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Syntax-guided program synthesis relies on domain-specific languages (DSLs) to constrain the search space and
improve efficiency. However, manually designing optimal DSLs is challenging and often results in suboptimal
performance. In this paper, we propose AMaze, a novel framework that automatically optimizes DSLs to
accelerate synthesis. AMaze iteratively refines a DSL by identifying key program fragments, termed feature
components, whose enumeration ranks correlate with synthesis time. Using a dynamic-programming-based
algorithm to calculate enumeration ranks of feature components and a machine learning model based on
them, AMaze estimates synthesis cost instead of directly invoking the synthesizer, which is impractical due to
high computational cost. We evaluate AMaze on state-of-the-art synthesizers, including DryadSynth, Duet,
Polygen, and EUsolver, across multiple domains. Empirical results demonstrate that AMaze achieves up to
4.35× speedup, effectively reducing synthesis time while maintaining expressiveness.
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1 Introduction

Modern program synthesis [Alur et al. 2013] concerns the search problem of generating programs
automatically from a set of syntactic and semantic constraints. While semantic constraints specify
the intents of end users, syntactic constraints make the search problem tractable by limiting the
space of possible programs and providing search biases (e.g., ordering programs by size). These
syntactic constraints are expressed using domain-specific languages (DSLs), thus, the choice of
DSLs may significantly affect the efficiency of synthesizers [Iyer et al. 2019; Ji et al. 2020; Padhi
et al. 2019]. A too general DSL can lead to a large search space, making the synthesis task hard
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to solve, while an overly constrained DSL may include no viable program, making the synthesis
task unrealizable. Typically, a DSL is manually designed by an expert by considering the target
domain and sometimes the synthesis algorithm for speeding up specific synthesizers. In this paper,
we aim to automate the process of designing DSLs that achieve high synthesis efficiency, focusing
on optimizing DSLs for modern syntax-guided synthesizers.

An intuitive approach to search for a DSL with high synthesis efficiency is to start with a general
and highly-expressive DSL and gradually refine it to reduce the search space while keeping sufficient
expressiveness. The main challenge in the search process is how to evaluate the performance of a
candidate DSL. A straightforward approach is to directly invoke the synthesizer on a representative
training set of synthesis tasks with the new DSL and calculate the speedup against the initial
DSL. However, it may take hundreds of years to evaluate all the new DSLs searched on some of
our datasets! As a result, the key problem our paper addresses is how to efficiently evaluate the
synthesis cost without invoking the synthesizer directly.

To address this problem, let us first consider the naive enumerative synthesizer, which enumerates
programs from small to large until finding a program that satisfies all the constraints. Since the time
to verify whether a program satisfies the constraints typically does not vary much (e.g., verifying
whether a program satisfies all input-output examples), the enumeration time is mainly determined
by the number of programs enumerated before finding a viable program, which we denote as the
rank of this solution program 1. As a result, the lowest rank of all viable programs can be applied
to estimate the synthesis time of a task under a given DSL.

While state-of-the-art syntax-guided synthesizers have become significantly more complex, we
find that the above estimation method can be extended to them within a unified framework. The
key observation is that these synthesizers all follow a similar workflow (for scalability),

which breaks down the synthesis task of a large program into enumerating program

fragments until they are able to compose a solution program using these fragments. Here,
enumeration is adopted as it is highly efficient for synthesizing small programs. As a result, the
synthesizer’s time consumption to synthesize the solution program is highly correlated with the
time to find its largest program fragment, which can be estimated using the rank of the fragment.
We refer to such a program fragment as the feature component of the solution program. Following
this observation, to estimate the synthesizer’s performance in solving a task under a given DSL, we
can first find the solution program, then identify the feature component based on the synthesis
algorithm, and finally estimate the synthesis time based on the rank of the feature component.
Based on the above analysis, we propose AMaze, a framework that automatically modifies a

DSL to accelerate a synthesizer for a problem domain specified by a representative set of synthesis
tasks. AMaze first invokes the synthesizer to generate solution programs on the problem set and
identifies the feature component of each program based on the synthesis algorithm. Then it applies
a search algorithm to iteratively modify the DSL to minimize the synthesis cost on the problem set,
which is estimated using the ranks of the feature components.

To effectively implement AMaze, there are two technical challenges we need to solve. First, the
solution program (e.g., the smallest viable program for the naive enumerative synthesizer) for a task
can change as the DSL changes, so estimating the synthesis cost based on the feature component
of the initial solution may become inaccurate as the search progresses. To solve this challenge,
AMaze invokes the synthesizer periodically to generate a set of possible solution programs, and
to estimate the synthesis cost of a new DSL, it first rewrites the programs using the new DSL if
possible and then uses the smallest rank of the feature components extracted from the rewritten

1We denote the set of programs that satisfy the task specification as the set of viable programs for the task, and the viable
program returned by the synthesizer as the solution program for the task.
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programs to perform the estimation. The intuition is that the estimated synthesis times of the
collected programs are upper-bounds of the real synthesis time to find the solution program. Since
each modification to the DSL is typically local, the least upper-bound can serve as an effective
approximation of the real synthesis time.

The second challenge is how to efficiently compute the rank of a feature component under a given
DSL—we cannot simply enumerate all smaller programs, as the enumeration takes exponential
time. To address this challenge, we introduce a novel dynamic programming algorithm whose time
complexity is polynomial in the program size under the given DSL.

To evaluate the effectiveness of AMaze, we implemented it and applied it to optimize DSLs for
state-of-the-art syntax-guided synthesizers in various domains, including DryadSynth [Ding and
Qiu 2024] for bitvector programs, Duet [Lee 2021] for string manipulation programs, PolyGen [Ji
et al. 2021] for conditional linear integer arithmetic programs, and EUsolver [Alur et al. 2017] for
the aforementioned three types of programs considered together. As the result, AMaze helps these
synthesizers achieve speedups of 1.09×, 3.62×, 1.53× and 4.35× on average, respectively.

We summarize our contributions below:
• We propose a framework for accelerating syntax-guided synthesizers by optimizing DSLs.
• We propose the concept of feature components, whose ranks in enumeration can effectively
estimate the time cost of various state-of-the-art algorithms for a given synthesis task.
• We demonstrate the effectiveness of our approach empirically on representative syntax-
guided program synthesis algorithms.

2 Overview

This section illustrates AMaze on a motivating example, where we optimize a DSL to accelerate
one popular synthesizer, EUsolver [Alur et al. 2017], in the domain of string manipulation.

2.1 Setup

The input to AMaze comprises an initial DSL, a set of training synthesis tasks, a set of pre-defined
DSL modifications, and a target synthesizer. AMaze optimizes the DSL by selecting a sequence of
modifications from the pre-defined set, with the goal of accelerating the synthesizer on the training
set; then, AMaze will return the modified DSL as the result, which is expected to speed up the
synthesizer on similar unseen tasks. This subsection describes the input in our example below.

Initial DSL. The grammar of our initial DSL (denoted as L0) is as follows:

𝑆 := 𝑥 | “ ” | “|” | ConCat(𝑆, 𝑆) | Substr(𝑆, 𝐼 , 𝐼 ) | Ite(𝐵, 𝑆, 𝑆)
𝐼 := 0 | 1 | 𝐼 + 𝐼 | Indexof(𝑆, 𝑆, 𝐼 )
𝐵 := true | false | Contains(𝑆, 𝑆)

In this grammar, 𝑆 is the start non-terminal representing string expressions, while 𝐼 and 𝐵 represent
integer and boolean expressions, respectively. Among the operators, ConCat(𝑠1, 𝑠2) concatenates
two strings, Substr(𝑠, 𝑖1, 𝑖2) returns the substring of 𝑠 that begins at index 𝑖1 with a length of 𝑖2 (> 0),
and Ite(𝑏, 𝑠1, 𝑠2) is the if-then-else operator with 𝑠1 being the expression when 𝑏 is true. The symbol
+ is the arithmetic addition operator, Indexof(𝑠1, 𝑠2, 𝑖) returns the index of the first occurrence of 𝑠2
in 𝑠1 starting at the position 𝑖 , and Contains(𝑠1, 𝑠2) returns whether 𝑠1 contains 𝑠2.

Training Set. For simplicity, our training set comprises only one task from SyGus-Comp [Padhi
2019]. Its semantic constraint is in the form of input-output examples, as listed below:

{𝑥 = “TL-18273982| 10M”} ↦→ “TL-18273982” {𝑥 = “CT-576”} ↦→ “CT-576”
{𝑥 = “TL-288762| 76DK”} ↦→ “TL-288762” {𝑥 = “N/A”} ↦→ “N/A”

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 37. Publication date: January 2026.
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These examples direct to a program that returns the substring before “| ” if such a substring exists,
otherwise returns the input itself. This task, just like most program synthesis tasks, has multiple
viable programs in L0—below are two examples:

(𝑝1) Ite(Contains(𝑥, “ ”), Substr(𝑥, 0, Indexof(𝑥, “|”, 0)), 𝑥)
(𝑝2) Substr(ConCat(𝑥, “|”), 0, Indexof(𝑥, “|”, 0)) (1)

Modifications. AMaze considers two kinds of operations to modify a DSL: deletions and additions.
The deletion operation simply removes production rules, and the addition operation introduces
new operators by composing existing rules. For example, the rules 𝐼 := 𝐼 + 𝐼 and 𝐼 := 1 can be
composed into 𝐼 := inc(𝐼 ) where the operator inc(𝑎) is defined as 𝑎 + 1. An addition operation can
also enforce the equivalence between parameters. For example, 𝐼 := double(𝐼 ) can be added by
introducing double(𝑎) as 𝑎 + 𝑎, which enforces the two operands of + to be the same.

AMaze collects a set of atomic modifications at the beginning. It discovers the set of deletions by
taking all grammar rules in the original DSL L0, except those producing input and constants, as can-
didates; and discovers the set of additions by mining frequent patterns from the solution programs
in the training set—in this section, we consider the following three additions for illustration:

f0 (𝑎, 𝑏, 𝑐) = Ite(Contains(𝑎, “ ”), 𝑏, 𝑐) f1 (𝑎, 𝑏) = Substr(𝑎, 0, 𝑏) f2 (𝑎) = Indexof(𝑎, “|”, 0)

In summary, AMaze considers 9 atomic modifications in our example task, including 6 deletions
(deleting any production rule except ones producing constants and the input) and the 3 additions
above. These modifications then yield a search space of 29 DSLs.

Synthesizer. Let us consider one popular synthesizer, EUsolver, which synthesizes by enumerat-
ing programs and composing them together using a decision tree. Concretely, the enumerator of
EUsolver enumerates programs from small to large—it runs as follows under our original DSL L0.

• Programs of size 1: 𝑥, “ ”, “|”
• Programs of size 3: ConCat(𝑥, 𝑥), . . .
• Programs of size 4: Substr(𝑥, 0, 0), . . .
• . . .

EUsolver runs the enumerator to continuously generate straight-line program fragments (i.e.,
programs without if-then-else operators), and periodically checks whether these fragments can
be composed into a solution program (using if-then-else operators) via a decision tree learning
algorithm. For example, on our training synthesis task, EUsolver will generate the aforementioned
viable program 𝑝1 (Formula 1, restated below), as its solution program.

(𝑝1) Ite(Contains(𝑥, “ ”), Substr(𝑥, 0, Indexof(𝑥, “|”, 0)), 𝑥)

In this program, the straight-line fragments Contains(𝑥, “ ”), Substr(𝑥, 0, Indexof(𝑥, “|”, 0)), and 𝑥
are discovered by enumeration. Note that although 𝑝2 (Formula 1), the other viable program on this
task, has a smaller size overall, EUsolver will generate 𝑝1 first because 𝑝2 itself is a straight-line
program and is behind all straight-line program fragments in 𝑝1 in the small-to-large enumeration.

2.2 Efficiently Evaluating the Performance of the Synthesizer under a DSL

The main challenge in searching for an appropriate DSL is how to efficiently evaluate a candidate
DSL, that is, to evaluate the time costs of the synthesizer on the training set under this candidate
DSL. In this section, we introduce our key insight, describe the two technical challenges to achieve
efficient evaluation, and show our solution.
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Feature Components. Our key insight is that, for many state-of-the-art synthesizers, their solution
programs comprise special program fragments whose ranks in enumeration can effectively estimate
the time costs of the synthesizers. We denote such fragments as feature components.

Let us take EUsolver as an example. EUsolver finds its solution program once its enumerator
finds all necessary straight-line program fragments, so its running time is highly correlated with
when the largest fragment is found, which in turn is reflected by its rank in the enumeration.
Correspondingly, the feature component in the solution program of EUsolver can be defined as
the largest straight-line fragment comprised. For example, consider EUsolver’s solution program
to our training task, restated below, with the straight-line program fragments underlined:

Ite
(
Contains(𝑥, “ ”), Substr(𝑥, 0, Indexof(𝑥, “|”, 0)), 𝑥

)
There are three straight-line fragments in this program, and the feature component is the largest
fragment Substr(𝑥, 0, Indexof(𝑥, “|”, 0)). The rank of this feature component is 3,158, which means
EUsolver needs to enumerate 3,158 programs before composing the solution program through
the decision tree learning algorithm; and clearly, a larger rank of the feature component leads to a
greater time cost in the enumeration part, and usually greater total synthesis time.

As another example, let us now consider the following modified DSL, denoted as L1.

𝑆 := 𝑥 | “ ” | “|” | Ite(𝐵, 𝑆, 𝑆) | 𝑓1 (𝑆, 𝐼 )
𝐼 := 0 | 1 | 𝑓2 (𝑆) where 𝑓1 (𝑎, 𝑏) = Substr(𝑎, 0, 𝑏)
𝐵 := true | false | Contains(𝑆, 𝑆) 𝑓2 (𝑎) = Indexof(𝑎, “|”, 0)

Starting from the initial DSL, L1 is obtained by adding the two operators 𝑓1 and 𝑓2 and deleting
the original operators Concat, Substr, +, and Indexof. Then, the solution program of EUsolver
becomes as follows, still with the straight-line fragments underlined:

Ite(Contains(𝑥, “ ”), 𝑓1 (𝑥, 𝑓2 (𝑥)), 𝑥)

The feature component of this program (i.e., the largest straight-line fragment) is now 𝑓1 (𝑥, 𝑓2 (𝑥)),
whose rank is 58. This number is far smaller than the previous number 3,158 under L0, so that L1
can help EUsolver find the solution program much earlier, leading to a significant speedup.
We observe that feature components exist not only in EUsolver, but also in various popular

synthesizers that follow a similar workflow of composing enumerated programs into a solution
program. Example synthesizers include DryadSynth [Ding and Qiu 2024], Duet [Lee 2021], and
PolyGen [Ji et al. 2021], which we discuss in detail in Section 4.

Next, we discuss two technical challenges and how we solve them in order to utilize the ranks of
feature components to evaluate synthesizer performance under a given DSL.

How to Get Solution Programs. In order to identify feature components, we need to first get
solution programs. But how can we do it without invoking the synthesizer? After all, the purpose
of extracting feature components is to avoid frequent direct invocations to the synthesizer.

To see our solution, let us compare the two solution programs of EUsolver under L0 and L1:

(under L0) Ite(Contains(𝑥, “ ”), Substr(𝑥, 0, Indexof(𝑥, “|”, 0)), 𝑥)
(under L1) Ite(Contains(𝑥, “ ”), 𝑓1 (𝑥, 𝑓2 (𝑥)) , 𝑥)

These two programs are essentially the same if we unfold 𝑓1 and 𝑓2 by their definitions! This
comparison tells us the fact that, since L1 is modified from L0 rather than being created from
scratch, most programs in L1 are closely related to those in L0. Therefore, whenever we obtain the
solution program under the initial DSL L0, we can rewrite it into a viable program under L1, as
long as we record how L1 is modified from L0.
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Can we generalize this program rewriting idea to get solution programs under all modified DSLs?
A pitfall is that the solution program generated by the synthesizer might be different for a modified
DSL from the one under the initial DSL even if we apply rewriting. For example, consider another
modified DSL L2 with the following production rule added.

𝑆 := f3 (𝑆, 𝐼 ) where f3 (𝑎, 𝑏) = Substr(ConCat(𝑎, “|”), 𝑏, Indexof(𝑎, “|”, 0))

Then, the solution program under L2 will become 𝑓3 (𝑥, 0)—it cannot be trivially rewritten from
the previous solution program under L0 (e.g., by folding the matches of 𝑓3).

However, even though the solution program under L0 is not the solution program under L2, it
is still a viable program that meets the specification under L2. As a result, the feature component
rank of the initial solution program is always an upper bound of the feature component rank of the
real solution program under L2, so we can still take the former as an approximation of the latter.
Note that, in general, we still need to rewrite the initial program into the modified DSLs, and there
can be multiple candidate results of the rewrite. In such cases, we will always select the rewrite
result that has the lowest feature component rank.

Besides, although this approximation may be imprecise initially, AMaze will keep improving its
precision during the search. Specifically, AMaze periodically invokes the synthesizer under the
optimal DSL found so far to solve training tasks and records all solution programs. When evaluating
a new candidate DSL, AMaze will first rewrite all recorded programs to the new DSL, and then use
the least rank among all feature components (on each training task) to estimate the synthesizer’s
performance. Generally speaking, the more solution programs collected, the more accurate the
estimate of the synthesizer’s performance under a new DSL will be.

Calculating Ranks Effectively. The second challenge is how to efficiently calculate the rank of the
extracted feature component, i.e., the number of programs to be enumerated before reaching the
feature component. To address this challenge, we further estimate this rank by the number of pro-
grams whose size is no larger than the size of the feature component—it is an upper approximation
once the enumeration proceeds from small to large. This number can be efficiently calculated via a
dynamic programming algorithm, which will be elaborated in Section 5.2.2.

2.3 Workflow of AMaze

Now we explain the workflow of AMaze. For simplicity, in this section, we assume the synthesis
cost of EUsolver is strictly proportional to the rank of the feature component. Then, the task of
optimizing a DSL for EUsolver turns out to be minimizing the rank of the feature component.

Preparing Stage. AMaze first invokes the synthesizer with the initial DSL on the training tasks
and collects all solution programs. These solution programs are used in two ways.

First, AMaze applies a frequent patternmining algorithm [Zaki 2002] to extract possible operators
for addition. More specifically, although the scope of addition in theory covers all compositions of
production rules, it is impractical to really consider all these possibilities—they will not only form a
huge and intractable search space but also bring in the risk of overfitting. To avoid such issues,
AMaze limits the scope of addition to only the frequent patterns mined from the solution programs.
Since we only consider a single solution program 𝑝1 in our example, for illustration purposes, we
directly assume the following three functions as the considered operators for addition:

𝑓0 (𝑎, 𝑏, 𝑐) = Ite(Contains(𝑎, “ ”), 𝑏, 𝑐) 𝑓1 (𝑎, 𝑏) = Substr(𝑎, 0, 𝑏) 𝑓2 (𝑎) = Indexof(𝑎, “|”, 0)

Second, the solution programs will be used in the rewriting process to estimate the feature
component ranks under modified DSLs, and then will be used to estimate the synthesis cost.
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Table 1. The sequence of modifications on the DSL by AMaze

Modifications on L0 Feature Component Rank

init 3158
add 𝐼 := f2 (𝑆) 327
add 𝑆 := f1 (𝑆, 𝐼 ) 122

delete 𝑆 := ConCat(𝑆, 𝑆) 104
delete 𝐼 := Indexof(𝑆, 𝑆, 𝐼 ) 86

delete 𝐼 := 𝐼 + 𝐼 70
delete 𝑆 := Substr(𝑆, 𝐼 , 𝐼 ) 58

Main Search Loop. AMaze runs by iteratively searching for an optimal modification sequence.
It can be combined with any off-the-shelf search algorithm (such as the hill climbing method or
genetic algorithm). In each iteration, AMaze applies the search algorithm to find the best possible
DSL under the current estimation. For example, when the hill climbing method is used, AMaze
evaluates all DSLs that can be obtained by modifying the current DSL in one step (adding one rule
or deleting one rule), and selects the best one in terms of the estimated synthesis cost. This process
repeats until the current DSL cannot be improved by any single modification.
In this search procedure, to evaluate the synthesizer’s performance, AMaze maintains a set of

known solution programs, which initially contains the solution programs under the initial DSL.
When a new DSL comes up, AMaze rewrites the known solution programs into the new DSL and
selects the least rank of the feature components on each task.
At last, when the current best DSL is found, AMaze invokes the synthesizer (with the current

best DSL) on the whole training set, collects all solution programs, translates these programs back
to the initial DSL, and updates the set of known solution programs if any new solution program
has been found—these new programs help improve our estimation in future iterations.
In our example, suppose we use the hill climbing method as the search algorithm, AMaze

can finally find the aforementioned L1 as the final result, with 6 modifications applied. These
modifications are illustrated step-by-step in Table 1.

Better Search Algorithms. In practice, it is generally impossible to traverse all modified DSLs
(above 260 DSLs), and the hill climbing method is prone to falling into local optima. This problem
can be addressed by many well-known search algorithms, and we apply a genetic algorithm in
our implementation. In every iteration, AMaze updates the best candidate DSL by the genetic
algorithm and collects more solution programs (by invoking the synthesizer with the current DSL)
to improve the estimation. AMaze terminates after 100 iterations or when no better DSL is found
after 10 consecutive iterations, and returns the best candidate DSL.

3 Problem Definition

In this section, we formalize the problem studied in this paper, the DSL optimization problem.

3.1 Preliminaries

A domain-specific language (DSL) comprises a program space specified by a context-free grammar
and an interpreter that interprets each program as a function from inputs to outputs.

Definition 3.1 (Domain-Specific Language). A DSL is a pair (𝐺, ⟦·⟧) of a context-free grammar 𝐺
and an interpreter ⟦·⟧ that maps each program 𝑝 in 𝐺 to a function ⟦𝑝⟧ from inputs to outputs.
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A program synthesizer takes a DSL and a synthesis task as the input. Its goal is to find a program
(in the DSL) that meets the requirements of the task. This paper does not care about the concrete
form of synthesis tasks, so we simply formalize it as a predicate that judges whether the semantics
of a program is viable for the task.

Definition 3.2 (Synthesizer). A synthesizer S takes a DSL L = (𝐺, ⟦·⟧) and a synthesis task 𝜑

as the input. Its output S(L, 𝜑) is either a program in 𝐺 or a reserved symbol ⊥ representing a
synthesis failure. The synthesizer should be sound in the sense that its solution program must be
viable for the task, as shown below.

(𝑝∗ ∈ 𝐺) → 𝜑 (⟦𝑝∗⟧) where 𝑝∗ = S(L, 𝜑)

There are multiple possible reasons for synthesis failures; for example, the synthesizer may fail to
find a viable program within the resource limit, or there may be no viable program at all.

3.2 DSL Optimization Problem

The input of the DSL optimization problem comprises a synthesizer, an initial DSL, a training set of
synthesis tasks, and a set of DSL modifications. Its goal is to generate a new DSL by applying the
modifications so that the performance of the synthesizer is optimized on the training set. In this
paper, we consider a special class of DSL modifications that not only modify a DSL but also keep
the correspondence between programs in its input and output DSLs.

Definition 3.3 (DSL Modification). A DSL modification 𝑚 comprises a modification function
mod, a forward translator forward, and a backward translator backward. Given an input DSL L,
the modification result mod(L) is a new DSL, whose programs are connected with their original
versions in L via two functions forwardL and backwardL—forwardL maps a program in L forward
to a set of related programs in mod(L), and backwardL maps a program in mod(L) backward to a
set of related programs in L.

The translators are required to be sound in the sense of preserving program semantics. Specifically,
we call two programs 𝑝 and 𝑝′ in different DSLs semantically equivalent if ⟦𝑝⟧ and ⟦𝑝′⟧′ have
the same input-output behavior (where ⟦·⟧ and ⟦·⟧′ are the interpreter of the DSLs of 𝑝 and 𝑝′,
respectively). Then, we require all programs in the output set of forwardL and backwardL to be
semantically equivalent to the input program.

Intuitively, the translators capture program equivalence established through syntactic rewrites.
Note that the translators are not limited to one-to-one mappings, since a DSL modification may
make a program inexpressible or lead to multiple ways to rewrite a program. For example, suppose
there is a program 𝑝0 = 𝑓1 (𝑓2 (𝑥)) in the original DSL L. If the modification removes 𝑓1, 𝑝0 will
no longer exist in the new DSL, making forwardL (𝑝0) an empty set; on the other hand, if the
modification composes 𝑓1 and 𝑓2 into a new function 𝑓3, 𝑝0 will have two different implementations
in the DSL, i.e., 𝑝0 and 𝑝1 = 𝑓3 (𝑥), making forwardL (𝑝0) a set with two elements.
In this paper, we consider two kinds of modifications: additions and deletions. An addition is

akin to defining a function, which adds a new production rule by composing several rules together;
and a deletion is akin to removing useless functions, which deletes a production rule from the
grammar. We implement the translators of these modifications in a straightforward way.
• For addition, forward generates all possible ways to replace code fragments with the new
function, while backward unfolds the new functions back to the original code fragment.
• For deletion, forward maps a program to an empty set if the deleted rule is used, and maps to
a singleton set containing the program otherwise; in contrast, backward always returns a
singleton set containing that program.
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Example 3.4. In our motivating example, we apply a modification add 𝑆 := 𝑓1 (𝑆, 𝐼 ) to introduce
a production rule 𝑆 := 𝑓1 (𝑆, 𝐼 ) with a new function 𝑓1 (𝑎, 𝑏) = Substr(𝑎, 0, 𝑏). Let L0 denotes the
original DSL, and let 𝑝 be the program Ite(Contains(𝑥, “ ”), Substr(𝑥, 0, Indexof(𝑥, “|”, 0)), 𝑥)) in L0.
Then, the forward translator of this modification maps 𝑝 to two programs, as shown below; they
respectively correspond to the choices of using the new function 𝑓1 or not.

forwardL0
(𝑝) = {𝑝′, 𝑝} where 𝑝′ = Ite(Contains(𝑥, “ ”), 𝑓1 (𝑥, Indexof(𝑥, “|”, 0)), 𝑥)

In the other direction, the backward translator backwardL0 maps the new program 𝑝′ back to the
singleton set {𝑝}, as the new function 𝑓1 must be unfolded in the original DSL.

As an extension, we introduce three auxiliary functions Mod, Forward, and Backward to apply
multiple modifications. Given an initial DSL L and a sequence𝑚 = [𝑚1, . . . ,𝑚𝑛] of modifications,
these functions compose the corresponding functions for each modification in order, as follows.
• Mod(L,𝑚) represents the resulting DSL of applying𝑚1, . . . ,𝑚𝑛 to L in order.
• For any 𝑝 ∈ L, Forward(L,𝑚, 𝑝) returns a set of equivalent programs in Mod(L,𝑚). It
first applies the forward translator of𝑚1 to 𝑝 , then applies the forward translator of𝑚2 to
each program in the resulting set and takes the union, and so on.
• Similarly, for any 𝑝 ∈ Mod(L,𝑚), Backward(L,𝑚, 𝑝) returns a set of equivalent programs
in L obtained by applying the backward translators of𝑚𝑛, . . . ,𝑚1 in order to 𝑝 .

With all the above notations, we are ready to define the DSL optimization problem.

Definition 3.5 (DSL Optimization Problem). Given a synthesizer S, an initial DSL L, a training
set 𝑇 of synthesis tasks, and a set𝑀 of DSL modifications, the DSL optimization problem aims to
find a sequence𝑚 of DSL modifications such that the following objective function is maximized.∑

𝜑∈𝑇
[
𝑝∗𝜑 ≠ ⊥ ∨ 𝑝𝜑 ≠ ⊥

] ( [
𝑝𝜑 ≠ ⊥

]
time(S,L, 𝜑) +

[
𝑝𝜑 = ⊥

]
timeout

)∑
𝜑∈𝑇

[
𝑝∗𝜑 ≠ ⊥ ∨ 𝑝𝜑 ≠ ⊥

] ( [
𝑝∗𝜑 ≠ ⊥

]
time(S,L∗, 𝜑) +

[
𝑝∗𝜑 = ⊥

]
timeout

)
where L∗ denotes the modification result Mod(L,𝑚), 𝑝𝜑 and 𝑝∗𝜑 respectively denote the solution
programs under the original DSL and the modified DSL, i.e., S(L, 𝜑) and S(L∗, 𝜑). Then, [𝜙] is a
01 function that takes 1 when 𝜙 is true, time(S,L, 𝜑) represents the time cost for S to synthesize a
program under DSL L for task 𝜑 , and timeout is the time limit for S to solve one task.

This cost function calculates the average acceleration ratio achieved under the modified DSL on
the training set, ignoring tasks where L and L∗ both fail.

4 Feature Components and Their Identification

In this section, we describe our main innovation: what a feature component is and how we identify
the feature component from a solution program. This concept helps us estimate the time cost of
synthesis, given a synthesizer and a solution program.

4.1 Composition-Based Synthesizers and Feature Components

In this paper, we consider a composition-based framework of program synthesis, which is widely
used in many state-of-the-art syntax-guided synthesizers. As shown in Figure 1, this framework
comprises an enumerator and a composer. In each iteration, the enumerator first generates a certain
number of small components according to a certain order (usually by size), and then the composer
composes these components into a candidate solution program. This candidate will be returned
as the result if it is verified to be correct; otherwise, the framework will increase the number of
components and start the next iteration.
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Fig. 1. The composition-based synthesis framework.

Definition 4.1 (Composition-Based Synthesizer). A composition-based synthesizer is a pair of an
enumerator and a composer.
• The enumerator E𝑟 is parameterized by a ranking function 𝑟 , which takes a DSL L and
maps each program in L to a distinct positive integer. Given the ranking function, E𝑟 takes a
DSL L and a positive integer 𝑛 as the inputs, and returns the set of all programs in L whose
rank is no larger than 𝑛:

E𝑟 (L, 𝑛) = {𝑝 ∈ L | r(L, 𝑝) ≤ 𝑛}

• The composer C composes a set of small components into a viable program for a synthesis
task. Given a DSL L, a set of components 𝑃 ⊆ L, and a synthesis task, the composer C
explores a subspace LC (𝑃) ⊆ L (i.e., the set of programs composed from 𝑃 ) and will return
either a viable program in LC (𝑃), or the failure symbol ⊥ if no viable program exists.

Given a DSL L and a synthesis task 𝜑 , the composition-based synthesizer explores the following
sub-spaces in order, and returns the first viable program returned by the composer.

LC
(
E𝑟 (L, 1)

)
, LC

(
E𝑟 (L, 2)

)
, . . . , LC

(
E𝑟 (L, 𝑛)

)
, . . .

The time cost of composition-based synthesizers can be estimated with the concept of feature
components. According to the above definition, the time cost depends heavily on the number of
iterations used. The more iterations there are, the more times the enumerator and the composer
are invoked, resulting in a higher time cost. Moreover, given the target program 𝑝 , the number
of needed iterations is determined by the highest rank among the components in 𝑝 that must be
generated by the enumerator. We refer to such components as enumerated components, and refer to
the enumerated component with the highest rank as the feature component.

Definition 4.2 (Enumerated Components). Given a composition-based synthesizer (E𝑟 , C), a DSL
L, a synthesis task 𝜑 , and a target program 𝑝 , the enumerated components ECS,L,𝜑 (𝑝) are defined
as follows, where Sub(𝑝) denotes the set of program fragments in 𝑝 .

ECS,L,𝜑 (𝑝) = Sub(𝑝) ∩ E𝑟 (L, 𝑛∗) where 𝑛∗ = min({𝑛 ∈ N | 𝑝 ∈ LC
(
E𝑟 (L, 𝑛)

)
})

Definition 4.3 (Feature Component). Given a composition-based synthesizer (E𝑟 , C) with ranking
function 𝑟 , a DSL L, a synthesis task 𝜑 , a target program 𝑝 , and a set of enumerated components
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ECS,L,𝜑 (𝑝), the feature component of 𝑝 , denoted as FCS,L,𝜑 (𝑝), is defined as follows.

FCS,L,𝜑 (𝑝) = argmax
𝑒𝑐

𝑟
(
L, 𝑒𝑐

)
for 𝑒𝑐 ∈ ECS,L,𝜑 (𝑝)

For simplicity, we abbreviate the enumerated components as EC(𝑝) and the feature component as
FC(𝑝) if the synthesizer, the DSL, and the synthesis task are clear from the context.

Although FC(𝑝) is defined over the synthesis procedure, it can usually be computed efficiently
with only the syntax of the target program 𝑝 , without actually running the synthesizer. In the
remainder of this section, we consider four state-of-the-art composition-based synthesizers, in-
cluding DryadSynth, Duet, PolyGen, and EUsolver, and show how to efficiently compute the
feature components for these synthesizers.

4.2 Feature Component Identification

This section focuses on how to find all enumerated components—it is straightforward to identify
the feature component from the enumerated components once we can compute the rank of each
component, which will be elaborated in Section 5.2.2.

We find enumerated components by decomposing the solution program recursively, purely based
on the syntax. Algorithm 1 outlines our algorithm. It is parameterized by a decision function DF

that depends on the specific target synthesizer. Function DF takes two inputs, a program 𝑝′ and
a component 𝑠𝑢𝑏 of 𝑝′, and returns a boolean value indicating whether 𝑠𝑢𝑏 needs to be further
decomposed or it is already an enumerated component. Using the DF function, Algorithm 1 first
checks whether the input program 𝑝 itself is an enumerated component, and returns a singleton
set containing it if it is (Line 1). Otherwise, Algorithm 1 invokes the Decompose function (Line 2),
a recursive function that collects all enumerated components of its input program 𝑝′. It iterates
through all components that are direct children of the AST root (Line 4-11). For each component,
if it can be further decomposed, the function will recursively collect all enumerated components
inside (Line 8). Otherwise, the component itself is an enumerated component and is added to the
set EC (Line 10). Finally, the function returns all collected components (Line 11).

Next, we explain how to instantiate DF for various state-of-the-art synthesizers—they are all
straightforwardly derived from the composition mechanism of each synthesizer.

EUsolver. EUsolver [Alur et al. 2017] uses if-then-else to compose straight-line enumerated
components into a larger solution program. The DF function for EUsolver is quite simple:

DF(𝑝, 𝑠𝑢𝑏) =
{true if the root node of 𝑠𝑢𝑏 is if-then-else operator
false otherwise (2)

With the above DF function, for a solution program generated by EUsolver, Algorithm 1 traverses
the decision tree of the solution program in a depth-first order and returns all the leaf programs.

PolyGen. Similar to EUsolver, PolyGen [Ji et al. 2021] also defines several “backbone” operators
for decomposing synthesis problems. Apart from the if-then-else operator, PolyGen further allows
the composition with Boolean operators to efficiently generate Boolean conditions. Therefore, we
define a special operators set sopPolyGen = {ite, and, or, not} and the DF function can be defined as:

DF(𝑝, 𝑠𝑢𝑏) =
{true if the root node of 𝑠𝑢𝑏 ∈ sopPolyGen
false otherwise (3)
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Algorithm 1 The decomposition procedure for identifying enumerated components
Require: A program p.
Hyperparameter: A decision function DF that specifies, for a program 𝑠 and a program fragment

𝑠𝑢𝑏, whether 𝑠𝑢𝑏 should be further decomposed.
Ensure: The set of enumerated components in 𝑝 .
1: if not DF(p, p) then return {p};
2: return Decompose(p);
3:
4: function Decompose(program 𝑝′):
5: EC← ∅; fragments← Subnodes(𝑝′);
6: for all program sub in fragments do
7: if DF(𝑝′,sub) then ⊲ sub should be further decomposed
8: EC.AppendAll(Decompose(sub));
9: else ⊲ sub is an enumerated program fragment
10: EC.Append(sub);
11: return EC;

ntString := (str.++ ntString ntString) | (str.replace ntString ntString ntString) |
(str.at ntString ntInt) | (str.substr ntString ntInt ntInt) |
(ite ntBool ntString ntString) | (int.to.str ntString)

ntInt := (+ ntInt ntInt) | (− ntInt ntInt) | (str.len ntString) | (str.to.int ntString) |
(ite ntBool ntInt ntInt) | (str.indexof ntString ntString ntInt)

ntBool := (= ntInt ntInt) | (str.prefixof ntString ntString) |
(str.suffixof ntString ntString) | (str.contains ntString ntString)

Fig. 2. Production rules used by Duet in the domain of string manipulation; non-terminals corresponding to

program fragments that need to come directly from the enumeration part are underlined.

Duet. Duet [Lee 2021] generates small program fragments via enumeration and puts them
together into the desired program using an algorithm called top-down propagation (TDP) [Polozov
and Gulwani 2015]. TDP itself is a complete top-down synthesis algorithm that tries to solve the
synthesis problem by decomposing the problem into smaller sub-problems. However, it suffers from
the issue that there are too many ways to decompose the synthesis problem. To avoid this issue,
Duet restricts some program fragments to be enumerated components and stops decomposition
once these fragments are reached. This restriction is specified as annotations on production rules. For
example, Figure 2 shows the annotated production rules in the domain of string manipulation, where
underlined non-terminals correspond to program fragments that must come from enumeration.
Based on these rules, the DF function can be defined as:

DF(𝑝, 𝑠𝑢𝑏) =
{false if sub is expanded from an underlined non-terminal Figure 2
true otherwise (4)

DryadSynth. DryadSynth [Ding and Qiu 2024] is a highly efficient synthesizer for bitvec-
tor problems. It composes enumerated components using templates like bvxor(hole1, hole2) and
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Algorithm 2 Search Framework
Require: A DSL optimization problem specified by a synthesizer S, an initial DSL L0, a training

set 𝑇 of synthesis tasks, and a set𝑀 of available DSL modifications.
Ensure: An optimized DSL L∗.
1: bestRatio, bestDSL← −∞,NULL;
2: evaluatedTasks← ∅;
3: solutionSet[𝑡] ← ∅ for each training task 𝑡 ∈ 𝑇 ;
4: noImprovementCount← 0;
5: while noImprovementCount < a pre-defined limit or max number of iterations reached do

6: timePredictModel← Train(𝑇, evaluatedTasks, solutionSet);
7: 𝑚 ← SearchWithModel(𝑇, timePredictModel, solutionSet, 𝑀);
8: L ← Mod(L0,𝑚);
9: for all training task 𝑡 ∈ 𝑇 do

10: 𝑝, time← SynthesisWithTime(S,L, 𝑡);
11: 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑑𝑇𝑎𝑠𝑘𝑠.Append(𝑚,L, 𝑡, time);
12: solutionSet[𝑡] .AppendAll(Backward(L,𝑚, 𝑝));
13: ratio← EvaluateAccelerateRatio(L0,L,S,𝑇 );
14: if ratio > bestRatio then
15: bestRatio, bestDSL← ratio,L;
16: noImprovementCount← 0; ⊲ Reset counter since we find a better DSL
17: else

18: noImprovementCount← noImprovementCount + 1;
19: return bestDSL;

bvand(hole1, bvand(hole2, hole3)). Therefore, the DF function of DryadSynth can be defined as:

DF(𝑝, 𝑠𝑢𝑏) =
{true if 𝑝 fits into a template 𝑡 and 𝑠𝑢𝑏 is a hole program according to 𝑡
false otherwise (5)

Note that, to apply the above DF function, we need to slightly modify the Decompose function in
Algorithm 1 so that the whole solution program 𝑝 is always used as the first parameter of DF.

5 Design of AMaze

AMaze solves the DSL optimization problem through search-based optimization. During the search,
it efficiently estimates the synthesis time cost of each task under candidate DSLs based on the
feature component ranks of solution programs. Although the synthesis time highly correlates with
the feature component rank for a given task, typically it is impossible to find a DSL that minimizes
feature component ranks of all tasks and the relationship between feature component ranks and
synthesis times is complex. As a result, instead of directly using ranks to estimate synthesis time,
AMaze trains a machine learning model on the fly that predicts synthesis time based on feature
component ranks. In this section, we introduce the detailed design of AMaze.

5.1 Search Framework

Algorithm 2 shows the framework of AMaze. It searches iteratively and collects two growing sets
of data: evaluatedTasks (Line 2) records all invocations to the synthesizer (each of which includes the
sequence of modifications, the modified DSL, the synthesis task) and the corresponding synthesis
time costs, which will be used for training a synthesis time prediction model based on the ranks
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Algorithm 3Model Training
1: function GetFeatureRank(task 𝑡 , modification sequence𝑚, candidate DSL L, solutionSet):
2: solutions← ⋃

𝑝 Forward(L,𝑚, 𝑝) for 𝑝 ∈ solutionSet[𝑡];
3: featureComponents← {GetFeatureComponent(L,𝑚, 𝑠) for each 𝑠 ∈ solutions};
4: featureComponent∗ ← the smallest feature component in featureComponents;
5: rank← CalRank(L, featureSubcomponent∗);
6: return rank;
7: function Train(training set 𝑇, evaluatedTasks, solutionSet):
8: trainingInput← ∅; trainingOutput← ∅;
9: for all (modification sequence𝑚, DSL L, task 𝑡 , and time cost time) ∈ evaluatedTasks do
10: rank← GetFeatureRank(𝑡,𝑚,L, solutionSet);
11: trainingInput.Append(rank); trainingOutput.Append(time);
12: return TrainModel(trainingInput, trainingOutput);

of feature components; and for each training task 𝑡 , solutionSet[𝑡] (Line 3) records its all known
solution programs in the initial DSL space, which will be used for estimating the ranks of feature
components of the solution programs under a newly discovered DSL.

In every iteration, AMaze first uses the collected data to train a synthesis time prediction model
timePredictModel (Line 6, details in 5.2.1), which predicts the synthesis time cost of the synthesizer
for a synthesis task under a candidate DSL without invoking the synthesizer. AMaze uses the
predictions of this model to quickly estimate the objective value of a new DSL. Under the guidance
of this model, AMaze searches among possible modifications and quickly generates a candidate
modification sequence that is effective under the prediction of the model (Line 7, details in 5.3).
Then, for the modification sequence𝑚, the framework computes its corresponding candidate DSL
(Line 8) and invokes the synthesizer with this DSL for every training task (Line 10). The input
information and running time of these invocations will be added to evaluateTasks for training
a more accurate model (Line 11). The synthesized program will be backward translated to the
initial DSL and recorded in solutionSet for better estimating the ranks of feature components of the
solution programs under later-generated DSLs (Line 12, details in Section 5.2.1). Finally, AMaze
calculates the current objective value (Line 13). If a better DSL has been found, it updates the result
(Line 15) and resets the failure counter (Line 16); otherwise, it increments the counter (Line 18).

The loop terminates when AMaze fails to find a better DSL for a fixed number (10 in our
implementation) of consecutive iterations or when it reaches the maximum number (100 in our
implementation) of iterations (line 5), and it returns the DSL with the largest objective value as the
final result (Line 19).
In the rest of the section, we explain how AMaze builds the time prediction model and how it

searches DSLs with the model in detail.

5.2 Building the Prediction Model

Since evaluating the objective function (i.e., the acceleration ratio on solving all training tasks) by
invoking the synthesizer directly is time-consuming, AMaze trains a prediction model to predict
synthesis time cost for each task based on feature component ranks, which are then used to compute
the objective function value.

5.2.1 Training Procedure. Algorithm 3 shows the training procedure Train (Line 6 in Algorithm
2) of this model. The model takes the estimated feature component rank of the solution program
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for a task under a DSL (calculated by GetFeatureRank, Lines 1-6) as the input and predicts the
corresponding synthesis time.
One problem here is how to estimate the rank without exactly knowing the accurate solution

program since we would like to use the prediction model for new candidate DSLs without invoking
the synthesizer with them. To address this problem, AMaze estimates the rank corresponding to the
accurate solution program using the known solution programs in solutionSet (Lines 2-5). Specifically,
AMaze forward translates every program in sotluionSet into the current DSL space (Line 2). For
each solution 𝑠 obtained through this forward translation, AMaze invokes the decomposition
procedure introduced in Algorithm 1 and decomposes 𝑠 into a set of enumerated components
and gets the feature component, which is the largest component among them (Line 3). Then,
AMaze takes the smallest feature component among them (Line 4), and calculates its rank using a
dynamic-programming-based approach (details in Section 5.2.2), which is used to estimate the rank
of the feature component of the accurate solution program (Line 5). Note that since solutionSet will
grow larger during the iterations (Line 12 in Algorithm 2), this estimation will become more and
more accurate in the search procedure.

The training procedure of the model is straightforward (Lines 7-12). For each piece of synthesis
information recorded in evaluatedTasks, AMaze calculates the rank of the feature component of
each solution program for task 𝑡 under each DSL (Line 10) and takes the rank along with the actual
time cost as training data of the model (Line 11). AMaze can be instantiated with any off-the-shelf
prediction model, and in our implementation, we use a gradient boosted decision tree implemented
in XGBoost [Chen and Guestrin 2016] as the prediction model.

5.2.2 Calculating the Rank. AMaze calculates an upper approximation of the rank of a program
in enumeration by dynamic programming. Specifically, let 𝑝∗ be a program, let 𝑠 be the start
non-terminal of the grammar, and suppose that 𝑝∗ is obtained by applying num∗ production rules
to 𝑠 . Then, the rank of 𝑝∗ can be effectively approximated by the number of programs that are not
larger than 𝑝∗, which is the number of programs that can be obtained by applying up to num∗

production rules to 𝑠 . 2
Let Count(𝑛, num) be the number of programs that can be obtained by applying exactly num

production rules to a non-terminal 𝑛. This function can be efficiently calculated by dynamic
programming showed in Algorithm 4. It uses two global caches to speed up the computation:
CCache[𝑛, num] records the number of programs that can be produced by applying exactly num
production rules to a non-terminal n (Line 2), and RCache[𝑟, 𝑘, num] records the number of (partial)
programs generated by expanding the rule r exactly num times, considering only the first k non-
terminals in rule r (Line 3). If num = 1, Count sets CCache[𝑛, num] to the number of rules that
start with n and only produce terminals (Line 10). Otherwise, Count iterates over all production
rules that start with n and produce at least one non-terminal, and sets CCache[𝑛, num] to the
sum of the numbers of programs obtainable by applying each such rule followed by num − 1
additional rules. This sum is computed using the CountPartial function (Line 14). Count
returns CCache[𝑛, num] as the final result (Line 15).

CountPartial is a recursive function to calculate the number of (partial) programs generated
by expanding a rule r exactly num times, considering only the first k non-terminals in rule r. In
addition to the boundary condition checks (Lines 18–21), the core logic is that this number equals
the sum, over all t from 1 to num − 1, of the numbers of programs produced by expanding the first

2Here we present the rank calculation method under the condition of enumeration according to the size of syntax tree nodes,
which is consistent with the principle of enumeration part of most program synthesizers. An exception is DryadSynth,
which enumerates programs according to the order of term graph sizes, and our tool also implements the rank calculation
under this condition.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 37. Publication date: January 2026.



37:16 Zhentao Ye, Ruyi Ji, Yingfei Xiong, and Xin Zhang

Algorithm 4 Counting the number of programs of a given size
Require: A non-terminal n and an integer num
Ensure: The number of programs that can be produced by applying exactly num rules to n
1: global variables
2: CCache← ∅; ⊲ CCache[n, num] records the number of programs that can be produced

by applying exactly num production rules to a non-terminal n
3: RCache← ∅; ⊲ RCache[r, k, num] records the number of (partial) programs generated by

expanding the rule r exactly num times, considering only the first k non-terminals of rule r
4: end global variables

5:
6: function Count(non-terminal n, int num):
7: if CCache[n, num] is not NULL then

8: return CCache[n, num];
9: if num = 1 then
10: CCache[n, num] ← number of rules that start with n and only produce terminals;
11: else

12: CCache[n, num] ← 0;
13: for all rule r that starts with n and produces at least one non-terminal do
14: CCache[n, num] ← CCache[n, num] + CountPartial(r, the arity of 𝑟 , num − 1);
15: return CCache[n, num];
16:
17: function CountPartial(rule r, int k, int num):
18: if num < k then ⊲ Each non-terminal requires at least one expansion
19: return 0;
20: if k = 1 then ⊲ All expansions are used by the first non-terminal
21: return Count(GetNonterminals(r)[0],num);
22: if RCache[𝑟, 𝑘, num] is not NULL then

23: return RCache[𝑟, 𝑘, num];
24: if k = num then ⊲ Each non-terminal corresponds to exactly one expansion
25: tmp← 1;
26: for all non-terminal n in r do
27: tmp← tmp × Count(n, 1);
28: RCache[𝑟, 𝑘, num] ← tmp;
29: else

30: RCache[𝑟, 𝑘, 𝑛𝑢𝑚] ← 0;
31: for t = 1 to num − 1 do ⊲ Assume the last non-terminal uses num − t expansions
32: RCache[𝑟, 𝑘, num] ← RCache[𝑟, 𝑘, num] + Count(GetNonterminals(r) [k −

1], num − t) × CountPartial(r, k − 1, t);
33: return RCache[𝑟, 𝑘, num];

k − 1 non-terminals in r exactly t times and the last non-terminal exactly num − 𝑡 times (Lines
22–32). This function is efficiently implemented based on the two caches CCache and RCache.
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By invoking Count, the rank of the program 𝑝∗ can be approximated as
∑num∗

𝑖=1 Count(𝑠, 𝑖).3 4

5.3 Model-Guided Search

We first describe how AMaze generates the space of DSL modifications, and then how it finds an
adequate sequence of modifications within the space using the aforementioned model.

5.3.1 Generating the Search Space. The choice of modifications (i.e., set𝑀 in the input of Algorithm
2) is crucial for the performance of AMaze because it defines the search space. As discussed in
Section 3.2, in this paper, we consider only two basic types of modifications, addition and deletion, but
we believe the performance of AMaze can be further improved if more advanced or domain-specific
modifications are considered.
One problem here is that there may be an exponential number of different possible addition

modifications, which will induce a search space too large for effective exploration. To address this
problem, AMaze considers only those composed rules that frequently appear in solution programs.
Specifically, given the initial DSL, the synthesizer, and the training set, AMaze first collects a set of
solution programs by invoking the synthesizer on each training task under the initial DSL. Then,
AMaze will decompose these solution programs into a family of enumerated components and
discover common patterns (i.e., compositions of production rules) by applying a frequent pattern
mining algorithm based on the SLEUTH algorithm [Zaki 2002] and will consider only those addition
modifications corresponding to the mined patterns. The candidate rules generated in this way
are generalizable and avoid overfitting that may be caused by directly introducing the complete
solution program for a specific task.

The candidate space for the deletion modifications is the set of initial production rules except for
rules that produce constants or inputs.

5.3.2 Search Algorithm. AMaze can be combined with any off-the-shelf search algorithm to find
effective modification sequences guided by the prediction model (Line 7 in Algorithm 2). In our
implementation, we adopt the genetic algorithm, which is a popular search algorithm inspired by the
concept of natural selection. Briefly, it searches by iterating through a set of modification sequences,
which are referred to as a population of genes. In each iteration, it produces the next generation of
the population by (1) selecting a set of modification sequences as parents to participate in the next
step of reproduction (i.e., selection), (2) generating a set of candidate modification sequences by
mixing the selected parents (i.e., crossover), and then (3) randomly changing one of the modifications
with a given probability for each candidate modification sequence (i.e., mutation).

The following describes more details of the adopted genetic algorithm in AMaze.
• The fitness function is set to the estimated objective function value (under the prediction of
our model).
• AMaze determines the parents using roulette wheel selection [Golberg 1989] based on
ranking to avoid the “elite monopoly" problem caused by excessive disparities in fitness
values.
• The crossover probability is set to 0.8. If crossover occurs, AMaze performs crossover on two
modification sequences by randomly selecting positions in the first sequence and replacing
the modifications at those positions with their counterparts from the second sequence.

3Some synthesizers (e.g., Duet) need to enumerate programs from multiple non-terminals simultaneously, where each
non-terminal expands 𝑛𝑢𝑚∗ times. To handle this, we apply the same calculation to each non-terminal until its expansion
count reaches 𝑛𝑢𝑚∗.
4Synthesizers like EUsolver and DryadSynth apply optimization like observational equivalence to improve enumeration
efficiency. Our calculation of ranks ignores these optimizations, but the results are still highly correlated with the real values.
Our machine learning predictor captures this correlation and reduces the noise caused by ignoring such optimizations.
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• The mutation probability is set to 0.01. AMaze mutates a modification sequence by randomly
selecting one of two operations: (1) inserting an available modification at a random position,
or (2) removing a randomly selected modification.
• AMaze maintains a population of 100 modification sequences per iteration and runs for 100
iterations. It then returns the best sequence as the final candidate.

6 Empirical Evaluation

We have implemented AMaze in Python. To evaluate the effectiveness of AMaze, we try to answer
the following research questions:
(1) Can AMaze accelerate state-of-the-art synthesizers across different domains by optimizing

DSLs?
(2) How does AMaze compare to existing DSL modification methods that are not designed for

accelerating synthesizers?
(3) Ablation Study: Of the two innovations to estimate synthesis performance (i.e., using feature

components and using ranks) in AMaze, what is the independent contribution of each
technique to the final result? Does removing any of them lead to a significant change in
performance?

(4) Case Study: As informal evidence to reflect whether the rules introduced in the final DSLs
are generalizable, are they human-readable?

(5) How is the time cost of the experiments?
In the rest of the section, we describe our experiment results by answering these questions.

6.1 Experiment Setup

Before describing our evaluation results, we explain the setup first.

Synthesis Tasks and DSLs. For synthesis tasks, we consider three application domains from
SyGus-Comp 2019, the latest Syntax-Guided Synthesis Competition [Padhi 2019]:
• The string manipulation benchmark suite (String or S in short) contains 209 tasks from the
SLIA (strings with linear integer arithmetic) track of the competition.
• The bitvector (BV or B) benchmark suite contains 750 problems from the BV (bit-vectors)
track. The benchmarks are motivated by program deobfuscation [Jha et al. 2010].
• The conditional linear integer arithmetic (CLIA or C) benchmark suite contains 82 problems
from the General track5. In addition, following the evaluation setup of PolyGen [Ji et al.
2021], we include 18 tasks for synthesizing combinators in divide-and-conquer algorithms,
which are collected by Farzan and Nicolet [2017], resulting in 100 tasks in total.

For each domain, we adopt a ten-fold cross-validation approach to evaluate the performance of
our approach and report the overall synthesizer performance on the test sets across the ten folds.

Figure 3 shows the initial DSLs of the three domains. We omit constants and inputs because they
vary across tasks, and our method does not delete any rule producing a constant or an input.

Synthesizers. To evaluate the effectiveness of our approach, we consider four synthesizers:
DryadSynth [Ding and Qiu 2024] for bitvector programs, Duet [Lee 2021] for string manip-
ulation programs, PolyGen [Ji et al. 2021] for conditional linear integer arithmetic programs, and
EUsolver [Alur et al. 2017] for the aforementioned three types of programs considered together.

5There is also a CLIA Track in SyGus-Comp 2019. We chose to use the dataset from the general track of the competition
because (1) all benchmarks from the CLIA track are included in the general track, and (2) the general track also contains
additional benchmarks from various domains that can be solved using programs written in the CLIA syntax.
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ntBV := (bvand ntBV ntBV) | (bvor ntBV ntBV) | (bvxor ntBV ntBV) |
(bvadd ntBV ntBV) | (bvsub ntBV ntBV) | (bvmul ntBV ntBV) |
(bvlshr ntBV ntBV) | (bvshl ntBV ntBV) | (im ntBV ntBV ntBV)

(a)

ntString := (str.++ ntString ntString) | (str.replace ntString ntString ntString) |
(str.at ntString ntInt) | (str.substr ntString ntInt ntInt) |
(ite ntBool ntString ntString) | (int.to.str ntString)

ntInt := (+ ntInt ntInt) | (− ntInt ntInt) | (str.len ntString) | (str.to.int ntString) |
(ite ntBool ntInt ntInt) | (str.indexof ntString ntString ntInt)

ntBool := (= ntInt ntInt) | (str.prefixof ntString ntString) |
(str.suffixof ntString ntString) | (str.contains ntString ntString)

(b)

Start := (+ Start Start) | (− Start Start) | (ite StartBool Start Start)
StartBool := (and StartBool StartBool) | (or StartBool StartBool) | (not StartBool) |

(< Start Start) | (= Start Start) | (≤ Start Start) |
(c)

Fig. 3. The initial DSLs used in synthesizing (a) BV programs, (b) String programs and (c) CLIA programs.

Table 2. Improvement in performance of different synthesizers using AMaze. The timeout is set to five

minutes.

Synthesizer Domain # Tasks # Solved Problems Average Time Cost (Second)
Initial DSL New DSL Initial DSL New DSL Speedup

DryadSynth BV 750 750 750 0.53 0.49 1.09×
Duet String 209 208 208 1.96 0.54 3.62×
PolyGen CLIA 100 81 84 30.14 19.72 1.53×
EUsolver B+S+C 1059 806 935 55.43 12.74 4.35×

As far as we know, DryadSynth, Duet, and PolyGen are the strongest synthesizers in the do-
mains of bitvector, string manipulation, and conditional linear integer arithmetic, respectively. And
EUsolver is a popular synthesizer which works on all the three domains and solves more tasks
than the previous three solvers when considering the domains together. The four synthesizers all
meet the definition of a composition-based synthesizer we defined in Definition 4.1 .

Software and Hardware Environment. We ran all experiments using Python 3.11.5 and XGBoost
2.0.0 on a Ubuntu 22.04 server equipped with a 22-core, 44-thread Intel(R) Xeon(R) Gold 6238 CPU
running at 2.10GHz and 256 GB of RAM.

6.2 Experiment Results

Speedups for State-of-the-Art Synthesizers. Table 2 shows the performance improvement of dif-
ferent synthesizers by optimizing DSLs using AMaze in terms of the number of solved problems
and average synthesis time. The average synthesis time and average speedup are calculated after
excluding tasks where the synthesizer fails to find a solution under both DSLs.
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Table 3. Improvement in performance of different synthesizers using a modified version of AMaze that

simulates Stitch. The time out is set to five minutes.

Synthesizer Domain # Tasks # Solved Problems Average Time Cost (Second)
Initial DSL New DSL Initial DSL New DSL Speedup

DryadSynth BV 750 750 750 0.53 0.49 1.09×
Duet String 209 208 208 1.96 0.39 5.03×
PolyGen CLIA 100 81 79 20.61 32.51 0.64×
EUsolver B+S+C 1059 806 276 23.78 207.06 0.11×

While the absolute numbers vary, AMaze accelerates all synthesizers in their excelled domains
despite that the majority of the synthesizers are already highly optimized for the corresponding
domains. DryadSynth is carefully designed for bitvector problems and can already solve all 750
tasks in only 0.53 seconds on average with the initial DSL. However, with the help of AMaze,
DryadSynth can further reduce the average synthesis time to 0.49 seconds, showing an average
speedup of 1.09×. The speedup effect is even more evident for the other synthesizers. For Duet
on the string domain, it also solves almost all tasks (208 out of 209 tasks) with the initial DSL in
1.96 seconds on average. While with the optimized DSL, the time cost is reduced to 0.54 seconds,
yielding an average speedup of 3.62×. As for PolyGen, AMaze not only helps it solve 3 more tasks,
but also decreases the average time cost from 30.14 seconds to 19.72 seconds, resulting in an average
speedup of 1.53×. At last, EUsolver, which we evaluate in all the above three domains, receives
the most significant performance boost. With the optimized DSLs, EUsolver is able to solve 129
more tasks. The percentage of solved tasks increases from 76.11%(806/1059) to 88.29%(935/1059).
The average synthesis time is reduced from 55.43 seconds to 12.74 seconds, yielding an average
speedup of 4.35×.

In addition, AMaze improves all synthesizers consistently across different train-test splits. Across
all 60 held-out folds for test (30 for EUsolver and 10 each for the other solvers), the modified DSLs
enable solving more tasks on 24 folds, the same number on 31 folds, and fewer on only 5 folds.
Moreover, the synthesizer solves only 1-2 fewer tasks on each of the 5 under-performing folds. All
these folds are in the CLIA domain (2 for PolyGen and 3 for EUsolver), which has significantly
fewer tasks than other domains.
In summary, by optimizing the DSL, AMaze has enabled DryadSynth and Duet to achieve an

average speedup of 1.09× on the bitvector domain and 3.62× on the string domain, respectively. For
the CLIA tasks, AMaze helps PolyGen solve 3 more tasks and achieve an average speedup of 1.53×.
Finally, AMaze enables EUsolver to solve 129 more tasks and achieve an average speedup of 4.35×.
This shows that AMaze is effective in speeding up state-of-the-art syntax-guided synthesizers.

Comparison with Existing DSL Modification Techniques. As far as we know, there is no existing
technique that modifies the DSL specifically to accelerate various state-of-the-art syntax-guided
synthesizers in different domains. However, there exists a rich body of literature in modifying DSLs
for library learning [Bowers et al. 2023; Cao et al. 2023; Ellis et al. 2021], which all try to minimize
the sizes of a set of training programs by composing existing DSL operators into new operators
(i.e., library functions). The question is whether we can achieve a similar speedup effect following
the idea of compressing programs by adding new library functions. To answer this question, we
try to compare our approach with Stitch [Bowers et al. 2023], a state-of-the-art library learning
method. However, we cannot apply Stitch to accelerate the aforementioned synthesizers out-of-
the-box as DSLs generated by it involve higher-order functions, which are not supported by the
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synthesizers. Instead, we modify AMaze in the following aspects to simulate Stitch for enabling a
fair comparison:
• We modify the pattern mining algorithm that discovers possible additions by allowing it to
discover patterns on the whole solution programs instead of on enumerated components.
• We replace the optimization objective in the search process with minimizing

sizeof(rewrite(training programs),L) + penalty(L)
where sizeof(rewrite(training programs),L) is the sum of the sizes of the training programs
rewritten in the modified DSL L and penalty(L) is a normalization term that penalizes DSLs
for introducing too many library functions, thereby preventing overfitting.

Table 3 shows the results of using the modified AMaze to accelerate the four synthesizers.
Different from our approach, which accelerates all four synthesizers, the modified version only
accelerates DryadSynth and Duet but slows down PolyGen and EUsolver. Particularly, with
the DSL generated by the modified version, PolyGen solves 2 fewer tasks and the average time
cost increases from 26.42 seconds to 41.22 seconds, yielding an average speedup of 0.64×. The
results of EUsolver are even worse: using the DSLs generated by the modified version, it solves 530
fewer tasks and the average time cost has increased by almost 200 seconds (23.78 seconds to 207.06
seconds), yielding an average speedup of 0.11×. There are two reasons for this phenomenon: 1) with
program sizes as the objective, the modified version has no incentive to delete production rules,
which degrades its performance in reducing feature component ranks, and 2) more importantly, by
minimizing the sizes of whole solution programs, the modified version introduces library functions
that are not used in enumerated components, which often delays discovering them.

For DryadSynth, the modified version achieves a similar speedup as our approach. The reason is
that it has a highly optimized enumerator and composer for the bitvector domains, and therefore is
resilient to introducing useless library functions. As for Duet, the modified version achieves a better
speedup. After inspection, we found on the string dataset, while some of the library functions the
modified version introduces are useless in speeding up solving the training tasks as they span across
program components found through enumeration, they happen to be able to speed up solving some
of the testing tasks. Moreover, similar to DryadSynth, Duet is also resilient to introducing useless
library functions. As a result, the modified version gets “lucky” due to the difference between the
testing set and the training set, although it learns the wrong libraries for the training set. However,
we do not believe this phenomenon is typical – As shown by the results, AMaze consistently
improves all synthesizers in all domains while the modified version only improves a subset and
leads to slowdowns for the others.

In summary, the library learning approach represented by Stitch is not as broadly applicable as our
approach to accelerate various composition-based synthesizers because it fails to capture the synthesizer
costs precisely, and can lead to severe slowdowns for certain synthesizers. In contrast, AMaze achieves
consistent acceleration of different synthesizers on different domains.

Ablation Study. To test the effectiveness of the two technical innovations in estimating synthesizer
performance (using feature components and using rank) separately, we designed an ablation
experiment. In brief, we examined the results when only using feature components (denoted as
AMaze𝑐 ) and the results when only using rank (denoted as AMaze𝑟 ), and compared them with the
results from AMaze. More concretely, AMaze𝑐 predicts time cost based on the size (syntax tree
size) of the feature components, while AMaze𝑟 uses the overall ranks of the solution programs as
the prediction indicator. We run this experiment on the most improved synthesizer, EUsolver, on
all domains with the same ten-fold partitions and report the overall performance. The results are
showed in Table 4.
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Table 4. Improvement in performance of synthesizer(EUsolver) using different method. The time out is set

to five minutes.

Domain # Tasks Method # Solved Problems Average Time Cost (Second)
Initial DSL New DSL Initial DSL New DSL Speedup

B+S+C 1059
AMaze𝑐 806 858 42.65 32.18 1.33×
AMaze𝑟 806 215 20.95 224.52 0.09×
AMaze 806 935 55.43 12.74 4.35×

We first discuss the result of AMaze𝑐 . With the optimized DSLs produced by AMaze𝑐 , compared
to using the initial DSLs, EUsolver solves 52 more task, and the average synthesis time is reduced
from 42.65 seconds to 32.18 seconds, yielding an average speedup of 1.33×. This shows that when
only using feature components, AMaze𝑐 can find new DSLs that are better than the initial DSLs,
but the speedup is worse compared to AMaze. While applying feature components precisely
captures the program fragments identified through enumeration, ranks provide a better estimation
of enumeration time than sizes. Compared with ranks, the values of sizes are more concentrated.
For example, the sizes of most components are around 3 to 10. As a result, the time cost prediction
model based on the size values is actually a function with only a few discrete values, which leads
to inaccurate time estimation. Furthermore, because deleting useless productions will not affect
solution program sizes, AMaze𝑐 cannot estimate the improvement caused by deletion operations.
On the other hand, the result of AMaze𝑟 is much worse. When using the “optimized” DSLs,

compared to using the initial DSL, EUsolver solves 73.3% less tasks and the average synthesis time
has increased from 20.95 seconds to 224.52 seconds, yielding an average speedup of 0.09×. Guided
by the model based on the ranks of the overall programs, AMaze𝑟 could hardly find any efficient
DSL. This is because AMaze𝑟 adds rules containing the if-then-else operator in an attempt to
effectively reduce the rank values of the overall programs. However, in fact, the introduction of
these rules does not help EUsolver to enumerate the commonly used components faster as these
components are straight-line programs, but instead greatly increases the enumeration cost.
In summary, the ablation experiment shows that both using feature components and using ranks

contribute significantly in AMaze’s performance. While applying feature components alone can still
improve the synthesizer performance, although worse, applying ranks alone can even lead to slowdowns.

Case Study. We manually inspect the rules introduced in the final DSLs to investigate how
human-readable these rules are and whether they contain some interpretable insights. The intuition
is that the more the synthesized libraries resemble ones that humans would write, the more likely
they would generalize. Since human readability reflects how closely a synthesized library resembles
one written by a human, we use it as a proxy signal to informally evaluate the generalization ability
of the final DSLs produced by AMaze. Across different folds, there are about 10 to 20 candidate
rules to add for CLIA, 30 to 60 for String, and 40 to 70 for BV, and the final DSL usually applies
about half of them. These rules are frequent patterns abstracted from the components of the initial
solution programs and are generally not too large. Here we give some examples of interpretable
rules for each domain.
In the String domain, a simple but useful rule is fs1 (𝑎) = str.++(“ ”, 𝑎), which just adds a space

before the input string. A more complex example is fs2 (𝑎) = str.substr(𝑎, 0, str.indexof(𝑎, “ ”, 0)),
which composes two rules str.substr and str.indexof and fixes several parameters to 0 or a space. It
returns a substring of the input string before the first space.
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In the BV domain6, a pattern fb1 (𝑎) = bvand(𝑎, #𝑥0001) sets all bits except the last bit to 0. It
is often used together with if-then-else to perform conditional branching based on whether the
last bit is 0. A more interesting example pattern is fb2 (𝑎) = bvxor(bvsub(#0000, #0001), 𝑎), which
is equal to the bitwise not. Note that bvnot is not included in our initial BV DSL, but our approach
can discover this rule from the components.

In the CLIA domain, since most solution programs consist of a large number of branch conditions
and each branch program is relatively small, the number of patterns that can be mined is the least
and the length is the shortest. A typical example is fc1 (𝑎) = +(𝑎, +(𝑎, 𝑎)), which is equal to 3𝑎.
Another example is fc2 (𝑎) = −(𝑎, 1), which is self-explanatory. Moreover, one interesting finding
is that, after introducing this rule, the subtraction operation in the initial DSL is deleted. This is
because any binary subtraction expression can be replaced with an expression involving addition
and fc2, and a significant portion in the tasks are minus-one expressions.

In summary, through our manual inspection, we find that in each domain, the rules introduced in
the final DSLs are interpretable, indicating good generalizability.

Time Costs. We conclude the experimental section by presenting the time efficiency of AMaze. In
our experimental setting, one run of the genetic algorithm performs 100 rounds with a population
size of 100 and returns the best candidate DSL. This entire search process is repeated for up to 100
runs. The total runtime is approximately 20 hours for CLIA, 30 hours for String, and 100 hours for
BV (due to its larger dataset). On average, the search terminates after 20 runs, evaluating 10,000
candidate DSLs per run.

7 Discussion

Effect of Deleting Rules While our framework can be instantiated with different modification
operations, it currently supports adding or deleting production rules. While the addition operation
does not change the set of the expressible programs, the deletion operation can produce DSLs that
are less expressive than the original DSL. We made this design choice as deleting redundant rules
can speed up the enumeration process significantly in some cases. Besides deleting rules that are
unused in the training set, an interesting scenario that we observed empirically, is deleting some
rules after composing them into a new rule. This can be seen as replacing low-level abstractions
with high-level abstractions or a process of specialization. Moreover, in our empirical evaluation,
compared to addition, deletion happens much more rarely. Most of the generated DSLs in our
cross-validation experiment do not involve any deletion, and the average number of deleted rules
is 1.15. Most of the deletions come from the domain of conditional linear integer arithmetic (CLIA),
where the DSL has redundant rules for the domain. On the other hand, all generated DSLs involve
addition, and the average number of added rules is 19.03 per DSL. Finally, the overall experiment
results show that our approach produces DSLs that generalize well on the testing sets, even though
deletion comes at the risk of reducing DSL expressiveness.
Applying to Other Synthesizers Besides the synthesizers discussed previously, another notable

synthesizer is CVC5 [Barbosa et al. 2022] whose predecessor, CVC4 [Barrett et al. 2011], performed
well in recent SyGus competitions [Alur et al. 2019]. While CVC5 also involves an enumeration
process, it is integrated into a constraint-solving process. As a result, it is unclear how to identify
feature components in its synthesized programs, which requires opening the box of the constraint-
solving process. It would be an interesting direction to explore in the future.

Another interesting family of synthesizers is based on genetic programming [Gulwani et al. 2017].
However, to our knowledge, these synthesizers do not involve a process of enumeration, so our
approach cannot be applied to them. We did not focus on them, as they are not the best performers
6For convenience, a 16-digit hexadecimal value is displayed using only its 4-digit effective part (the last 4 digits).
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in the domains we consider (i.e., ones in the SyGuS competition). We focus on synthesizers involving
enumerators instead, as all synthesizers leading in these domains fall into this category, showing
that it is standard to use enumerators to generate small program fragments and more sophisticated
algorithms to compose them into large programs for scalability. It would be interesting to explore
how to combine genetic programming-based synthesizers with enumerators, which in turn can
incorporate our technique.

8 Related Work

We first discuss works that apply probabilistic models to speedup synthesizers, which is another
paradigm to bias the synthesis search besides our approach. Then we talk about works that have
discussed the impact of DSL design choices on synthesizer performance. Finally, we describe
previous works on modifying DSLs.
Accelerating Program Synthesis Using Probabilistic Models. Various works have applied trained

probabilistic models to guide the search process for better performance. Compared to modifying the
DSL, they offer more fine-grained ways to bias the search process but are also tightly coupled with
the synthesis algorithm. Menon et al. [2013] apply probabilistic context-free grammars to guide
an enumeration-based approach to synthesize string-manipulating programs from examples. Lee
et al. [2018] further improve it by using probabilistic higher-order grammars on a wider range of
applications. Balog et al. [2017] use a recurrent neural network to guide the search for straight-line
programs that manipulate strings and lists. Ji et al. [2020] apply structural probabilities to speedup a
VSA-based algorithm on programs that manipulate strings or matrices. Kalyan et al. [2018] propose
a hybrid synthesis technique that combines the advantages of both symbolic logic techniques and
statistical models to optimize two neural synthesis algorithms.
Besides the works above, there are other synthesizers that integrate neural networks, and fall

into the category of guiding the synthesis process using a probabilistic model in a broader sense. In
addition to being tightly coupled with the synthesis algorithm and the domain, their information to
guide the synthesis algorithm is very different compared to that used in our approach. Shah et al.
[2020] apply a neural network to approximate the semantics of a program fragment under a non-
terminal to enable end-to-end gradient-based synthesis. In some sense, their guiding information is
only the input-output specification. Ye et al. [2021] apply a neural network to guide the synthesis
process by encoding information from natural language constraints. Yang et al. [2021] use a neural
network to predict the world, which is specific to the reinforcement learning setting. Our work, on
the other hand, encodes the syntactic and semantic similarities of programs in a domain through
DSLs. It would be interesting to explore combining our work with these works to enable the
incorporation of different sources of guiding information.

The Impact of DSLs on Synthesizer Performance.Multiple papers have discussed that choosing the
right DSL is vital to a synthesizer’s performance. They motivated our work. Ji et al. [2020] show
that on string manipulating programs, using a more expressive DSL allows a synthesizer to solve
more tasks but also run longer to solve some tasks. Iyer et al. [2019] show that there is a trade-off in
DSL design similar to the Bias-Variance trade-off in machine learning: the expressivness of the DSL
affects how well the synthesizer can generalize from training examples. Padhi et al. [2019] discuss
this problem more systematically and show that one can improve a synthesizer’s performance by
running with multiple DSLs in parallel.
Modifying DSLs. There exist previous works that modify DSLs in particular ways for various

purposes. Compared to them, our work is the first to systematically study how to accelerate different
synthesizers across different domains.

There is a long line of works in learning libraries, most of which are not for accelerating modern
synthesizers. The earliest in this line can go back to Predicate Invention [Lin et al. 2014; Muggleton

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 37. Publication date: January 2026.



Accelerating Syntax-Guided Program Synthesis by Optimizing Domain-Specific Languages 37:25

and Buntine 1988; Muggleton et al. 2015] in inductive logic programming and Automatically
Defined Functions in genetic programming [O’Neill 2009]. The former adds new predicates to a
logic program to generate more compact and interpretable programs. The latter forms modules to
enable generating large programs. The idea of abstracting common patterns into modules in order
to gradually solve more complex tasks has also been explored in curriculum learning [Dechter et al.
2013; Henderson 2013]. To compress programs, Bowers et al. [2023] propose a library learning
algorithm based on a corpus of training programs. Further, the approach by Cao et al. [2023]
maintains better library quality by additionally taking as input an equational theory for a given
problem domain. While our approach to generating libraries is similar to these approaches at a
high level, the library functions generated by these approaches can not be directly added to a DSL,
and they are not for accelerating modern synthesizers. We extracted their core idea of optimizing
DSLs to compress programs and conducted comparative experiments by modifying our framework
to use the objective to minimize program sizes, showing that our method is more consistent and
effective in accelerating synthesis algorithms. A recent work [Ellis et al. 2021] accelerates a neural-
network-guided, enumeration-style synthesizer by both iteratively learning libraries and improving
the neural network on the fly. While our approach is applicable to any independent program
synthesizers as long as they meet our definition of composition-based synthesizers, this approach
can only generate DSLs for its specific synthesizer because the synthesis algorithm needs to be
modified accordingly. Moreover, it selects candidate DSLs based on compressing the overall sizes
of the solution programs, which we have shown in the comparative experiment that for modern
synthesis algorithms, this objective is not effective for modifying DSLs to accelerate synthesizers.

Morton et al. [2020] propose an approach to speedup a synthesizer by removing production rules
in the initial DSL. While deletion alone may help reduce the width of the search tree at each level,
addition can be used to change the depth of the search tree of the solution program. The latter is an
exponential change, so our approach considers both addition and deletion. Moreover, they only tried
to modify one synthesizer on a single domain, while we proposed a general framework applicable
to multiple synthesizers across multiple domains. They use a neural network to predict whether a
deletion is beneficial. It is interesting to use similar approaches to model complex relationships
between DSL designs and synthesizer performance.
Chan et al. [2020] describe an approach to generate a DSL that accelerates a synthesizer by

searching within a parametric DSL. However, how to define an adequate parametric DSL remains
an open problem.

9 Conclusion

We have proposed AMaze, a framework to accelerate state-of-the-art syntax-guided program
synthesizers by optimizing the DSL. AMaze searches for a sequence of modifications to optimize
the synthesis efficiency on a given set of training tasks. To make the search process efficient, it
uses the ranks of feature components of solution programs to estimate the synthesis time cost. Our
empirical evaluation shows that our approach significantly accelerates different state-of-the-art
syntax-guided synthesizers in different domains.
Finally, large language models (LLMs) recently have received significant attention in program

synthesis [Hüttel 2025] by demonstrating their effectiveness in generating programs in general-
purpose languages from natural languages. However, based on our experience, due to the lack of
training data, they are much less effective in generating programs in DSLs compared to existing
synthesizers. Even though general-purpose languages are more expressive, they cannot replace
DSLs in many domains (e.g., domains relying on specialized hardware). As a result, our approach is
complementary to the LLM-based synthesis at a high level.
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