input as opposed to performing complex scalar calculations.

4.6 Properties
Soundness. SuFu ensures that the synthesized program is observationally equivalent to the sketch,
and hence to the reference program.

Theorem 4.9 (Soundness). For any sketching problem with sketchp and input set I , the synthesized
program has the same output as p on set I , if the underlying PBE solver for sketch holes is sound.

Proof. Due to the space limit, we move the proofs to the appendix [Ji et al. 2024a]. □

Completeness. The completeness of SuFu depends on the program space of compression func-
tions. Since local examples are collected from the evaluation of rewrite terms, there is always
enough information in the inputs to calculate the scalar outputs and any required scalar attributes.
Consequently, when the program space of ?compress is expressive enough, SuFu can always find
an appropriate ?compress, and with it, a solution to the sketching problem.

Theorem 4.10 (Completeness). For any sketching problem, SuFu can find a solution if Asm. 4.8

holds, the underlying PBE solver for sketch holes is complete, and the program space of ?compress can

implement any function mapping from intermediate data structures to scalar values.

Efficiency of synthesized programs. SuFu replaces zero or more subterms in the reference pro-
gram with constant-time terms. Hence, SuFu ensures that its synthesized program cannot have a
higher asymptotic complexity than the reference.

Theorem 4.11 (Efficiency). Let cost(p, in) be the size of the derivation tree of evaluating program

p on input in. For any sketching problem, the following formula is always satisfied by the reference

program p and the program p ′ synthesized by SuFu.

∃c > 0,∀in, cost(p ′, in) ≤ c · cost(p, in)

In practice, the synthesized program is usually strictly more efficient than the reference because
the rewrite terms typically involve non-constant-time operators on intermediate data structures.

5 APPLICATIONS TO PROGRAM RESTRUCTURING
In this section, we consider several lines of prior work on synthesizing efficient recursive programs,
which we collectively refer to as program restructuring. Program restructuring aims to rewrite a
reference program to follow a given efficient template, such as divide-and-conquer [Farzan and
Nicolet 2021b; Ji et al. 2024b; Morita et al. 2007] or single-pass recursion [Farzan et al. 2022; Pu et al.
2011]. We show how this task can be reduced to a superfusion problem and solved by SuFu.
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� �
List = Elt(Int) | Cons(Int, List)

dac_mts Elt(e) = (max e 0, 0)

dac_mts Cons(_, _)@xs =

let (ls, rs) = split xs in

let (lmts, lsum) = dac_mts ls in

let (rmts, rsum) = dac_mts rs in

(max rmts (lmts + rsum), lsum + rsum)� �
(a) A D&C program for mts.

� �
dac_id :: List -> Packed List

dac_id Elt(_)@xs = xs

dac_id Cons(_, _)@xs =

let (ls, rs) = split xs in

concat (dac_id ls) (dac_id rs)

dac_mts xs = mts (dac_id xs)� �
(b) The input to SuFu.

Fig. 5. D&C program restructuring as superfusion. The input to SuFu includes the template dac_id, which is

the same for all D&C restructuring tasks, and a reference program dac_mts that composes the template with

the original reference program mts. For simplicity, we consider only non-empty lists.

Let us illustrate this reduction taking divide-and-conquer (D&C) as an example. For programs
over lists, D&C suggests dividing the input list into two halves, recursively computing the result
for each half, and then combining the two results. Fig. 5a shows a D&C program for our running
example, mts. To combine the mts of the two halves, this program introduces the sum of list elements
as an auxiliary output. The intuition here is that the mts of the whole list is either the mts of the
right half or the sum of elements in the right half plus the mts of the left half. As we can see, D&C
restructuring is a challenging task: not only do we need to determine how to combine the recursive
results, but often we also need to discover auxiliary outputs.

To reduce this problem to superfusion, we introduce a template program dac_id, shown in Fig. 5b.
A careful reader will see that dac_id is simply the identity function with the recursive structure of
a D&C program: splitting the input list into two halves, only to put them back together again.

Since the template program is the identity, we can compose it with our original reference program
mts from Fig. 1a to obtain a new program dac_mts, shown in Fig. 5b, which behaves equivalently to
mts. In this new program, the template dac_id produces an intermediate data structure, which we
can annotate with Packed, and apply SuFu to eliminate it. This will have the effect of forcing SuFu
to use the recursive structure of dac_id—that is, divide-and-conquer—to compute the result of mts.
In fact, the result of applying SuFu to dac_mts is precisely the D&C program in Fig. 5a.
This approach can be generalized to other templates, beyond D&C. To this end, the first step

is to implement a template function that returns the input unchanged, but follows the desired
recursive structure; the second step is to compose the template function with the reference program,
and finally, we apply SuFu to eliminate the intermediate data structure produced by the template
function, thus getting a synthesized program in the target form. Another example of applying this
approach can be found in the appendix [Ji et al. 2024a], which is for the template of single-pass
recursion. Please note that the template and the Packed annotations need only be written once for
each target form, since they are independent of the reference program.

6 IMPLEMENTATION
Our implementation of SuFu is in C++ and is available online [Ji et al. 2024a].
Program spaces. SuFu is parameterized by two program spaces: one for sketch holes and one for
compression functions. We construct these two spaces as follows.
• The program space of sketch holes (i.e., Lscalar

O (1) ) is based on the SyGuS theory of conditional
linear integer arithmetic [Alur et al. 2017a], which includes the if-then-else operator, arith-
metic operators such as +, relational operators such as ≤, and Boolean operators such as and.
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Besides, to operate on tuples and inductive data types, we augment this program space with
tuple constructors and projections, and the pattern-match operator on inductive data types
(e.g. match ? with Nil -> ? | Cons(h,t) -> ? for lists).
• The program space of compression functions includes all functions defined in the reference
program4, the DeepCoder’s library [Balog et al. 2017] of list functions, and the fold operators
for all involved inductive data types. These fold operators enable SuFu to synthesize recursive
compression functions not present in the reference program.

Verification. SuFu is based on the CEGIS framework and requires an external verifier to generate
counterexamples. Following previous studies on synthesizing recursive programs [Miltner et al.
2022; Solar-Lezama et al. 2006; Torlak and Bodík 2014], we use bounded verification in our imple-
mentation (details in the appendix [Ji et al. 2024a]). To reduce the overhead, SuFu initializes the
example set of CEGIS with 103 random examples. These examples can exclude the majority of the
incorrect results and thus greatly reduce the number of invocations of the bounded verifier.

Solvers. We use Z3 [de Moura and Bjørner 2008] as the MaxSAT solver for sketch generation
(Sec. 3.2) and PolyGen [Ji et al. 2021] as the PBE solver for sketch holes (Sec. 4.2).

7 EVALUATION
We design our evaluation to answer the following research questions.

• RQ1: How effective is SuFu in eliminating intermediate data structures?
• RQ2: How does SuFu compare to specialized program restructuring tools?
• RQ3: How does SuFu’s synthesizer compare to general-purpose sketch solvers?

7.1 Experimental Setup
Baseline solvers. We compare SuFuwith three inductive synthesizers. The first two are specialized
solvers for program restructuring tasks that can be reduced to fusion:

• Synduce [Farzan et al. 2022] restructures recursive data-structure traversals according to a
user-provided sketch (with the goal of making the traversals more efficient); Synduce uses a
whitebox technique based on program unfolding, and requires both the reference and the
target programs to traverse the data structure at most once.
• AutoLifter [Ji et al. 2024b] restructures programs into the divide-and-conquer (D&C) para-
digm; it leverages domain-specific properties of D&C to decompose the synthesis problem.

SuFu is strictly more general than these two baselines and can be applied to all tasks in their
domains. We have explained the reduction from D&C restructuring to fusion in Sec. 5; the reduction
from the domain of Synduce to fusion can be found in the appendix [Ji et al. 2024a].

Our third baseline is Grisette [Lu and Bodík 2023], the most recent sketch solver at the time of
writing. For this comparison, we first generate a sketch using the generation approach of SuFu
(Sec. 3) and then solve this sketch using either SuFu (Algorithm 1) or Grisette.

Note that we do not perform an empirical comparison with traditional deductive fusion systems:
to our knowledge, no automated fusion tool (including the most recent work [Hinze et al. 2010])
can synthesize auxiliary attributes—such as the sum of list elements in our mts example—which are
essential for many tasks in our dataset.

Dataset. We collect a dataset of 290 tasks from three different sources, each task specified by a
reference program with some data types annotated as Packed.

4In our evaluation, we only use functions defined in the original benchmark source and do not introduce new functions.
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Table 4. Profile of our dataset. #No-Aux reports the number/percent of tasks that do not require inventing
auxiliary attributes (which is an upper bound on the performance of deductive fusion). Program Size reports

the number of AST nodes in the reference program per task. Packed annotations reports the number of

Packed annotations per task, while Unique reports the total number of unique data types to be eliminated.

Source #Tasks #No-Aux Program Size Packed annotations
Mean Max Mean Max Unique

Fusion 16 11 69% 126.5 305 1.3 2 7
Recursion 178 129 73% 157.5 484 1.1 3 35

D&C 96 10 10% 251.2 843 1.0 1 1
Total 290 150 52% 186.8 843 1.1 3 37

Table 5. Performance of SuFu on the full dataset. #Solved reports the number/percent of tasks solved. Time
Cost reports the average time costs (in seconds) of sketch generation (Gen) and sketch solving (Syn). Result
Size reports the average number of AST nodes in the programs synthesized by SuFu,Compress for ?compress,

Extract for ?extract, and Holes for the sketch holes.

Source #Solved Time Cost Result Size
Gen Syn Compress Extract Holes

Fusion 14/16 88% 0.012 6.9 9.1 4.6 20.4
Recursion 170/178 96% 0.015 14.3 7.5 6.8 28.6

D&C 80/96 83% 0.022 49.0 11.6 6.5 85.9
Total 264/290 91% 0.017 24.4 8.8 6.6 45.5

• Fusion. We collect 16 tasks from fusion literature [Bird 1989; Bird and de Moor 1997; Gill et al.
1993; Hu et al. 1997; Wadler 1988]; 8 of them come from work onmanual optimization [Bird
1989; Bird and de Moor 1997], which cannot be straightforwardly automated.
• Recursion. We include all 178 tasks from the original dataset of Synduce. In the process,
we discovered that 60 of these tasks include manually provided auxiliary attributes, which
presumably were added due to the limitations of Synduce. For example, in the mts task, the
reference program returns not only the maximum tail sum but also the sum of list elements.
We remove these auxiliary attributes when constructing our dataset.
• Divide and Conquer (D&C). We include all 96 tasks from the original dataset of AutoLifter.

We list some statistics of our dataset in Tab. 4. Note that tasks from different sources present
different challenges. For example, Fusion tasks often require eliminating multiple data structures
at once, while Recursion tasks require eliminating 35 different data types, including lists, trees,
zippers, natural numbers, and expression ASTs. D&C tasks are the most challenging, both in terms
of requiring auxiliary attributes and the program size. Overall, about half of the tasks in our dataset
require auxiliary attributes, and hence are out of scope for deductive fusion systems.
Our experiments are conducted on Intel Core i7-8700 3.2GHz 6-Core Processor, with a timeout

of 10 minutes per task. Our full dataset and results are available in the supplementary material.

7.2 RQ1: Overall Effectiveness
We summarize the performance of SuFu in Tab. 5. Overall, SuFu successfully solves 264 out of
290 tasks in the dataset (91%), taking around 24 seconds on average, and many of them (115 out of
264) require auxiliary attributes. Note that although SuFu uses MaxSAT for sketch generation, in
practice this step takes only fractions of a second, and the run time is dominated by sketch solving.
In terms of the size of the synthesized expressions, Tab. 5 confirms our key hypothesis that the
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Table 6. Sample synthesis results. Terms filled into sketch holes are highlighted in red .

Task Description Program Fragment

Synthesize a D&C program that calculates
the maximum tail product of a (possibly

negative) integer list.

Given two languages L1 and L2 of Boolean
expressions, synthesize the interpreter of

L1 from the interpreter of L2.

Table 7. Comparison between SuFu and program restructuring tools, where Time is the mean time (in

seconds) on tasks solved by both tools.

Source Tool #Solved Time Source Tool #Solved Time

Recursion SuFu 170 11.4 D&C SuFu 80 46.8
Synduce 125 1.7 AutoLifter 82 15.6

ghost function ?compress is much smaller than the solutions to sketch holes, and hence the extra
work of synthesizing ?compress (as well as ?extract) pays off to decompose the synthesis problem.
Quality of synthesized programs. We manually examined all synthesized programs and con-
firmed that they are functionally equivalent to the reference implementations on the entire input
domain (though SuFu only uses bounded verification). In terms of efficiency, for Recursion and D&C
tasks, we have a theoretical guarantee that SuFu’s results have the same asymptotic complexity as
those synthesized by Synduce and AutoLifter respectively; this guarantee is a direct consequence
of our restriction on the program space, that is, that SuFu always fills sketch holes with O (1)-time
expressions. Finally, for the Fusion tasks, we manually inspected the 14 programs produced by SuFu
and compared them to the fused implementations from the original papers; we confirmed that (1)
13/14 programs are the same as the original, and (2) the remaining program is strictly more efficient,
as SuFu fuses a sum over the list [l , . . . , r ] into a constant-time expression (l + r ) (r − l + 1)/2.
Sample programs. Tab. 6 shows fragments from two sample programs synthesized by SuFu. The
first one illustrates the scalability of our tool: it presents a term synthesized for a single hole in a
D&C task (the size is fairly typical for the tasks in this domain). The second one demonstrates the
applicability of SuFu beyond lists: in particular, this task requires eliminating an AST.

7.3 RQ2: Comparison with Program Restructuring Tools
In this experiment, we run Synduce and AutoLifter on their original datasets, and compare their
performance with SuFu. The results are shown in Tab. 7 and Fig. 6.

Compared with Synduce, SuFu takes more time on simple tasks but can eventually solve more
tasks. We find that SuFu has a clear advantage on tasks that require inventing auxiliary attributes.
Although Synduce can do this in principle, its whitebox approach is too restrictive for some of
the tasks; in comparison, SuFu uses a blackbox approach, which receives less guidance from the
reference program, but is more flexible in terms of supported auxiliary attributes.
Compared with AutoLifter, SuFu is slower but eventually (after about five minutes) solves a

similar number of tasks. It is not surprizing that AutoLifter has an advantage on this domain:
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Fig. 6. Number of tasks solved by SuFu and each baseline solver over time. Comparisons with Synduce and

AutoLifter are on their respective datasets, while the comparison with Grisette is on our full dataset.

Table 8. Comparison between SuFu and Grisette; Time is the mean time on tasks solved by both tools.

Source Approach #Solved Time Source Approach #Solved Time

Fusion SuFu 14 1.1 Recursion SuFu 170 11.4
Grisette 4 0.7 Grisette 60 20.0

D&C SuFu 80 11.5 Total SuFu 264 11.1
Grisette 21 58.1 Grisette 85 28.9

like SuFu, it is a blackbox inductive synthesizer, but it implements domain-specific optimizations
for divide-and-conquer algorithms, making its synthesis task simpler.

In summary, we observe that although SuFu is slower than specialized tools, it can solve a similar
or higher number of tasks given enough time, while being strictly more general.

7.4 RQ3: Comparison with the Sketch Solver
In this experiment, we ablate SuFu’s sketch solver, replacing it with an off-the-shelf sketch solver
Grisette. The results are shown in Tab. 8 and Fig. 6. Overall, our synthesis algorithm significantly
outperforms Grisette on both the number of solved tasks and the time cost. Predictably, SuFu’s
advantage is most pronounced on tasks that require synthesizing large expressions: for example,
on D&C, where the average size of a sketch solution is a whopping 85.9 AST nodes, SuFu solves
almost four times more tasks that Grisette and is more than four times faster on jointly solved tasks.
This is because Grisette searches for all sketch holes simultaneously, while SuFu can effectively
decompose the synthesis problem with the help of a (much smaller!) compression function.

7.5 Discussion
Failure analysis. SuFu fails to solve 26 out of 290 tasks in our dataset (Tab. 5). We identify three
reasons for these failures. First, on 17 tasks, SuFu times out finding a valid compression function
?compress. Second, on 4 tasks, SuFu succeeds in finding the expected ?compress, but the underlying
PBE solver times out synthesizing sketch holes, despite having local IO examples available.
Finally, on the last 5 tasks, SuFu uses an unexpected ?compress whose sketch holes are more

complex than necessary, making the PBE solver times out. Note that although our specification for
?compress (Eq. 5) ensures the existence of valid sketch holes, their size may vary significantly regard-
ing the choice of ?compress. For example, one reference program in our dataset is sqrsum (upto n) ,
where upto constructs a Packed list of numbers from 1 to n, and sqrsum sums their squares. On this
task, SuFu synthesizes an empty ?compress because the integer n is enough to determine the output
as n(n + 1) (2n + 1)/6, but this expression is too complex for the PBE solver to synthesize.
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Verification. Perhaps the biggest limitation of our tool is that it performs only bounded verification.
Although this is common in program synthesis with loops and recursion [Miltner et al. 2022; Solar-
Lezama et al. 2006; Torlak and Bodík 2013], this makes SuFu unsuitable for applications where
correctness is critical, such as compiler optimization. Fortunately, since SuFu can be combined
with any verifier, it can automatically benefit from advances in verification technology. Effective
verifiers already exist for some of the domains targeted by SuFu, such as structural recursion [K.
et al. 2022] and D&C algorithms with a single-pass reference [Farzan and Nicolet 2017].
Moreover, we believe that the compression functions produced by SuFu as a by-product of

synthesis can serve as useful lemmas that aid unbounded verification. For example, in the mts

task, the compression function connects the second output of tail’ to the sum of the list, i.e.
∀xs, sum xs = (tails’ xs).2. This is a necessary lemma for proving the correctness of the synthesis
result mts’, and it is challenging for existing verifiers to conjecture this lemma out of thin air.

8 RELATEDWORK
Fusion. Many deductive fusion systems have been designed to eliminate intermediate data struc-
tures. They iteratively apply pre-defined rules to rewrite the reference program toward the direction
with fewer intermediate data structures. Representatives of such systems include the fold/unfold
framework for handling generic recursion [Chin 1992; Gill et al. 1993; Hamilton 2001; Wadler 1988]
and the program calculation framework dealing with specific forms of recursive functions [Bird
1989; Bird and de Moor 1997; Hinze et al. 2010; Meijer et al. 1991; Takano and Meijer 1995].

Compared with these deductive systems, SuFu has both advantages and limitations:
• On the one hand, deductive fusion is correct by construction, generally faster, and does not
require users to annotate the intermediate data structures to be eliminated.
• On the other hand, SuFu achieves significantly better expressiveness via inductive synthesis.

Besides deductive transformation, there is another line of work that achieves fusion by permuting
the instructions in the reference program [Sakka et al. 2017; Sundararajah and Kulkarni 2019; Wang
et al. 2021]. Although these approaches work well in certain domains, they can hardly be applied
to our dataset because many of our tasks require generating entirely new expressions that cannot
be obtained by shuffling around the sub-terms in the reference program.
Synthesizing efficient programs. There are several lines of previous research on synthesizing
efficient programs. First, superoptimization [Bornholt et al. 2016; Phothilimthana et al. 2014, 2016;
Schkufza et al. 2013; Sharma et al. 2015] uses inductive synthesis to generate the most efficient im-
plementation for the reference program. However, existing superoptimization approaches consider
only low-level, loop-free programs, and thus cannot be applied to our problem.
Second, program restructuring tools rewrite a reference program into a given target form that

is known to be efficient [Acar et al. 2005; Farzan et al. 2022; Farzan and Nicolet 2017, 2021a;
Fedyukovich et al. 2017; Ji et al. 2024b; Morita et al. 2007; Pu et al. 2011]. Each one of this tools is
designed to handle a specific target form, and thus cannot be applied to the general fusion problem.
On the other hand, as discussed in Sec. 5, program restructuring for some target forms [Farzan
et al. 2022; Ji et al. 2024b] can be reduced to fusion and solved by SuFu.

Finally, resource-aware synthesis [Hu et al. 2021; Knoth et al. 2019] aims to find a program satisfy-
ing an efficiency requirement specified in a type system. Compared with SuFu, these approaches
can deal with more refined efficiency requirements via complex type systems but do not scale to
synthesizing large programs because they synthesize the whole program from scratch.
Other related program synthesis approaches. First, since the core synthesis problem of SuFu is
a sketch problem, SuFu is related to previous sketch solvers [Jeon et al. 2015; Lu and Bodík 2023;
Lubin et al. 2020; Porncharoenwase et al. 2022; Solar-Lezama et al. 2006; Torlak and Bodík 2014].
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General-purposed sketch solvers, however, can hardly scale to superfusion tasks, where the target
programs of sketch holes are typically large.
Second, SuFu addresses the scalability challenge by decomposing the sketch problem into sub-

problems. Hence, SuFu is related to previous approaches for decomposing synthesis tasks.

• Angelic synthesis (or uninterpreted functions) [Ji et al. 2024b; Kuncak and Blanc 2013; Singh
et al. 2014] uses the congruence property of functions (i.e., identical inputs imply identical
outputs) to eliminate unknown programs from a complex specification. It is also the key idea
of quantifier elimination in SuFu. However, these previous techniques cannot be directly
applied to eliminate sketch holes in our tasks because the program space of sketch holes is
limited toO (1)-time programs for the sake of efficiency. We cannot regard such a sketch hole
as a whole as an uninterpreted function, because most functions operating on data structures
cannot be implemented inO (1)-time. To address this issue, SuFu decomposes the sketch hole
into ?extract and ?comb and applies the congruence property only to ?comb.
• Model learning [Huang and Qiu 2022] synthesizes models (e.g., pre- and post-conditions) to
replace concrete invocations of library functions and thus avoid analyzing complex library
functions during synthesis. This process requires input-output oracles for library functions.
However, in our case, such oracles are not available, neither for the compression function nor
for the sketch holes, because we do not even know the type of the compressed data structures
(i.e. the scalar attributes) these programs operate on, let alone the concrete values.

Finally, Revamp [Pailoor et al. 2024] solves a related synthesis problem, dubbed code refactoring

for abstract data types (ADTs). Given an original implementation of an ADT and a relational
specification relating the original data representation to a new one, Revamp synthesizes a new
ADT implementation using the new representation. SuFu is similar to Revamp in that both are
concerned with replacing data structures in a program, and our compression function is similar to
the relational specification in Revamp. Despite these similarities, we believe Revamp and SuFu are
complementary. Specifically, Revamp supports replacing a data structure with another complex
data structure but requires the user to manually specify the relation connecting the two. In contrast,
SuFu automatically synthesizes the relation (i.e., the compression function) but currently only
supports compressing data structures into scalar values.

9 CONCLUSION
In this paper, we present superfusion, a novel approach to eliminating intermediate data structures
in functional programs using inductive program synthesis. Given a reference program annotated
with data structures to be eliminated, superfusion first generates a sketch by transforming the
reference program into an intermediate language and then fills the sketch holes with O (1)-time
expressions. To make the synthesis scale, our approach synthesizes a ghost function ?compress and
uses it to decompose the sketch problem into independent synthesis problems for each hole. We
implement superfusion in a tool called SuFu and evaluate it on a dataset of 290 tasks collected from
previous studies. The results demonstrate SuFu’s superior expressiveness compared to existing
tools for fusion and program restructuring.

The two most exciting directions for future work are (1) unbounded verification and (2) support
for non-scalar compression functions. Unbounded verification will enable using SuFu in settings like
compiler optimizations, where correctness is critical and the user cannot be expected to inspect the
synthesized program. Supporting arbitrary complex data structures as outputs of the compression
function will enable SuFu to be used in a broader range of applications, promoting it from a fusion
tool to a general-purpose program optimization tool.
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� �
tails :: List -> Packed NList

map :: (List -> Int) -> NList ->

Packed List

map f Nil = Nil

map f Cons(h, t) = Cons(f h, map f t)

mts xs = maximum (map sum (tails xs))� �
(a) The reference program.

(b) The generated sketch.

Fig. 7. An example of eliminating multiple data structures at once. (a) A reference program of mts with two

annotated data structures. (b) The sketch generated by SuFu, where [i] following each label and Packed

shows the kind label of that constructor. Here we omit the details in tails for simplicity.

APPENDIX OVERVIEW
Our appendix is organized as follows. First, Appendix A includes two running examples of SuFu:
one for eliminating multiple intermediate data structures at once (Appendix A.1), and the other for
applying SuFu to restructure data structure traversals (Appendix A.2). Then, Appendix B supplies
details on the bounded verifier in our implementation, and at last, Appendix C proves the properties
of SuFu discussed in Sec. 4.6.

A APPENDIX: MORE EXAMPLES
A.1 Eliminating Multiple Intermediate Data Structures
In Sec. 4, we have seen how SuFu handles the special case where Packed is used only once. Now,
we demonstrate how SuFu extends to the general case with multiple Packed annotations using a
running example, shown in Fig. 7. The reference program (Fig. 7a) here is almost the same as the
previous mts example, except that the output of map (i.e., the list of tail sums) is also annotated.

Sketch generation. Fig. 7b shows the sketch program generated by SuFu. Besides generating term-
level annotations (label, unlabel, and rewrite), SuFu further infers kind labels for each Packed

and label, shown as [i] in Fig. 7b. These labels represent the kind of intermediate data structures
denoted by each Packed and constructed by each label. In this example, SuFu infers the same kind
label for every Packed and label in map because all of them are related to the intermediate list of tail
sums, and SuFu infers a different kind label for the Packed in tails because it denotes a different
data structure, the intermediate list of all tails.
SuFu infers kind labels from types. Specifically, given a program in λsk, SuFu first attaches a

symbolic kind label to each Packed and label, and then runs a round of type-checking with these
symbolic labels. In this process, SuFu regards Packed types with different kind labels as different
types and takes label[x] as the specific constructor for type Packed[x]. Hence, the type-checking
will raise a series of equivalent constraints between kind labels, and SuFu will assign the same
value to each equivalent class. For example, suppose the kind label of the Packed in map is x , and the
kind label of the label in hole ?t1 is y. Then, the output type of map will be Packed[x] List, and the
function body of map f Nil will have a type of Packed[y] List. These two types must be the same
by the typing rule of function definitions, thus inducing an equivalent constraint of x = y.

Example collection. SuFu still collects local examples from the execution of the sketch program,
but it will also record the kind label for each intermediate data structure to track its source. For
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� �
Tree = Leaf(Int) | Node(Tree, Tree)

mits t = mts (flatten t)

rec Leaf(v) = ?f1 v

rec Node(l, r) = ?f2 (rec l) (rec r)� �
(a) The original restructuring task.

� �
rec Leaf(v) = (max v 0, v)

rec Node(l, r) =

let (lmts, lsum) = rec' l in

let (rmts, rsum) = rec' r in

(max lmts (lsum + rmts),

lsum + rsum)� �
(b) The expected result.

� �
rec :: Tree -> Packed Tree

rec Leaf(_)@t = t

rec Node(l, r) = Node(rec l,

rec r)

res t = mits (rec t)� �
(c) The input of SuFu.

Fig. 8. An example for restructuring data structure traversals. (a) The input of the restructuring task, where

mits is the reference program, and rec is the user-provided sketch. (b) The expected result of program

restructuring, which introduces the sum of leaf values as an auxiliary output. (c) The corresponding input of

SuFu for solving this restructuring task.

example, from the execution of mts[2], SuFu can collect the local example below for hole ?t2.

environment:
(
h 7→ [2], ts 7→ label[2] [0]

)
value: label[2] [2, 0]

Here both ts and the output value have the kind label [2] because they are constructed by the
label[2] in map. Similarly, SuFu can collect the local example below for ?t3 from the same execution
mts[2], where ts has the kind label [1] because it is constructed by some label[1] in tails.

environment: (xs 7→ [2], ts 7→ label[1] [[2], []]) value: 2

To obtain symbolic local examples, SuFu introduces two compression functions ?compress1 and
?compress2, each for one kind of intermediate data structures, as they can be replaced with different
scalar attributes. Correspondingly, SuFu replaces every label with the compression function of its
kind label, for example, the above two examples will result in the symbolic examples below.

⟨in1, out1⟩ =
〈(
h 7→ [2], ts 7→ ?compress2 [0]

)
,?compress2 [2, 0]

〉
⟨in2, out2⟩ =

〈(
xs 7→ [2], ts 7→ ?compress1 [[2], []]

)
, 2

〉
Compression synthesis. Our synthesis algorithm for a single compression function (Algorithm 2)
can be straightforwardly extended to synthesize both ?compress1 and ?compress2, as shown below.
(1) Algorithm 2 can be extended to iterate with two sets of scalar attributes, respectively corre-

sponding to the two compression functions.
(2) The specification solved by Refine (Eq. 6) can be extended as follows to synthesize new

attributes for both ?compress1 and ?compress2.

∃?th ∈ Lscalar
O (1) ,∀⟨in, out⟩ ∈ E[h], ?th

(
in, ?compress

′
1 in

orig

1,i , ?compress
′
2 in

orig

2,i

)
= out

Here, unknown functions ?compress
′
1 and ?compress

′
2 are introduced to respectively specify

new attributes for the two compression functions, and the intermediate data structures in
the original input are divided into two sets, inorig1,i and in

orig

2,i , according to their kind labels.
(3) The transformation for eliminating ?th still works, and the final enumeration approach can be

extended to this case by enumerating ?extract, ?compress
′
1, and ?compress

′
2 at the same time.

A.2 Program Restructuring for Data Structure Traversals
One baseline solver in our evaluation is Synduce [Farzan et al. 2022], which restructures recursive
data-structure traversals according to a user-provided sketch that traverses the input data structure
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at most once. This kind of program restructuring tasks can be reduced to fusion and thus can be
solved by SuFu. Fig. 8 shows an example of this reduction.
• In the original task (Fig. 8a), the reference program mits is a composition of two traversals:
flatten traverses the input tree and collects all leaf values into a list in order, and mts then
returns the maximum tail sum of the value list. The goal of this task is to restructure mits

using the given template rec, which traverses the input tree only once and directly calculates
the result during the traversal, via unknown functions ?f1 and ?f2.
• Fig. 8b shows the expected result of this restructuring task, which calculates the sum of leaf
values as an auxiliary output for calculating mits in a single traversal.

As mentioned in Sec. 5, SuFu can be applied to a program restructuring task by (1) implementing
an identity function in the target form as the template function, (2) composing the template function
with the reference program to be restructured, and (3) invoking SuFu to eliminate the intermediate
data structure generated by the template function. Fig. 8c shows the input of SuFu for this task:
rec is the template function that implements the identity function as a traversal, and res composes
this template with the reference program mits. By invoking SuFu to eliminate the intermediate
tree produced by rec, we can get the same program as the expected result in Fig. 8b.

B APPENDIX: VERIFICATION
SuFu follows the CEGIS framework and thus requires a verifier to generate counter-examples for
incorrect results. We use bounded verification in our implementation. Specifically, we limit the size
of inductive data structures to no larger than 10 and limit the range of integers to [−3, 3]. Given a
candidate program, our verifier will evaluate this program and the reference program on every
input within these limits and check whether their outputs are the same. If not, the corresponding
input will be returned as a counter-example.

Besides, to reduce the time cost of verification, SuFu initializes the input set of CEGIS with 103
random inputs (sampled from the same range as verification). These random inputs can exclude
most incorrect results and thus can significantly reduce the number of necessary CEGIS iterations.

C APPENDIX: PROOFS
Theorem C.1 (Thm. 4.9). For any sketching problem with sketch p and input set I , the synthesized

program has the same output as p on set I , if the underlying PBE solver for sketch holes is sound.

Proof. A sound PBE solver ensures that the solution to every hole satisfies the concrete examples
corresponding to the synthesized ?compress. Hence, to prove the soundness of SuFu, we only need
to prove that any ?compress and sketch solution that satisfy all local examples always induce a
correct synthesized program. We achieve this by proving the claim below.
• For any sketch solution (Ti , th ) and compression function ?compress, an evaluation judgment
E ⊢ t ⇓ v still holds if all intermediate data structures in environment E and value v are
replaced with ?compress, term t is rewritten by the sketch solution, and SuFu and the sketch
solution satisfy all local examples collected from E ⊢ t ⇓ v . Or more formally:

E ⊢ t ⇓ v =⇒ (subst ?compress E) ⊢
(
subst (Ti , th ) t

)
⇓ (subst ?compress v )

where ?compress and (Ti , th ) are a compression function and a sketch solution satisfying all
local examples collected from E ⊢ t ⇓ v , and function subst replaces label with ?compress,
Packed types with Ti , and rewrite terms with th .

If this claim is correct, we can obtain the correctness of the synthesized program by taking E as
empty, taking t as p in for every in ∈ I , and taking v as the corresponding evaluation result.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 185. Publication date: June 2024.



185:30 Ruyi Ji, Yuwei Zhao, Nadia Polikarpova, Yingfei Xiong, and Zhenjiang Hu

E ⊢ t ⇓ v

(E-Var)
x ∈ E

E ⊢ x ⇓ E (x )

(E-Let)
E ⊢ t ⇓ vx E,x 7→ vx ⊢ t

′ ⇓ v

E ⊢ let(x , t , t ′) ⇓ v

(E-Rewrite)
E ⊢ t ⇓ v

E ⊢ rewrite(t ) ⇓ v

Fig. 9. Selected evaluation rules of our intermediate language λ
sk
.

We prove this claim by induction on the derivation of E ⊢ t ⇓ v . This process is straightforward,
and we demonstrate it using three representative evaluation rules shown in Fig. 9.

Case 1: the last evaluation rule is E-Var. In this case, the target claim becomes as follows.(
E ⊢ x ⇓ E (x )

)
∧ x ∈ E =⇒ (subst ?compress E) ⊢ x ⇓ (subst ?compress E (x ))

This is directly implied by the fact that (subst ?compress E) (x ) = subst ?compress E (x ).
Case 2: the last evaluation rule is E-Let. In this case, the target claim becomes as follows.(

E ⊢ let(x , t , t ′) ⇓ v
)
∧
(
E ⊢ t ⇓ vx

)
∧
(
E,x 7→ vx ⊢ t

′ ⇓ v
)
=⇒

(subst ?compress E) ⊢ let
(
x , subst (Ti , th ) t , subst (Ti , th ) t

′
)
⇓ (subst ?compress v )

Using the latter two premises, the induction hypothesis, and the definition of subst on environments,
we obtain the following two evaluation judgments.

(subst ?compress E) ⊢
(
subst (Ti , th ) t

)
⇓ (subst ?compress vx )(

subst ?compress E,x 7→ subst ?compress vx
)
⊢
(
subst (Ti , th ) t

′
)
⇓ (subst ?compress v )

These judgments form the premise of applying rule E-Let, and by applying this rule, we obtain the
consequence of the target claim in this case, as shown below.

(subst ?compress E) ⊢ let
(
x , subst (Ti , th ) t , subst (Ti , th ) t

′
)
⇓ (subst ?compress v )

Case 3: the last evaluation rule is E-Rewrite. In this case, the target claim becomes as follows,
where h denotes the index of the current rewrite term.

E ⊢ rewrite(t ) ⇓ v =⇒ (subst ?compress E) ⊢ th ⇓ (subst ?compress v )

Recall that SuFu collects local examples from the evaluation judgments of rewrite terms. Here,
SuFu will collect environment E and value v as a local example, whose symbolic form is as follows.

?th (subst ?compress E) = (subst ?compress v )

Hence, the target claim in this case is implied by the soundness of the PBE solver.
□

Theorem C.2 (Thm. 4.10). For any sketching problem, SuFu can find a solution if Asm. 4.8 holds, the

underlying PBE solver for sketch holes is complete, and the program space of ?compress can implement

any function mapping from intermediate data structures to scalar values.

Proof. A complete PBE solver can always find sketch holes from concrete examples (if realizable),
hence SuFu can always find a sketch solution if it can find a valid compression function ?compress.
Moreover, since the synthesis approach of ?compress (Algorithm 2) returns only when the result is
known to be valid, we only need to prove the terminality of this algorithm.

We achieve this by proving the following claim.
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• For any final set of symbolic local examples Esym, there always exists a function compress
∗

such that for any candidate compression function compress, compress
∗ is always a valid result

for Refine(Subst(Esym, compress)) (Lines 3-4 in Algorithm 2).
Let us first show how this claim implies the terminality of Algorithm 2. Suppose such a compress

∗

exists but Algorithm 2 does not terminate. Then, there must be infinite invocations of Refine.
• On the one hand, the results of these invocations must be pairwise different because, in each
invocation, those attributes found previously have been merged into the input, hence they
will never be returned again by the bottom-up enumeration.
• On the other hand, the results of these invocations cannot be larger than compress

∗ because
the bottom-up enumeration will return compress

∗ as the result once visiting it.
However, the number of programs no larger than compress

∗ must be finite, so there cannot be an
infinite number of different results, raising a conflict.
Now the task remaining is to prove the claim, i.e. construct compress

∗ for a finite set of local
examples. Recall that the specification of ?compress

′ (the result of Refine) is to make sketch holes
possible to satisfy concrete examples, and there are two restrictions on the sketch holes.
(1) The time complexity of the sketch hole should be O (1).
(2) The sketch hole should have a scalar type, which induces a requirement that the output type

of the compression function should be scalar.
If ignore both restrictions, the identity function id in = in must be a valid compression function.

Note that the output of local examples includes only (1) the scalar outputs of the original rewrite
term, and (2) some known attributes (specified by a known function compress) of intermediate data
structures constructed by the original term. When the compression function is id, the input of local
examples will include the whole input of the original term, hence we can construct the sketch hole
by (1) using the original rewrite term to produce the original outputs, and (2) using compress to
calculate the attributes for each intermediate data structure.
Moreover, id is still valid even if we bring back the restriction on the time complexity. This is

because the sketch hole is only constrained by a finite set of local examples, hence we can always
remove the recursions/loops in the sketch hole by unrolling them enough times, thus generating a
constant-time program that has the same IO behavior on the given set of local examples.
Finally, when both restrictions are present, we tune the output type of id to scalar using the

example set again. Specifically, in Algorithm 2, the compression function will only be evaluated on
intermediate data structures in the local examples. Therefore, a truncation function truncd that
returns only the first d levels of the input will have the same effect as the identity function, where
d is the maximum depth of the intermediate data structures in the examples. The output of truncd
includes only a constant number of values and thus can be trivially encoded into a scalar type. □

Theorem C.3 (Thm. 4.11). Let cost(p, in) be the size of the derivation tree of evaluating program

p on input in. For any sketching problem, the following formula is always satisfied by the reference

program p and the program p ′ synthesized by SuFu.

∃c > 0,∀in, cost(p ′, in) ≤ c · cost(p, in) (8)

Proof. Let (Ti , th ) be the sketch solution found by SuFu. Since SuFu ensures th to be constant-
time, we can take constant c as a large enough integer such that the derivation tree of every th will
never be larger than c . The task remaining is to prove that Eq. 8 holds for this constant.
For any input in, let T and T ′ be the derivation tree of evaluating p and p ′ on in, respectively.

Then, T ′ can always be transformed from T by replacing all subtrees related to rewrite terms with
derivation trees of evaluating some th . Therefore, the target theorem is implied by the inequality
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below, wherem denotes the number of subtrees in T that are related to rewrite terms.
cost(p ′, in) ≤ c ·m + (cost(p, in) −m) ≤ c ·m + c · (cost(p, in) −m) = c · cost(p, in)

□
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