

A Language-based Approach to Model

Synchronization in Software Engineering

（ソフトウェア工学におけるモデル同期に関する

言語論的研究）

Yingfei Xiong

（熊 英飛）

Department of Mathematical Informatics

Graduate School of Information Science and Technology

University of Tokyo

（東京大学 情報理工学系研究科 数理情報学専攻）

Advisors:

Zhenjiang Hu, Professor, National Institute of Informatics

（国立情報学研究所 胡振江教授）

Masato Takeichi, Professor, University of Tokyo

（東京大学 武市正人教授）

September 2009

i

Acknowledgements

It was my greatest fortune to have Zhenjiang Hu and Masato Takeichi as my
advisors. During my Ph.D. studies, Prof. Hu spent countless hours advising
and helping me not only on my research but also on many aspects of my life.
His attitude towards research and life influences me to be what I am today,
and will continue to guide me in my future career. On the other hand, Prof.
Takeichi’s wisdom and perspective greatly helped me to keep my research
in the right direction, and his kindness to students constantly inspired me
forward. They both are great scholars for me to follow beyond the thesis. I
would like to express my deepest gratitude to them at the very beginning of
my thesis.

I would also like to thank my collaborators. Dongxi Liu taught me many
basic techniques in research while contributed a lot to the early work of this
thesis. Hui Song extended the research to a broader scope and made use-
ful feedbacks to push the work forward. Haiyan Zhao provided invaluable
insights during discussion and countless direct contributions to the writing
work. Hong Mei built a perfect environment to make the collaboration be-
tween Peking University and the University of Tokyo possible and enjoyable.
Hiroshi Hosobe brought to me knowledge and insights in the constraint sat-
isfaction problem. Yijun Yu applied my existing research to a new area.

This thesis work has benefited a lot from discussion with people on con-
ferences and workshops or through e-mails. Daniel Ruiz, Antonio Vallecillo,
Jiayi Zhu and Xin Peng used my tool in their research and provided use-
ful feedbacks. Alexander Egyed shared his data from industrial that greatly
helped shape my research. Jian Zhang, Krzysztof Czarnecki, Michal An-
tkiewicz, Andy Schurr, Antonio Cicchetti, Davide Di Ruscio, Holger Giese,
Stephan Hildebrandt, Zongyan Qiu, John Hosking and John Grundy helped
me to understand important issues and related research during conference
and email discussions.

Members of the Information Processing Laboratory in the University of
Tokyo and members of the BiG group in the National Institute of Informatics
helped me a lot during my Ph.D. study. Discussion during and outside
seminars inspired new ideas. Entertainment and friendship made my life in
a foreign country enjoyable. Special thanks give to Hao Wang who, as my
first tutor, helped me survive in a foreign country.

Besides them, I would like to thank all my friends in the University of
Tokyo, Peking University, University of Electronic Science and Technology of
China, and many other places. Their delightful company and selfless support
help me go through difficult times.

I could not forget to thank Fuqing Yang, Hong Mei, Yue Wu, Gang

ii

Huang, Yanchun Sun, Tao Xie and Lu Zhang, who advised me during my
undergraduate and pre-Ph.D. study, leading me into the world of computer
science research.

Last but not least, I am very grateful to my parents and my girlfriend,
for their support, encouragement and patience during these years.

iii

Abstract

Software development often involves a set of heterogeneous artifacts, such
as requirement documents, design models and implementation code. Main-
taining these artifacts has been a notorious problem in software engineering.
When we update part of an artifact, we need to propagate the update across
all artifacts to make them consistent. Such synchronization of heterogeneous
artifacts is known to be time-consuming and error-prone.

Recently, meta model technique emerges to give a unified representation
of artifacts by capturing them as models, enabling a unified way for programs
to access artifacts. Based on models, people develop tools to automate some
synchronization tasks, and these model synchronization tools have shown
their usefulness in software development. However, as synchronizing artifacts
may be very complex, such tools are usually difficult to develop and maintain.

In this thesis we propose a language-based approach to facilitating the
development of model synchronization tools. We design specification lan-
guages for model synchronization. The specification languages mainly de-
scribe the consistency relations between artifacts, with a small amount of
additional information to confine the synchronization behavior. When users
give high-level specification of synchronization in these languages, we gener-
ate a synchronizer from the specification, and the synchronizer automatically
synchronizes models to keep them consistent. We also identify the require-
ments for model synchronization, which consists of three properties to ensure
the correctness of synchronization. We prove that our generated synchroniza-
tion procedures satisfy the requirements we proposed.

We design the specification languages from the languages that developers
use to describe the consistency relation in practice. In this way develop-
ers need less effort to learn our languages and can reuse their existing pro-
grams. We identify two typical types of model synchronization and design
different specification languages for the two types. The first type, off-site
synchronization, is used to integrate different software development tools. In
tool integration developers usually describe the consistency relation between
models in model transformation languages. A program in such languages
converts models from one format into another but cannot synchronize the
models after the transformation. We adopt a unidirectional model transfor-
mation language as specification language and use a trace-based technique to
derive a synchronizer from a transformation program. In cases where there
are already two existing transformations to transform between two models
forwardly and backwardly, we also design an algorithm to wrap them into a
synchronizer that allows parallel updates on the two models.

The second type is about the synchronization within one tool. In such

iv

cases developers usually describe the consistency relations over models in a
logic-based specification language. We design Beanbag, a specification lan-
guage whose syntax is similar to first-order logic but developers can customize
the synchronization behavior by adjusting their programs. We also discuss
the implementation issues of the Beanbag language.

All our languages have been implemented, and we have applied them to
real-world cases. The result shows that our approach is useful in practice.

Contents

1 Introduction 1
1.1 Background: Model Synchronization 1

1.1.1 Models and Meta Models 5
1.1.2 On-Site Synchronization and Off-Site Synchronization . 7
1.1.3 State-based Synchronizers and Operation-based Syn-

chronizers . 9
1.1.4 Problems in Practice 10

1.2 Contributions of this Thesis 12
1.2.1 Formalization of Model Synchronization 13
1.2.2 Support for Off-Site Synchronization 14
1.2.3 Support for On-Site Synchronization 15

1.3 Related Work . 15
1.3.1 Bidirectional Transformation 16
1.3.2 View-Updating Problem in Database 17
1.3.3 Constraint Satisfaction Problem 17
1.3.4 Inconsistency Management 18
1.3.5 Optimistic Replication 19
1.3.6 Others . 20

1.4 Organization of this Thesis . 20

2 Requirement of Model Synchronization 23
2.1 Running Example . 23
2.2 Models and Updates on Models 24
2.3 Operation-based Synchronizer and Properties 27
2.4 State-based Synchronizer and Properties 30
2.5 Constructing State-based from Operation-based 33
2.6 Related Work . 33

3 Representing Models and Updates 35
3.1 MetaObject Facility . 36
3.2 Dictionary-based Data Definition 38

v

vi CONTENTS

3.3 Representing Models . 39
3.4 Dictionary-based Update Definition 42

3.4.1 From Dictionary-based Update to General Update . . . 44
3.5 Representing Model Updates 45
3.6 Related Work . 48

4 Off-Site Synchronization from Uni-Transformation 51
4.1 Motivating Example . 51
4.2 Problem Definition . 54
4.3 Backward Propagation of Modifications 55

4.3.1 ATL Byte-code . 56
4.3.2 Extending the ATL Virtual Machine (VM) 57

4.4 Synchronization . 64
4.4.1 Synchronization Algorithm 64
4.4.2 Properties . 69

4.5 A Case Study . 69
4.6 Summary . 72

5 Off-Site Synchronization from Bi-Transformation 73
5.1 Background . 75
5.2 Approach . 77

5.2.1 Three-Way Merger . 77
5.2.2 Testing Preservation 77
5.2.3 Algorithm for Wrapping Bidirectional Transformation . 79

5.3 Extending the Algorithm . 83
5.4 Application . 85

5.4.1 Framework Overview 88
5.4.2 Specification . 90
5.4.3 Generation . 93
5.4.4 Properties of the Synchronizer 98

5.5 Summary . 99

6 Beanbag: An On-Site Synchronization Language 101
6.1 Motivation Example . 101
6.2 The Beanbag Language . 104

6.2.1 An Overview . 104
6.2.2 Checking Semantics . 106
6.2.3 Synchronization Semantics 106
6.2.4 Examples . 113

6.3 Properties . 115
6.4 Evaluation . 116

CONTENTS vii

6.5 Summary . 118

7 Implementation and Application of Beanbag 119
7.1 Implementing in Haskell . 121

7.1.1 Dictionary-based Data and Updates 121
7.1.2 Constraints and Expressions 123
7.1.3 Compiler . 131

7.2 Imperative Implementation Issues 133
7.3 Application . 136

8 Concluding Remarks 139

Bibliography 141

viii CONTENTS

List of Figures

1.1 A consistent UML model . 2
1.2 An inconsistent UML model 3
1.3 A synchronized UML model 3
1.4 Another synchronized UML model 4
1.5 A file system model (right) and its meta model (left) 6
1.6 File system meta model model in a simplified XMI format . . 7
1.7 Off-site synchronization . 8
1.8 On-site synchronization . 8
1.9 State-based synchronization 9
1.10 Operation-based synchronization 9
1.11 Incorrect synchronization results in error message in IBM RSA 12

2.1 Transforming a UML model into a database model 23
2.2 An example update � . 24
2.3 Another example update �′ . 24
2.4 An update �′′ changing persistent 25
2.5 The union of � and �′′ . 26
2.6 Input update of a synchronization function 28
2.7 Output update of a synchronization function 28
2.8 Conflicting update . 29
2.9 Updates to both models are preserved 32

3.1 Simplified MOF types . 37
3.2 A MOF meta model and its model 38
3.3 Syntax of dictionary-based data 39
3.4 Syntax of dictionary-based updates 42
3.5 Semantics of dictionary-based updates 43

4.1 Rules for the inclusion relation 55
4.2 Byte-code for Attribute2Field 57
4.3 Syntax of dictionary-based data 58

ix

x LIST OF FIGURES

4.4 Overview of synchronization algorithm 64
4.5 A source model in XMI . 70
4.6 A target model in XMI . 71

5.1 Non-conflicting parallel updates 74
5.2 Conflicting parallel updates 74
5.3 Synchronization algorithm . 80
5.4 Execution of algorithm . 80
5.5 Violating preservation . 81
5.6 The synchronization algorithm for conflict resolving 84
5.7 The running example . 89
5.8 Approach overview . 90
5.9 The meta-model for Client/Server style 91
5.10 The Meta-model for PLASTIC states 92
5.11 Access model for PLASTIC 92
5.12 Generation overview . 95

6.1 Core synatx . 104
6.2 Checking semantics . 107

7.1 The data type DValMap . 122
7.2 The basic definitions of values and updates 124
7.3 The definitions of Constraint and Expression 126
7.4 The implementation of v1=v2 126
7.5 The implementation of c1 and c2 127
7.6 The implementation of the constant expression 128
7.7 The implementation of the letstatement 129
7.8 Auxiliary functions for building Beanbag constraints 132
7.9 The pseudo code for the state aspect 135
7.10 An EJB modeling tool . 136
7.11 The architecture of the EJB tool 137

List of Tables

3.1 The result of u2 ∘ u1 . 43
3.2 The result of find update(v1, v2) when v1 ∕= v2 44

4.1 The core instructions of ATL byte-code 56
4.2 The ATL byte-code instructions on dictionaries 58

5.1 Modification operations . 78
5.2 Testing of preservation . 79
5.3 Concept mapping . 91

xi

xii LIST OF TABLES

Chapter 1

Introduction

1.1 Background: Model Synchronization

Software maintenance is costive. Reports [Sut95, Ede93] show that annual
software maintenance cost in USA has been estimated to be more than 70
billion US dollars. The cost is surprisingly high when we compare it to the
total cost in software life cycle. A recent report [Erl00] shows that software
maintenance has cost about 90% of the total cost. Methods and tools are
needed to reduce the cost of software maintenance.

To reduce the cost, let us consider what activities are involved in software
maintenance. The ISO/IEC 14764 standard [ISO06] defines four categories
of software maintenance, as follows.

Corrective maintenance Reactive modification of a software product per-
formed after delivery to correct discovered problems.

Adaptive maintenance Modification of a software product performed af-
ter delivery to keep a software product usable in a changed or changing
environment.

Perfective maintenance Modification of a software product after delivery
to improve performance or maintainability.

Preventive maintenance Modification of a software product after delivery
to detect and correct latent faults in the software product before they
become effective faults.

Although the four categories are disjoint, there is one word across the descrip-
tions of all categories: modification. Modifying the software product is the
main activity we have to perform in software maintenance. If we could make
software easy to change, we can reduce the cost of software maintenance.

1

2 CHAPTER 1. INTRODUCTION

d : D i s p l a y s t : S t r e a m e r

U s e r s e l e c t

c o n n e c t

s t r e a m
d r a w

U s e r

D i s p l a y

+ s e l e c t ()
+ s t o p ()
+ p l a y ()
+ d r a w ()

S t r e a m e r

+ s t r e a m ()
+ w a i t ()
+ c o n n e c t ()

Figure 1.1: A consistent UML model

It seems unreasonable that software is difficult to change since software
is known for its “softness”, where compared to hardware, software is much
cheaper to change. However, this becomes reasonable when we take into ac-
count the complex synchronization we are going to perform when changing
a software artifact. In software development developers often create various
kinds of artifacts at different stages of development. For example, at the re-
quirement stage, developers create requirement documents, use case models
and/or feature models; at the design stage, developers create Unified Mod-
eling Language (UML) models, Entity-Relation (ER) models and/or pseudo
code; at the implementation stage, developers create implement code; at the
deployment stage, developers create configuration files. There artifacts are
related to each other. Complex consistency relations exist not only between
these artifacts but also between different components of one artifact. An
example of consistency relation between two artifacts is the related UML
models and implementation code. For each class in the UML diagram, there
should be a corresponding class of the same name in the implementation
code. An example of consistency relation between different components of
one artifact is that, in a UML model, a class diagram and a sequence di-
agram is related, as shown in Figure 1.1. For each message in a sequence
diagram (e.g. the select message), there should a method in the class dia-
gram where the receiver object of the message should own the method in the
class diagram (e.g. the select method in the class diagram).

When developers update some part of an artifact, some consistency rela-
tions on the artifacts may be violated, causing inconsistencies. In Figure 1.2

1.1. BACKGROUND: MODEL SYNCHRONIZATION 3

d : D i s p l a y s t : S t r e a m e r

U s e r s e l e c t

c o n n e c t

s t r e a m
d r a w

U s e r

D i s p l a y

+ s e l e c t ()
+ s t o p ()
+ p l a y ()
+ d r a w ()

S t r e a m e r

+ s t r e a m ()
+ w a i t ()
+ c o n n e c t ()

c h o o s e

Figure 1.2: An inconsistent UML model

d : D i s p l a y s t : S t r e a m e r

U s e r s e l e c t

c o n n e c t

s t r e a m
d r a w

U s e r

D i s p l a y

+ s e l e c t ()
+ s t o p ()
+ p l a y ()
+ d r a w ()

S t r e a m e r

+ s t r e a m ()
+ w a i t ()
+ c o n n e c t ()

+ c h o o s e ()

c h o o s e

Figure 1.3: A synchronized UML model

4 CHAPTER 1. INTRODUCTION

d : D i s p l a y s t : S t r e a m e r

U s e r s e l e c t

c o n n e c t
s t r e a m
d r a w

U s e r

D i s p l a y

+ s e l e c t ()
+ s t o p ()
+ p l a y ()
+ d r a w ()
+ ()

S t r e a m e r

+ s t r e a m ()
+ w a i t ()
+ c o n n e c t ()

+ c h o o s e ()

c h o o s e

Figure 1.4: Another synchronized UML model

developers rename message select to choose, and the sequence diagram
and the class diagram become inconsistent. To make all artifacts consistent,
we must propagate the update to other artifacts as well as other parts of the
artifact. Figure 1.3 shows one way to propagate the update: renaming the
select method in the class diagram to choose. The process of enforcing
consistency among a set of artifacts is called synchronization [AC08]. This
kind of synchronization is also called heterogeneous synchronization to dis-
tinguish with synchronization between duplicated copies of one artifact; here
we synchronize data with different structures.

Synchronization is not an easy task. First, we need to identify all locations
that are related to the updated location. The number of affected locations
may be large as many different relations interleave. For example, when one
class is changed in the implementation code, not only the classes in the class
diagram but also the object instances of the classes in the sequence diagram
are affected. Furthermore, the change of a UML model may further affect
other artifacts like ER models. Second, we need to decide how to update
the identified locations. There may be various numbers of ways to achieve
consistency. For example, besides the synchronization in Figure 1.3, we may
also insert a new operation in the class diagram, as shown in Figure 1.4.

Since synchronization is one of the main tasks in changing software prod-
ucts, we can reduce the cost of software maintenance if we can automate the
synchronization task. Although previous studies have recognized that not all

1.1. BACKGROUND: MODEL SYNCHRONIZATION 5

artifacts need to be automatically kept synchronized at all the time [Bal91]
and not all inconsistencies are suitable to be automatically synchronized
[Egy07], methods and tools that automate some part of the synchronization
task can greatly ease the difficulty of changing software [ELF08]. Automated
support can range from identifying possible locations to change (impact anal-
ysis) [Arn96], listing change actions for users to choose [NEF03], and fully
automated certain types of synchronization task [GHM98].

This thesis focuses on the last type of synchronization support. To fully
automate some types of synchronization, we need to consider the following
three questions.

∙ How do we access software artifacts during synchronization?

∙ What do we synchronize?

∙ How do we synchronize?

1.1.1 Models and Meta Models

Let us start with the first question. To develop a synchronization tool, we
need to read and write software artifacts. As discussed before, artifacts are
stored in different formats. A modeling application may store models in a
binary format while programs are stored in text format. The formats of the
artifacts may be a secret to software engineering companies, and synchro-
nization tool developers may not know the formats of the artifacts. Even if
the developers know the format, they have to deal with many trivial details
like data encoding (which may be different at different machines), reorga-
nizing sequential data into structural, and etc. Developing such an artifact-
accessing component is time-consuming and error-prone. Furthermore, such
a component is difficult to maintain (when the format of the artifact changes,
the access component needs to change) and to reuse (a component for one
application cannot be used in another application).

To overcome the problems, people develop standard for data representa-
tion and access. One of the most well-known standards is Extensible Markup
Language (XML) [YBP+04] defined by World Wide Web Consortium. This
standard defines a markup language that represents tree-structured data in
a standard way while hiding the trivial details in data access. Standard API
for reading and writing XML files have been defined and is available in many
languages. In addition, XML Schema (XSD) [FW04] is provided to define
the structural of an XML file, allowing us to define meta tools for XML files.
If a development application creates or converts its artifacts in XML format,
we can easily read it in a structural way using the standard API of XML.

6 CHAPTER 1. INTRODUCTION

Figure 1.5: A file system model (right) and its meta model (left)

Furthermore, such application is easy to maintain and reuse, because the
XML format usually changes less frequently than the internal format and
programs accessing one XML file can be reused to access other XML files of
the same schema.

In the software engineering area, Object Management Group defines a
similar standard, MetaObject Facility (MOF) [OMG02], to facilitate access
to software artifacts. MOF standard captures software artifacts as models
and provide meta models to define the structure of the models. Different from
XML that represents data as trees, MOF represents data as objects, which
have a natural correspondence to the object-oriented paradigm in software
development. In addition, Object Management Group also defines another
standard, XML Metadata Interchange (XMI) [Obj07] for storing models as
XML files, enabling a standard format for persisting MOF models.

The left of Figure 1.5 shows an example MOF meta model representing
a file system. In this meta model there are three classes. Directory class
represents the directories in the file system and File class represents the
files in the directories. Both class are inherited from FileSystemObject.
FileSystemObject has an attribute, Name, indicating both directories and
files have their names. File class has Size attribute indicting the size of
a file. In addition, between Directory and FileSystemObject there is
an aggregation relation specifying every Dictionary object contains zero
or more FileSystemObjects. Figure 1.6 shows a simplified XMI repre-
sentation of this model. In this representation, classes are represented as
nodes named “eClassifiers” and attributes are represented as nodes named
“eStructuralFeatures”. An Inheritance relation is represented by an at-
tribute, eSuperTypes, and an aggregation relation is represented by a node
of eStructuralFeatures where XPath [CD+99] is used to refer to other
classes.

From the examples we can see that the MOF models share the same

1.1. BACKGROUND: MODEL SYNCHRONIZATION 7

<?xml version="1.0" encoding="UTF -8"?>

<ecore:EPackage xmi:version="2.0"

xmlns:xmi="http://www.omg.org/XMI"

name="File System">

<eClassifiers name="Directory"

eSuperTypes="#// FileSystemObject ">

<eStructuralFeatures upperBound="-1" eType="#// File"

containment="true"/>

</eClassifiers >

<eClassifiers name="File"

eSuperTypes="#// FileSystemObject ">

<eStructuralFeatures name="Size" eType="Int"/>

</eClassifiers >

<eClassifiers name="FileSystemObject ">

<eStructuralFeatures name="Name" eType="String"/>

</eClassifiers >

</ecore:EPackage >

Figure 1.6: File system meta model model in a simplified XMI format

concepts as usual object-oriented languages. Software engineering tool de-
velopers can easily convert artifacts from their internal presentation to MOF
presentation. Because of this similarity, many software engineering tools
have provided the support for MOF models. Besides storing models as XMI
files, MOF standard also defines a set of APIs for users to access models
and meta models. Because the APIs provide powerful manipulating ability,
more and more applications are directly built on models [BBM03, BDE+05].
When we synchronize artifacts in these applications, we can directly use the
MOF API to access models, without dealing with trivial details. We call the
synchronization of models as model synchronization.

1.1.2 On-Site Synchronization and Off-Site Synchro-
nization

Let us proceed to the second question: what we synchronize. In general,
synchronization can be classified into two categories according to the appli-
cations we synchronize [FGK+05].

In the first category, we consider integrating two applications that are
developed without synchronization in mind. For example, a UML modeling
tool and an ER modeling tool which are independently developed by two
companies. When we want to integrate the two tools into one workbench, we
need to keep the related data in the two applications consistent. Figure 1.7
shows the structure of this kind of synchronization. Two applications export

8 CHAPTER 1. INTRODUCTION

Figure 1.7: Off-site synchronization

Figure 1.8: On-site synchronization

their internal data in some intermediate format, e.g., MOF models. Then
a synchronizer modifies the two intermediate data to make them consistent.
After synchronization, the two applications import the intermediate to up-
date their internal data. Synchronization in this category is often performed
when a user explicitly invokes a “synchronize” command, or automatically
when application saves the models. Because the synchronization happens
outside the applications, we call it off-site synchronization.

In the second category we consider the synchronization within one appli-
cation. Models in Many software development tools have complex consistency
relation between its components. For example, a UML modeling tool has to
deal with related UML diagrams. Such kind of applications often provides
dynamic synchronization support. When part of the model is updated by a
user, the application dynamically updates other related parts of the model
to make the model always consistent. One example application is IBM Ra-
tional Software Architect (RSA) [BDE+05]. When users update a model in
the same way as Figure 1.2, IBM RSA will dynamically propagate the up-
date to the class diagram as Figure 1.3. In this way the class diagram and
the sequence diagram are always kept consistent. We call it on-site synchro-
nization because it happens “on site” within one application. Different from
off-site synchronization, on-site synchronization is considered by the applica-
tion from requirement stage and the synchronizer is tightly integrated into
the application. Figure 1.8 shows the structure of on-site synchronization. A
synchronizer is integrated into an application and manipulates the internal
data of the application directly.

1.1. BACKGROUND: MODEL SYNCHRONIZATION 9

Figure 1.9: State-based synchronization

Figure 1.10: Operation-based synchronization

1.1.3 State-based Synchronizers and Operation-based
Synchronizers

The third question concerns how we synchronize models. Based on the types
of information used in synchronizers, we can classify synchronizers into two
categories, state-based and operation-based [FGK+05].

A state-based synchronizer takes models as input and produce new con-
sistent models as output, as shown in Figure 1.9. Because the synchronizer
synchronizes models only depending on the current states of the models, we
call this kind of synchronizers state-based.

An operation-based synchronizer takes updates that users perform on
the models and produces new updates that are expected to be applied on
the models to make model consistent, as shown in Figure 1.10. Because the
synchronizer synchronizes models based on the update operations, we call
this kind of synchronizers operation-based.

The distinction between state-based and operation-based synchronizers
is not black and white. For example, we can perform state-based synchro-
nization using an operation-based synchronizer by comparing the models of
different versions to obtain (hypothetical) update operations. On the other
hand, we can perform operation-based synchronization from a state-based
synchronization by first applying the update operations to the models and
then comparing models to obtain the result operations. In addition, there
exist various hybrids approaches between the two. For example, in practice
operation-based synchronizers often cannot perform synchronization solely
based on the update operations but need to know the state of the models
as well. This is achieved either by taking the models as input [XLH+07], or
memorizing the needed information of the models as part of the synchronizer
[XZH+08]. Another example is that a state-based synchronization approach,
Bi-X [LNH+07], requires users to mark the locations that have been changed.

10 CHAPTER 1. INTRODUCTION

State-based synchronizers are more loosely coupled with applications, in
the sense that applications neither have to record its update operations, nor
have to apply the produced updates to the application data. Less integration
work is required for applications. On the other hand, operation-based syn-
chronizers often produce better result because they have more information
available at synchronization time. As a result, state-based synchronizers are
more suitable for off-site synchronization while operation-base synchronizers
are more suitable for on-site synchronization. However, such choice is not
absolute, either. There are approaches using operation-based synchronizers
[LNH+07, LHT07] to perform off-site synchronization and approaches su-
ing state-based synchronizers [NEF03, FGH+94, SMSJ03] to perform on-site
synchronization.

1.1.4 Problems in Practice

As mentioned above, in practical there are available tools and development
environments that provide automated synchronization of models. In the
implementation of these tools, there are mainly two types of approaches
used to implement the synchronizer based on whether the synchronization is
off-site or on-site.

For off-site synchronization, many existing tools use model transformation
[SK03] to synchronize models. The basic model transformation is batch/s-
tateless transformation [Tra08], which is a program that convert model from
one format into another format. In this way we can convert models created
by one application into models created by another application. However, this
disallows us to update the target model because the updates will be lost if
we transform again. To solve this problem, Laurence Tratt [Tra08] proposes
change-propagating transformation, where the transformation only updates
the target model but not completely overwrites the target model. Using a
pair of change-propagating transformations, a forward transformation from
source to target and a backward transformation from target to source, we
can keep two models synchronized by performing a transformation when users
update one of the two models.

For on-site synchronization, existing tools mainly use the rule-based ap-
proaches [GHM98, FGH+94, SMSJ03]. In these approaches, programmers
write a set of rules in the “condition-action” form, each rule states that
when the condition is satisfied, the program should take the action. For
example, an operation-based rule for the UML model in Figure 1.1 may be
“when users rename a message in a sequence diagram, rename the related
method in the class diagram”. A state-based rule may be “when the receiver
of a message does not have a method of the same name as the message, insert

1.1. BACKGROUND: MODEL SYNCHRONIZATION 11

a new method in the class of the receiver object”.
These approaches work to support many existing software development

tools in practice. However, both types of approaches require developers to
develop the synchronizers by writing separate programs: the model transfor-
mation approach requires a forward transformation program and a backward
transformation program, and the rule-based approach requires a set of sep-
arate rules. Such separation of programs has serious problems in practice.
Here we mention three main problems.

∙ First, separation of programs increases the development cost. A large
portion of the separate programs are related and can be deduced from
each other, but we have to implement the related part in each pro-
gram. Consider a simple synchronization where we keep two models
equal. From the specification we know the reasonable behavior is just
to overwrite the unmodified one with the modified one, but we have to
implement two programs using the model transformation approach, one
overwrites model in the forward direction and one overwrites model in
the backward direction. The problem is even more serious in the rule-
based approaches. As many kinds of update may cause a related part
to become inconsistent, we usually need a large number of rules, and
code is duplicated many times among these rules.

∙ Second, separate programs are difficult to maintain. As every separate
program embodies part of the model structure, when the structure of
the models is changed, every program is needed to be updated. Omis-
sion of identifying some programs and incorrect updating of programs
are both sources of bugs.

∙ Third, it is difficult to verify the consistency of the programs. For
example, a forward transformation program from a UML model to an
ER model may convert an association between classes into a table, while
a backward transformation program may (erroneously) convert every
table into a UML class. Detecting the inconsistencies among programs
requires intricate behavior reasoning, and the failure of detecting and
repairing all inconsistencies leads to low quality software product.

Because of these problems, developing a synchronizer is still very difficult
in practice. In fact, we have found that many widely-used tools have failed to
implement a correct synchronization behavior. For example, IBM RSA has
implemented the synchronization between a class diagram and a sequence
diagram as shown from Figure 1.1 to Figure 1.2, but it has failed to capture
other updates that also cause an inconsistency, such as changing the receiver

12 CHAPTER 1. INTRODUCTION

Figure 1.11: Incorrect synchronization results in error message in IBM RSA

of a message or changing the type of a receiver object. If a user performs
these actions in IBM RSA, the system will prompt an error message, as
shown in Figure 1.11.

1.2 Contributions of this Thesis

In this thesis we propose a language-based approach to the problem of pro-
gram separation in model synchronization. Instead of writing a set of sepa-
rate programs, in our approach developers write only one program. This pro-
gram is mainly a specification of the consistency relations between artifacts,
while containing a little additional information to define the synchronization
behavior. After users have captured the consistency relation in the program,
we automatically derive a synchronizer from the program. In this way we
solve the problems from the separation of programs. First, the duplicated
code piece is only written once in the program, reducing the development
cost. Second, when the structure of the model changes, we only need to
change one program. Third, the consistency of synchronization behavior can
be ensured by the automatic derivation.

One important issue in this approach is what language we provide to
write the synchronization program. Our choice is to design languages that
are the same as or similar to the languages that developers use to describe
the consistency relation in practice. In off-site synchronization, we use model
transformation languages. In on-site synchronization, we design a language

1.2. CONTRIBUTIONS OF THIS THESIS 13

similar to logic expressions. This choice has two advantages. First, developers
can reuse the existing programs in our system without much effort. Second,
the programming paradigm of the language is familiar to developers. It is
usually easier for developers to learn a language in a familiar paradigm than
a language in an unfamiliar paradigm. For example, it is usually easy for
a C++ programmer to learn Java but difficult for a C++ programmer to
learn Haskell. As developers have already used similar language to define
consistency relations, they can learn our languages more easily.

The detailed contributions of this thesis are introduced in the following
three sub sections.

1.2.1 Formalization of Model Synchronization

It is meaningless to talk about a solution without clarifying the requirement.
One contribution of this thesis is that we formally define the requirement for
model synchronization. Our requirement mainly consists of three properties:
consistency, preservation and stability[XLH+07, XSHT09]. These
properties form together to define the correctness of synchronization in gen-
eral. The three properties are motivated from previous studied on updating
semantics of database views [BS81] and the well-definedness of bidirectional
transformation [FGM+07, Ste07], we significantly generalize the previous re-
sults for model synchronization.

Our requirement applies to both on-site synchronization and off-site syn-
chronization and connects operation-based synchronizer and state-based syn-
chronizer. We build a general model that treats the relation between models
and relation between components within one model in the same way and
thus capture both on-site synchronization and off-site synchronization. Our
definition starts from operation-based synchronizer [XZH+08], and then we
show how to lift the definition to state-based synchronization using model
difference approaches [XSHT09].

As we consider operation-based synchronizers, we need to represent up-
dates on models. Existing update representations [AP03, CRP07] are directly
defined on models. Because the definition of models is complex, these up-
date definitions are also very complex. Such a complex definition is easy for
developers to use, but is not suitable for research studies as the researcher
has to consider too many concepts together.

In this thesis we propose a lightweight representation for models and
updates on models [XZH+08]. This representation is based on dictionaries
that map keys to values. We show that dictionaries can represent all core
concepts of models as well as updates on models. Because the definitions of
dictionary-based data and update are very small (each consisting of only five

14 CHAPTER 1. INTRODUCTION

BNF rules), this representation is suitable for researchers to study. Also the
research result on dictionaries can be directly applied on models using our
conversion algorithm between models and dictionary-based data.

1.2.2 Support for Off-Site Synchronization

In off-site synchronization developers use model transformations, and we no-
tice two facts in the current use of model transformations. The first fact is
that there exist many batch transformation programs that convert a model
from one format into another, but the converted model may both be modified
after the transformation. In other words, we need to synchronize two mod-
els but we only have a forward, batch transformation that cannot perform
synchronization. The second fact is that some tools provide model synchro-
nization using two change-propagating transformations, one from a source
model to a target model and one from the target model to the source model.
Such two transformations are possible to be generated from one language
using existing bidirectional model transformation languages [Obj08, SK08a],
but they only propagate updates from one model to the other at a time and
cannot help when the two models are simultaneously updated by users.

To provide synchronization support for first case, we assign synchro-
nization semantics to one of the widely-used transformation language, Atlas
Transformation Language (ATL) [JK06], and derive a synchronization pro-
cedure from an ATL program [XLH+07]. Using our approach, developers
only have to provide a forward transformation that converts a source model
into a target model, and they automatically get a synchronizer that keeps
the two models consistent. Our implementation of this work, SyncATL, has
been published and has been used by other researchers [YKW+08].

In this work we propose a trace-based technique to produce a change-
propagation backward transformation from a forward transformation. When
executing the forward transformation, we record an executable trace. This
trace not only records how the values in the target model corresponds to
the values in the source model, but also can reflect the update on the target
model back into the source model. After we have the two transformations,
we propose a novel algorithm to wrap the two transformations into a syn-
chronizer.

For the second case, we improve the wrap algorithm so that it wraps two
change-propagating transformations into a synchronizer for parallel updates
[XSHT09]. In this way developers can reuse their transformation programs
to support parallel updates without additional work. One feature of the im-
proved algorithm is that we can customize how it handles conflicts. Using
this feature, we use this algorithm to develop a runtime management frame-

1.3. RELATED WORK 15

work, where a high-level management interface and a running system are
synchronized [SXH+08].

1.2.3 Support for On-Site Synchronization

For on-site synchronization, we notice that in practice many developers first
capture the consistency relation over models in a logic-based specification
language, such as object constraint language (OCL) [Obj06], and then im-
plement “condition-action” rules to synchronize models to satisfy the consis-
tency relation. After synchronization, the system invokes the specification
program to check whether the consistency relation is satisfied, and reports an
error when the relation is not satisfied. In this way even if the synchronizer
is not correctly implemented, the system can capture the errors at runtime.
One example of such systems is IBM RSA as we have seen its error message
in Figure 1.11.

To make use of existing relation specification programs and the developer
knowledge, we design a synchronization language, Beanbag [XHZ+09], that
has a similar syntax to OCL. Beanbag defines the consistency relation in the
same way as OCL, but every relation in Beanbag also has a fixing semantics
describing when some parts of the data are changed by users, how to change
the other parts to ensure consistency.

It is worth noting that in most cases there are multiple synchronization
behaviors corresponding to one consistency relation. One example of this has
been shown in Figures 1.3 and 1.4. This is captured in Beanbag by allowing
more than one way to construct one relation, where a different way indicates
a different fixing behavior.

We also discuss issues in the implementation of Beanbag. We show how
functional programming techniques and aspect-oriented programming tech-
niques can help us to derive clean and elegant implementations. In addition,
we describe an application that embodies a typical software architecture of
integrating a Beanbag synchronizer into an application.

1.3 Related Work

In this section we discuss the work related to the basic idea of the thesis. For
work related to a specific chapter, we will discuss it in the chapter.

16 CHAPTER 1. INTRODUCTION

1.3.1 Bidirectional Transformation

The basic idea of this thesis originates from bidirectional transformation re-
search [CFH+09]. Bidirectional transformation research focuses on the prob-
lem of synchronizing two heterogeneous artifacts. A basic approach to syn-
chronize two artifacts is to write two transformation programs to transform
between the two artifacts. However, this approach suffers from the problem of
program separation. Researchers in bidirectional transformation community
propose bidirectional programming languages, where a program in a bidi-
rectional language represents two transformations, a forward transformation
transforming source to target and a backward transformation transforming
target to source. Based on the relations between the two artifacts, we can
classify bidirectional languages into two categories.

Asymmetric Languages The first category of languages synchronizes two
artifacts where one is an abstraction of the other. This category of
bidirectional languages is mainly studied by the programming language
community [BFP+08, FGM+07, LHT07, LNH+07, BMS08, MHN+07].
Given two domains, C, a domain of concrete artifacts and A, a domain
of abstract artifacts, a bidirectional program in this category generates
two functions: a stateless forward transformation f : C → A and a
change-propagating backward transformation g : C × A → C. Since
the abstract artifact can always be produced from the concrete artifact,
the forward transformation does not have to be a change-propagating
function but we can propagate changes between the two artifacts.

Symmetric Languages The second category synchronizes two artifacts of
more flexible relations, and this category is mainly studied by the soft-
ware engineering community [Mee98, Obj08, SK08a, Ste07, KH06].
Given two domains, M and N , a bidirectional program in this cate-
gory consists of three components: a consistency relation R ⊆M ×N ,
a forward transformation f : M ×N → N and a backward transforma-
tion M × N → M . Using the two transformations, we can propagate
updates between the two artifacts. We may also create an artifact from
the other side if the empty artifact is contained in M and N .

Bidirectional languages have been applied to many areas to synchronize
different artifacts. However, as the two transformations always update one
artifact according to the other, bidirectional transformations do not allow
parallel updates on the two artifacts. In addition, as bidirectional languages
are mainly designed as state-based synchronizers for off-site synchronization,

1.3. RELATED WORK 17

they cannot be easily applied to on-site synchronization (more detailed dis-
cussion can be found in [XZH+08]). This thesis is motivated by bidirectional
transformation research and successfully extends bidirectional transforma-
tion in both on-site synchronization and off-site synchronization.

1.3.2 View-Updating Problem in Database

In database area, one classic problem is that when we get a view from a data
source through some query, how to reflect the update back into the source.
This problem has been studied by researchers since 70s in the last century.
Some bidirectional transformation approaches [FGM+07] are also inspired by
studies of the view-updating problem.

Compare to the studies in other area, studies on view-updating is more
intensive. The studies focus on relation data and database query languages
like SQL and XQuery, and the problem here is mainly how to put back the
update on the view to the source. Researchers propose theories [BS81, DB82],
algorithms [Mas84, Kel85] and design tools [MT86] for this problem.

One interesting issue is the “semantic ambiguity” problem: given a spe-
cific query, there is often more than one way to put back the update. Re-
searchers need to find a method to uniquely determine one from all possible
ways of putting-back. Bancihon and Spyratos [BS81] introduces the comple-
ment of a view, which includes missing information when the view is queried
from the source. Given a fixed complement, there is only one way to put
updates back into the source. Masunaga [Mas84] defines an algorithm to
translate the updates on view to those on source, and the algorithm queries
users when there is more than one way to put back the data. Keller et al.
[Kel85] and Medeiros et al. [MT86] lift the user interaction to design time,
and their tools interactively construct an update translator from users.

Our approach is partially based on these studies but extends these studies
to another form of data and more general specification languages. In partic-
ular, we are facing the same semantic ambiguity problem, and our solution
is to extend the original specification language so that the relation with am-
biguity can be constructed in multiple ways, where each way corresponds to
a unique synchronization behavior.

1.3.3 Constraint Satisfaction Problem

One traditional work on consistency management is the constraint satisfac-
tion problem (CSP) [Tsa93]. In general, approaches to CSP try to find a set
of values that satisfy a given set of constraints (consistency relation). This
problem is known to be computationally expensive because we usually have

18 CHAPTER 1. INTRODUCTION

to search the whole state space to find a solution. Approaches to this prob-
lem are mainly focus on scalability: try to cope with larger data set in an
acceptable time.

Our approach is similar to CSP as we also seek for a set of values satisfying
a consistency relation. Nevertheless, there are two main differences. First,
we focus on synchronization. We start from the previous models and updates
and try to satisfy a set of synchronization properties. Second, our approach is
more light-weight in the sense that we do not try to find the values solely from
the relation but require users to describe the synchronization behavior in the
synchronization program. As a result, we do not suffer from the scalability
problem.

One branch of CSP problem concerns when a satisfied constraint is vio-
lated by some variable changes, how to reestablish the constraint. This kind
of CSP problem is often related to graphical user interface [Bor81] where,
for example, when users move a vertex of a square, we need to move the
lines and other vertexes to ensure it to be a square. Typical approaches
of this type include the constraint hierarchy theory [BFBW92] for specify-
ing the synchronization behavior and several algorithms, such as DeltaBlue
[SMFBB93] and Cassowary [BBS01], to satisfy a constraint hierarchy.

These approaches are particularly related to our approach because we also
concern how to reestablish a consistency relation when it is violated by user
updates. However, the data that we are dealing with are different from the
data in these approaches. These approaches focus on arithmetic primitive
variables and conjunction expressions, while we are dealing with MOF models
that are much more diverse. MOF models are inherently graphs, while an
object in model is structured and may refer to other objects. Relations on
MOF models not only include conjunctions, but also may contain disjunction,
universal quantifiers, or existential quantifiers. We need new ways to specify
synchronization behavior under these relations and need new algorithms to
propagate updates on these complex data structures.

1.3.4 Inconsistency Management

The rule-based approaches are mainly discussed in the inconsistency man-
agement area. These approaches differ in how they define the “condition”
part of the “condition-action” rules. Some approaches define conditions from
logic perspective. These approaches range from more theoretical, first-order
logic [FGH+94] and description logic [SMSJ03], to more practical, OCL ex-
pressions [SSZH07]. In general, these approaches require developers to write
the “condition” part of the “condition 7→action” rule in a logic expression
and write the “action” part in an imperative language. The system checks

1.3. RELATED WORK 19

the condition of each rule, and executes the action when the condition is
satisfied. Some approaches define conditions from the updates. Grundy et
al. [GHM98] propose a general framework for managing inconsistency in
multiple-view software. In their framework, developers write programs to
check what types of updates have been performed by users and take neces-
sary actions to propagate the updates.

Some approaches seek for automated means to generate a synchronizer
from logical expressions. Typical approaches include the white-box analysis
of first-order logic [NEF03] and the black-box analysis of the consistency
rules [ELF08]. Compared to ours, these approaches generate a synchronizer
purely from a consistency relation, but the synchronizer needs to interact
with the user in synchronization, by asking the user to specify some locations
to fix, choose one among a set of actions or fill some missed parameters.
Compared to them, synchronizers generated by our approach execute in a
fully automatic way without user interaction. Nevertheless, our approach
is not aimed to replace the previous ones. Both types of synchronizers are
important in model synchronization, because while in some cases the models
are suitable to be automatically synchronized, in some cases the models are
suitable to be only manually synchronized by humans.

Liu et al. [LHG07] use spreadsheet-like mechanism to define the relation
over model and thus the fixing process is automated as reevaluating the
cell expressions. However, this approach only propagates updates in one
direction and cannot help if the location updated by users is the result of
some expression.

1.3.5 Optimistic Replication

Another branch of research studying the synchronization of data is opti-
mistic replication. Optimistic replication research considers a set of repli-
cas edited at different people at different locations, and the system con-
verges (synchronizes) the data at a proper time. The word “optimistic” here
means the researchers are optimistic about the probability of conflicts; they
assume a small probability that the user edits will conflict. Many of the
optimistic replication approaches [DDH01, KRSD01, MOSMI03, EMRP01]
are operation-based. They record a sequence of update operations at each
replica, and merge the update operations at converging by reorder the update
operations according to the semantic constraints between operations.

Compared to our approach, most the optimistic replication approaches
deal with homogeneous synchronization, that is, the replicas at different lo-
cations are copies of the same source. No data transformation or format
conversion is needed. On the other hand, our approach focuses on hetero-

20 CHAPTER 1. INTRODUCTION

geneous synchronization. We synchronize models of different structures and
transform updates during propagation. Nevertheless, our update represen-
tation ignores the order of update operations and considers the last effect
update operations. For example, if a value is first updated to “a” and then
updated to “b”, we only consider the latter update. As operation replication
concerns a lot the order of update operations, potentially we can combine
the two approaches to get more sensible synchronizers.

As far as we know, the only optimistic replication approach dealing with
heterogeneous synchronization is the Harmony framework [FGK+05]. The
Harmony framework is designed to synchronize two heterogeneous replicas.
In this framework, developers design a common abstraction of the two repli-
cas, and write two bidirectional transformations to map the two replicas to
the common abstraction, respectively. Developers can write the bidirectional
transformations in bidirectional languages or by writing separate programs
in other languages. Different from Harmony, our approach aims to reuse the
consistency relation specification in practices, and developers do not have to
design the common abstraction and develop new transformation programs.

1.3.6 Others

Repairing broken data structures [EGSK07] is also loosely related to our
approach. This work dynamically repairs faults in data at runtime according
to the consistency relations implicitly specified by the assertions in code. The
core to this work is a set of heuristics to fix inconsistency. Different from
this work, our approach aims at providing clear, predictable synchronization
semantics, so that end users can clearly know how their updates affect other
parts.

Paraconsistent logic [PSR+89] is a logic allowing inference under incon-
sistent (contradict) premise. In classic logic, if the premise is inconsistent,
anything can be inferred. Formally, {A,¬A} ⇒ B for any A and B. In para-
consistent logic, not all such premises infer everything. As synchronization
is a process to make inconsistent data consistent according to a consistency
relation, paraconsistent logic is potentially useful in formalizing the syn-
chronization behavior when the consistency relation is described by a logic
expression. We leave this connection for future work.

1.4 Organization of this Thesis

The rest of this thesis is organized as follows. We first build the foundations
for model synchronization. Chapter 2 explains the requirement for model

1.4. ORGANIZATION OF THIS THESIS 21

synchronization, including the three properties we proposed. Chapter 3 in-
troduces our dictionary-based representation of model and update. We also
discuss the dictionary-based updates are compatible with the general model
of updates.

Then we introduce our support for off-site synchronization. Chapter 4
describes how we derive a synchronizer from an ATL transformation program.
Chapter 5 describes how we wrap two transformations into a synchronizer
and how we use this technique to develop a runtime management system.

After that, we explain our support for on-site synchronization. Chapter 6
introduces our first-order logic synchronization language, Beanbag. Chap-
ter 7 discusses the implementation and applications of Beanbag.

Finally, Chapter 8 concludes this thesis and discusses future work.

22 CHAPTER 1. INTRODUCTION

Chapter 2

Requirement of Model
Synchronization

In this chapter we introduce the requirement for model synchronization for-
mally. We start from the definitions of model and update, then define the
requirement for an operation-based synchronizer, and finally remap the re-
quirements to a state-based synchronizer using a model difference procedure.
In this chapter we focus on abstract models and updates. We will give a
concrete representation conforming to the abstract definitions in the next
chapter.

2.1 Running Example

In this section we use an example to illustrate different concepts in synchro-
nization. This example is a simplified example of the classic UML to RDBMS
example [BRST05]. Figure 2.1(a) shows a basic Unified Modeling Language
(UML) model containing a Book class with two attributes. To make the ob-
jects in this design persistent, we need to build a database model to store
the objects into a database. The database model is shown in Figure 2.1(b).
For each UML class whose persistent feature is true, we create a database

Figure 2.1: Transforming a UML model into a database model

23

24 CHAPTER 2. REQUIREMENT OF MODEL SYNCHRONIZATION

Figure 2.2: An example update �

Figure 2.3: Another example update �′

table of the same name. For each attribute belonging to a persistent class,
we create a column with the same name. The database model also contains
other information, the owner feature, and we first set it with a default value,
"admin". When some parts of the two models are updated by users, we need
to synchronize the updates to make the two models consistent.

Note this example is an example for off-site synchronization because we
are integrating two applications, a UML modeling tool and a database mod-
eling tool. However, if we consider an integrated environment where the
UML model and the database model are represented as two views, the syn-
chronization is an on-site synchronization. Therefore on-site synchronization
and off-site synchronization are the same if we only consider the abstract
level. In the following we also consider in the abstract level and the synchro-
nizer we defined can be applied to both on-site synchronization and off-site
synchronization.

2.2 Models and Updates on Models

In the definition of requirement, we consider only abstract models and up-
dates. We consider a model is a primitive unit and a meta model is a set of
models. If a model conforms to a meta model, it is in the set of the meta
model.

Following the definitions of Diskin [Dis08], we consider that updates on
a meta model connect the models in the meta model M as a directed graph;
its nodes are models, and its arrows are updates. We call the starting node
of update � the pre-model of � (denoted as �.pre) and the end node of � the

2.2. MODELS AND UPDATES ON MODELS 25

Figure 2.4: An update �′′ changing persistent

post-model (denoted as �.post). For example, Figure 2.2 shows an update that
rename class Book into Volume. The model on the left is �.pre, the model on
the right is �.post. The update itself consists of update operations indicating
how the model is updated. Note the representation of the update is just an
example. In our definition we only model abstract update and developers
can choose any update representation in their implementations.

We also require two other properties of the graph. First, the graph is a
multi-graph. In a multi-graph there can be more than one arrow between
two nodes. Consequently there may be different updates leading from one
model to another. For example, Figure 2.3 shows an update that is different
from the update in Figure 2.2 but has the same pre-model and post-model.
Second, the graph is a complete graph. In a complete graph there is at least
one arrow between any two nodes. Consequent any model conforming to a
meta model can be updated to any other models conforming to the same
meta model. In addition, any model can be updated to itself. We use ΔM

to denote the set of updates on meta model M .

Definition 2.1. We say ΔM represents an update set on meta model M if
and only if there exists two functions, pre : ΔM → M and post : ΔM → M
where for each pair of models (m1,m2) in M ×M , there is an update � in
ΔM such that pre(�) = m1 and post(�) = m2.

Some approaches [CRP08, XZH+08] represent updates as functions, and
allow an update to be applied to any model conforming to the same meta
model. The ability of applying an update to multiple models is called ap-
plicability [CRP08]. In our definition, each update has only one associated
pre-model and only one associated post-model, and cannot be directly ap-
plied to other models. The reason of this design is that we try to capture
more types of update representations in our model. Some approaches [AP03]
only allow one update to be applied to one model, and they conform to our
model. For those approaches where one update can be applied to multiple
models, we can map them to our definition by making a pair that contains
an update and a pre-model.

One purpose of explicitly representing updates is to calculate the union

26 CHAPTER 2. REQUIREMENT OF MODEL SYNCHRONIZATION

Figure 2.5: The union of � and �′′

of two updates being applied to the same model. In distributed develop-
ment environments several developers may simultaneously work on the same
model, and their updates need to be merged. Given updates �1 and �2 where
�1.pre = �2.pre, we denote their union as �1 + �2, where (�1 + �2).pre = �1.pre =
�2.pre and (�1 + �2).post is a model that is considered to have both �1 and �2
applied. For example, consider the update in Figure 2.2 changing the name

attribute and the update in Figure 2.4 changing the persistent attribute.
The union of the two updates may be an update that changes both attributes.

We require several properties on the union operation. First, the union
operation should be commutative, that is, �1+�2 = �2+�1. Second, the union
operation should be associative, that is, (�1 + �2) + �3 = �1 + (�2 + �3). Third,
the union of an update and the update itself results in the update, that is,
� + � = �. Fourth, the union operation should be a partial function. If two
updates, �1 and �2, contain conflict operations and cannot be merged, the
union of the two updates, �1 + �2, should be undefined. Using this property,
we can define whether two updates conflict. We say two updates conflict if
�1 + �2 does not exist. If two updates do not conflict, we say the two updates
are compatible, denoted as �1⊕�2. For example, the update in Figure 2.2 and
the update in Figure 2.3 may be considered as conflicting updates because
when one user is changing an attribute on a model element, another user
deletes the model element. However, whether they conflict depends on the
concrete approach [AP03, CRP08] used to represent updates and implement
the union operation.

One special case of update is the identity update, which means nothing
is changed. We use the notation voidm to indicate an identify update on m,
where voidm.pre = voidm.post = m. We require that computing the union of
arbitrary update � with an identity update should result in �. Formally, if
�.pre = m, we have voidm + � = �.

Definition 2.2. We say the partial function + is a union operation over
update set ΔM if and only if + is commutative and associative, � + � = �
for any � in ΔM , and voidm + � = � for any voidm and � in ΔM where
voidm.pre = voidm.post = m.

2.3. OPERATION-BASED SYNCHRONIZER AND PROPERTIES 27

2.3 Operation-based Synchronizer and Prop-

erties

We start by defining an operation-based synchronizer and express the re-
quirement on the synchronizer. Suppose M is a meta model defining a set
of models. An operation-based synchronizer consists of the following two
components:

∙ a set of models that are consistent R ∈M

∙ a partial synchronization function sync : ΔM → ΔM , where ∀� ∈
ΔM , sync(�).pre = �.pre.

The first component defines the consistency relation over the model. We
define the consistency relation as part of the synchronizer so that we can
allow different consistency relations over the same meta model, and different
synchronizers may synchronize according to different consistency relations.
The second component takes an update on the model and produce new up-
date where the new update is expected to be applied on the model to make
it consistent according to the relation R. Because we assume each update
has a unique pre-model, by taking the update as input, the synchronizer may
not only use the information of update operations but also the current value
of the model.

To keep the definition simple, we define the synchronizer on one meta
model, and the synchronization function only synchronizes updates on one
model. However, for situations like off-site synchronization that synchronizes
multiple models, we can assume that each model in the meta model M is a
tuple of models. That is, M = M1×M2× . . .×Mn where Mi defines the ith
model in the synchronization.

For example, Figure 2.6 shows an example of input update, where the
price attribute is renamed to bookPrice. A possible output of the input
is shown in Figure 2.7. The synchronizer propagates the renaming from the
UML model to the database model to make all models consistent.

This definition already implies some requirements for model synchroniza-
tion. First, the synchronization is a function, which means that the result
of synchronization must be deterministic. An alternative approach would
be to allow the synchronization to produce an update that does not fully
depend on the input update. For example, an “intelligent” synchronizer may
obtain information from the environment or invent information by itself. We
reject this approach because we want to model predictable synchronization
behavior. It is important for developers to fully control the synchronization
behavior so that they can use the synchronizer in applications.

28 CHAPTER 2. REQUIREMENT OF MODEL SYNCHRONIZATION

Figure 2.6: Input update of a synchronization function

Figure 2.7: Output update of a synchronization function

2.3. OPERATION-BASED SYNCHRONIZER AND PROPERTIES 29

Figure 2.8: Conflicting update

Second, the function is partial, which implies detection of conflicts in
updates. If the updates to the two models conflict, the function should be
undefined for these input. This definition is similar to the definition of the
union operation, but in this case, not only two updates applied to the same
location may conflict, but also operations applied to different locations in one
update may conflict according to the consistency relation over models. For
example, Figure 2.8 shows an example of a conflicting update. The price

attribute and the price column are renamed to different names and cannot
be synchronized.

However, apart from the above two requirement, this definition alone
does not impose much constraint on the behavior of the synchronization. We
introduce three properties to ensure the synchronization procedure behaves
in a reasonable way. These properties were motivated by previous studies on
the semantics of bidirectional transformation [Ste07, FGM+07] and database
view updating [BS81, DB82], and we extend the original studies to more
general model synchronization.

Our first property, consistency, requires that the synchronization pro-
cedure to do something useful. It ensures that consistency relation R is
established after the synchronization.

Property 1 (Consistency).
sync(�) is defined =⇒ sync(�).post ∈ R

The second property, stability, prevents the synchronization procedure
from doing something harmful. If neither of the two models has been up-
dated, the synchronization procedure should update neither of them.

Property 2 (Stability).
�.pre ∈ R ∧ �.pre = �.post =⇒ sync(�).post = �.post

30 CHAPTER 2. REQUIREMENT OF MODEL SYNCHRONIZATION

The last property, preservation, is more interesting. Consider the up-
dates shown in Figure 2.6. The easiest way to achieve consistency is to change
the attribute name from "bookPrice" back to "price". However, this is not
the behavior we want. What we want is that the updates are propagated
from the modified parts to the unmodified parts, rather than changing back
the modified parts. To prevent the unwanted behavior, we require that the
user updates be preserved in the output models. If the user changes the
name of the price attribute to "bookPrice", the synchronization procedure
should not change the attribute to any other value.

To do this, we define a preservation relation between updates. This re-
lation can be defined using the union operation. Basically, we can consider
that the union of two updates preserves each update. As a result, if the union
of two updates is equal to one of the update, the other update is preserved
in this update.

Definition 2.3. We say that �2 preserves �1, denoted as �1 ⊑ �2, if and only
if �1 + �2 = �2.

We can see that the preservation relation is a partial order over updates.
First, the preservation relation is reflexive. We have � ⊑ � because � + � =
�. Second, the preservation relation is antisymmetry. If �1 + �2 = �2 and
�2 + �1 = �1, we have �1 = �2 because the union operation is commutative.
Third, the preservation relation is transitive. If �1 + �2 = �2 and �2 + �3 = �3,
we have �1 + �3 = �1 + (�2 + �3) = (�1 + �2) + �3 = �2 + �3 = �3.

After we have the preservation relation, we can define the preservation
properties using the relation.

Property 3 (Preservation).
sync(�) is defined =⇒ � ⊑ sync(�)

2.4 State-based Synchronizer and Properties

In this section we lift the operation-based synchronizer we defined in the
last section into a state-based synchronizer. Different from the operation-
based synchronizers, the state-based synchronizers takes a set of models and
produces new models where the updates are synchronized. The key here is to
use a model difference operation to find an update from two different versions
of models.

Model difference has been intensively studied by many researchers [AP03,
AAAN+06, MGH05, XS05]. In their approaches, they compare two versions
of models and try to find what update operations can update the first model

2.4. STATE-BASED SYNCHRONIZER AND PROPERTIES 31

into the second. We call this operation the difference operation. Formally,
a difference operation is a function, diff ∈ M ×M → ΔM , that takes two
models, m and m′, and produces update �, where �.pre = m and �.post = m′.
We define a difference operation as a function to require the procedure to be
deterministic.

As usually there are more than one update leading a model to another
model, we require that the difference operation returns an update where no
smaller update exists according to the preservation relation. Formally, if
diff (m,m′) = �, there is no �′ such that �′.pre = m, �′.post = m′ and not
� ⊑ �′. Because the preservation relation is a partial order, it is possible that
there is no least element for the set of updates that updates m to m′. In
such case a difference operation should choose one update from all possible
updates using predefined criteria. For example, in Alanen et al.’s approach
[AP03], the result is a set of insertions and deletions that preserve the longest
common subsequence when comparing two ordered features.

One corollary about the difference operation is that differencing a model
and the model itself results the void update, that is, ∀m ∈ M, diff (m,m) =
voidM . This is because void update a model to itself and is preserved in
any update (for any update �, void + � = �). Since the difference operation
should return an update where no smaller update exists, the only choice for
the difference operation is to return void.

Now we proceed to define a state-based synchronizer. Same as the defini-
tion of operation-based synchronizer, we only define this synchronizer on one
model. To synchronize multiple models, we consider the model as a tuple of
models. Suppose M is a meta model. A state-based synchronization function
consists of the following two components:

∙ a set of models that are consistent R ∈M

∙ a partial synchronization function sync : R×M →M

A state-based synchronizer has the same form of an operation-base syn-
chronizer but the input and output of the synchronization function is differ-
ent. The state-based synchronization function takes two models as input, one
is the model before update (which must be contained in the consistent model
set R), and one is the model updated by users. This function returns a model
depends on the two inputs, and in the model the updates are synchronized.

Similarly, we define the three properties on state-based synchronizers. We
first define consistency, which requires the output model to be consistent.

Property 4 (Consistency on state-based synchronizer).
sync(m,m′) is defined =⇒ sync(m,m′) ∈ R

32 CHAPTER 2. REQUIREMENT OF MODEL SYNCHRONIZATION

Figure 2.9: Updates to both models are preserved

Second, the stability property on state-based synchronizers requires the
output model be equal to the input if the two input models are equal.

Property 5 (Stability on state-based synchronizer).
m ∈ R =⇒ sync(m,m) = m

The preservation property is more complex. As a state-based syn-
chronizer does not know the update operations, it is possible that when we
consider different sets of updates, there may be different preservation result.
For example, we have seen an example of conflicting update in Figure 2.8.
However, as in the state-based synchronization we only consider the model
before and after update, we may also regard the update as “delete the price

attribute, insert the bookPrice attribute, delelte the price column, and
insert the salePrice column”. In this case the updates on the two mod-
els do not conflict and we may produce a synchronized model as shown in
Figure 2.9.

As a result, we need to diminish the ambiguity to define the preserva-

tion property on state-based synchronizers. Because a difference operation
chooses a unique update from a set of updates, we can use a difference op-
eration to define the preservation relation on models. Given a difference
operation diff , we say m′′ preserves the update from m to m′ according to
diff if and only if there exists an update � where (diff (m,m′) + �).post = m′′.
We use m ⊳ m′ ⊑diff m′′ to represent that m′′ preserves the update from m
to m′.

Using the preservation relation on models, we can define the preser-

vation property. Given a difference operation diff , we say a state-based
synchronizer satisfies preservation according to diff if and only if it satis-
fies the following conditions.

Property 6 (Preservation on state-based synchronizer).
sync(m,m′) = m′′ =⇒ m→ m ⊳m′ ⊑diff m′′

2.5. CONSTRUCTING STATE-BASED FROM OPERATION-BASED 33

2.5 Constructing a State-based Synchronizer

from an Operation-based Synchronizer

Since the state-based synchronizer and the operation-based synchronizer are
similar, one natural question to ask is whether we can construct one from the
other so that we only have to define one type of synchronizer. The answer
is positive. We can construct a state-based synchronizer from an operation-
based synchronizer. The basic idea is to use a model difference operation to
find the update between two models.

Given an operation-based synchronizer (R, sync) and a difference opera-
tion diff , a state-based synchronizer (R′, sync′) can be constructed using the
following formulas.

R′ = R
sync′(m,m′) = sync(diff (m,m′)).post

We can prove that the constructed synchronizer satisfies the three syn-
chronization properties.

Theorem 2.4. If (R, sync) satisfies consistency, preservation and sta-

bility, the constructed synchronizer (R′, sync′) satisfies consistency, pre-
servation and stability.

Proof. Consistency If sync′(m,m′) is defined, sync(diff (m,m′)) must be
defined, and thus sync(diff (m,m′)).post ∈ R.

Stability Because we have m ∈ R and diff (m,m) = voidm, we have the two
preconditions, diff (m,m).pre ∈ R and diff (m,m).pre = diff (m,m).post.
Because sync satisfy stability, we have sync(diff (m,m)).post =
diff (m,m).post = voidm.post = m.

Preservation If we have sync′(m,m′) = m′′, we have sync(diff (m,m′))
is defined. From the preservation property we have diff (m,m′) ⊑
sync(diff (m,m′)). From the definition of preservation we can con-
struct diff (m,m′) + sync(diff (m,m′)) = sync(diff (m,m′)). As we
know sync(diff (m,m′)).post = m′′, we have m ⊳m′ ⊑diff m′′.

2.6 Related Work

Many people have discussed the properties of synchronization based on the
context of asymmetric bidirectional transformation[Ste07], symmetric bidi-
rectional transformation [FGM+07] and database view updating [BS81]. Our

34 CHAPTER 2. REQUIREMENT OF MODEL SYNCHRONIZATION

requirements are inspired from their work, but as far as we know, we are the
first to apply these properties to model synchronization area. In particular,
we are the first to consider the operation-based synchronizer and to allow
parallel updates on models. We propose a new property, preservation, to
capture these new issues.

Some researchers build frameworks for classifying synchronization ap-
proaches. Antkiewicz and Czarnecki [AC08] classifies synchronization ap-
proaches using different design decisions. Under their classification schema,
our state-based synchronizer can be classified as a “bidirectional, original-
target-dependent, and many-to-many synchronizer”. Diskin [Dis08] builds a
more formal framework for bidirectional model synchronization, in which
bidirectional transformation is classified into lenses, di-systems, and tri-
systems on the basis of the relation between models and the number of
input models. Our definition of the state-based synchronizer can be con-
sidered a supplement to his framework, where we add quadruple-systems, in
the sense that our synchronizer takes four models as input. Furthermore, our
operation-based synchronizer is new to both classification frameworks.

Chapter 3

Representing Models and
Updates

As mentioned in Section 1.1.1, models are defined by the MOF standard
[OMG02]. MOF standard is a very large standard. The standard consists
of 88 pages, defining an essential MOF model and a complete MOF model,
where each model consists of dozens of classes and other primitive types. Such
model definitions are easy for end user to use because these models define
many concepts close to different application domains. However, the defini-
tions are not easy for tool developers to develop tools, nor for researchers to
study, because the developers and researchers have to keep many concepts
in mind. Furthermore, the standard is not formally defined. The standard
is described in a semi-formal way by presenting the concepts and definitions
in the MOF notations itself, but the MOF notations are not given a clearly-
defined formal foundation. This makes it further difficult for tool developers
and researchers because the same concepts may be interpreted differently by
different people, and tool developers and researchers have to deal with such
ambiguity.

To solve the problem, many researchers propose formal notations and
semantics for object models [BC95, BG98, Jac02, CK01]. These notations
mainly share two features. One is small. These notations often map the
large, complex MOF model to a small set of concepts, so that tool developers
and researchers only need to consider the small set of concepts. The other
one is formal. The small set of concepts is often formally defined on some
widely-used concepts like the set theory [CK01] or Larch Shared Language
[BC95].

However, although many formalizations have been given, as far as we
know no formalization has considered the updates on the models. The exist-
ing approaches [AP03, CRE06] for representing updates on models are often

35

36 CHAPTER 3. REPRESENTING MODELS AND UPDATES

directly defined on MOF standard, and thus suffer from the two problems of
the MOF standard, being large and being informal. Since the target of this
thesis is to deal with updates on models, it is necessary to give small and
formal notations for representing models so that we can easily work on.

This chapter presents our formal notations for representing models and
updates. Concretely, the contributions of this section can be summarized as
follows.

∙ We propose a lightweight notation for representing models. Our nota-
tion is based on a core concept: dictionary, which is a function mapping
keys to values. We show that most frequently-used concepts in mod-
els can be represented in dictionaries by assigning unique identifiers
to elements. As a result, our representation can be considered as a
formalization of MOF models.

∙ We define the updates on dictionaries. The updates on dictionaries
are defined by dictionary itself. We also show that updates on models
can be represented by updates on dictionaries, and the representation
enjoys a set of properties so that we can freely use the operators on
updates to compose them.

The rest of this chapter is organized as follows. Section 3.1 briefly intro-
duces the MOF standard and the main concepts in this standard. Section 3.2
describes our dictionary notation, and Section 3.3 describes how to represent
models in dictionaries. After that, Section 3.4 describes updates on dictionar-
ies, and Section 3.5 describes how to represent model updates as dictionary
updates. Finally, Section 3.6 discusses related work.

3.1 MetaObject Facility

Figure 3.1 shows a simplified model of MOF types. This model defines what
should be contained in a MOF meta model. This model also conforms to
itself, so it is the meta meta model of all MOF meta models. The core ele-
ment in this model is Type, which defines what types can be included in a
MOF model. Two classes are derived from Type. One is PrimitiveType,
whose child classes (not shown in the figure) define the primitive types. The
other one is Class, for users to define their own types in the meta model.
A class can have one or more super classes. A class can be abstract or not,
where an abstract class cannot be instantiated as an object. A class con-
tains a set of properties. The Property class is derived from TypedElement

and MultiplicityElement. TypedElement has a reference to Type, and

3.1. METAOBJECT FACILITY 37

C l a s s

+ i s A b s t r a c t : B o o l e a n

P r o p e r t y

T y p e d E l e m e n t
M u l t i p l i c i t y E l e m e n t

+ i s M u l t i p l e : B o o l e a n
T y p e

+ o w n e d A t t r i b u t e

*

+ c l a s s
+ s u p e r C l a s s

*

P r i m i t i v e T y p e

N a m e d E l e m e n t

+ n a m e : S t r i n g

+ t y p e

Figure 3.1: Simplified MOF types

thus a property has a type. If the type is a primitive type, we call the
property attribute. If the type is a class, we call the property reference.
MultiplicityElement allows the element to be single or multiple. A multi-
ple property can have more than one value and thus is a multiset. In addition,
both Type and TypedElement are derived from NamedElement, so they both
have a name.

Let us review the example we have seen in Chapter 1. Figure 3.2 shows
the example containing a meta model (left) and a model (right). The meta
model is defined by the meta meta model in Figure 3.1. It contains three
classes, two classes containing a single property and one class containing
a multiple reference. These classes are instances of the Class class in the
meta meta model, and we call such instances model elements. The model is
defined by the meta model. It contains three model elements, one directory
and two files. One thing to note here is that the semantics of instantiating
the meta meta model and that of instantiating a meta model are the same.
In this way the MOF standard defines three layers of abstractions (meta
meta model, meta model and model) in a unique way using the same set of
semantic rules.

It is worth remarking that this diagram is greatly simplified from the
original MOF definition for simplicity. Two categories of elements are ig-
nored in this diagram. One category is the elements that are not related

38 CHAPTER 3. REPRESENTING MODELS AND UPDATES

Figure 3.2: A MOF meta model and its model

to model updating. For example, according to the MOF standard, every
class may contain a set of side-effect-free operations. These operations are
only defined in the meta model but not in the model, so it is not possi-
ble for users to update these operations, and we do not include them for
clarity. The second category is the elements that are currently not sup-
ported by the dictionary representation in this chapter. For example, the
Property class has a composite property indicating that the object owning
the property is contained in another object referred by the property. Other
such elements include the isOrdered property and the isUnique property
on MultiplicityElement and the isID property on Property. The un-
supported properties are all considered false in this chapter. Nevertheless,
some unsupported properties can be captured using synchronizers, and we
shall discuss them in Chapter 6.

3.2 Dictionary-based Data Definition

We have seen what concepts are defined in the MOF standard. Let us see
the definition of dictionary-based data. Dictionaries are functions mapping
keys to values. Dictionaries can be used to represent many different kinds of
data structures as studied by Benjamin et al. [FGK+05]1. We first give the
definition of dictionary-based data in this section, and describe how to map
models to dictionaries in the next section.

Figure 3.3 shows the syntax of dictionary-based data. The italic sym-
bols are non-terminals and the Sans Serif symbols are terminals. STRING,
NUMBER and BOOLEAN are lexical tokens of common meanings. There are two
types of data (values). One is primitive values including numbers, strings,
booleans and a null value, and the other is dictionaries that map keys (prim-

1In [FGK+05], dictionaries are known as edge-labeled trees

3.3. REPRESENTING MODELS 39

value ::= primitive ∣ dictionary
primitive ::= NUMBER ∣ STRING ∣ BOOLEAN ∣ null
dictionary ::= {entries}
entries ::= entry ∣ entry, entries
entry ::= primitive −> value

Figure 3.3: Syntax of dictionary-based data

itive values) to other values. A key-value pair is called an entry. Although
keys can only be primitive values, the value part can be either primitive
values or other dictionaries, forming a hierarchical structure. For example,
{1->{"name"->"Root"}, 2->{"name"->"fileA", "size"->156}} is a dic-
tionary that contains two embedded dictionaries.

We may consider all keys that do not exist in the definition are mapped
to null. So, if a key is mapped to null, it means that the key does not exist
in the dictionary. That is, {"a"->null} and {} are both empty dictionaries.
This definition is very important for simplifying the definition of updates.
When we want to delete an entry in a dictionary, we can just set the corre-
sponding key to null. In this way we give a unique representation to both
replacement and deletion. The set of keys that are not mapped to null by a
dictionary d is called the domain of the dictionary, denoted as dom(d). We
write d.k for the value to which the dictionary d maps the key k.

3.3 Representing Models

There are many ways to map MOF-based models into dictionary-based data.
For example, one can encode a model into XML as defined in the XMI
standard [Obj07], and map the XML file (which is a tree structure and can
be easily converted to dictionaries) into dictionary-based format. In this
chapter we describe a standard representation that will be used throughout
the thesis and discuss several properties this representation holds.

The first step of our conversion is to assign a unique identifier (UID) to
each model element. In many cases we need to identify a model element. For
example, when one property refers to a model element, or when we update
a model element. In implementation, these UIDs are often implicitly used
in the implementation. For example, an in-memory model may use mem-
ory addresses to identify model elements, and an XMI model may use XPath
[CD+99] to identify model elements. As we are representing models as dictio-
naries, we need to identify each model element so that we can make clear the
correspondence between model elements and dictionaries. The UID for each

40 CHAPTER 3. REPRESENTING MODELS AND UPDATES

model may be randomly generated, incrementally assigned or transformed
from the implicit UIDs in the implementation.

If a property of a model element is a multiple property, we also assign
a UID to each value in the multiset. After we assign UIDs to all model
elements and all values in multisets, we say that the model becomes a model
with UIDs. In the following we will discuss the mapping between models
with UIDS and dictionaries.

One requirement on UIDs is that each UID must be unique among the
whole system, even if the system is distributed at different locations. This
seems a strong requirement as we have to keep all distributed locations coor-
dinated at all time. For example, if two programmers at distributed locations
both insert a model element to the model, the UIDs of two model elements
must be different. However, as we do not really care about the UIDs before
we integrate the distributed models, we may leave the UIDs uncoordinated
and coordinate them when we merge the models. Every distributed model
may use their own local UIDs, and when we merge these models, we gener-
ate a new set of global UIDs and keep bijective mappings between the global
UIDs and the local UIDs. The bijective mappings can be stored and be used
every time we merge the models.

After we convert models into models with UIDs, we can represent models
into dictionaries. A model, its meta model and the meta meta model are
represented as three dictionaries, respectively. The model is represented as
a dictionary mapping UIDs to the model elements. Each model element is
represented as a dictionary mapping property names to property values. The
property values are different between single properties and multiple proper-
ties. For a single property, if the type of the property is a primitive type,
the property value is the primitive value. If the type of the property is a
class, the property value is the UID of referred model element. For a mul-
tiple property, we represent its value as a dictionary mapping UIDs to the
members in the feature.

The meta model and the meta meta model is also represented in the same
way. For each model element, we also insert a special key " type" mapping
to the UID of its meta model element in the meta model. For example,
the model in Figure 3.2 is mapped into the following dictionary, where the
numbers starting with ”id” are generated IDs.

{id1 ->{"__type"->id10 ,

"name"->"Root",

"children"->{id4 ->id2 , id5 ->id3}},

id2 ->{"__type"->id20 ,

"name"->"fileA",

"size" ->156},

3.3. REPRESENTING MODELS 41

id2 ->{"__type"->id20 ,

"name"->"fileB",

"size" ->234}}

Reversely, we can convert a dictionary back into a model with UIDs. For
each entry in the top dictionary, we check its type key, and create a new
model element according to the key. After we create all model elements, we
set the properties of the dictionary. If the name of a property is not in the
dictionary, we set it to null.

Using the above two algorithms, we can map a model with UIDs to a
dictionary and vice versa. One property of the conversions is that if we
convert a model with UIDs to a dictionary and then convert the dictionary
back into a model, the model should be the same as the original model. In
other words, if we consider the two conversions as functions, either function
is the inverse of the other.

As our data definition allows more free form of dictionaries than dictio-
naries converted from models, one question to ask is whether a dictionary
can be converted back into a model or not. Because a model must conform
to its meta model, we need also check whether the dictionary conforms to its
meta model dictionary. We use the following set of rules to do the checking.
Given a dictionary m representing a model, a dictionary mm representing a
meta model and a dictionary mmm representing a meta meta model, the dic-
tionary m can be converted back into a model conforming to mm according
to mmm, denoted as m ∈mmm mm, if it satisfies the following rules.

1. mm can be converted to a model conforming to mmm and mmm can
be converted to a model conforming to itself according to the rules
below.

2. All keys in m must be mapped to dictionaries (each representing a
model element):

∀k ∈ dom(m) : m.k ∈ dictionary

3. Each dictionary representing a model element should include a type

key which pointed to a class in the meta model:

∀k ∈ dom(m) : mmm.(mm.(m.k." type")." type")."name" = "Class"

4. Each key in a model element dictionary (a property name) should be
equal to the name of a property in the class or a super class of the class:

∀k ∈ dom(m) : ∀n ∈ dom(m.k) :
n == " type" ∨
(∃p ∈ allProperties(mm.(m.k." type"),mm) :
mm.p."name" = n),

42 CHAPTER 3. REPRESENTING MODELS AND UPDATES

update ::= pupdate ∣ dupdate ∣ void
pupdate ::= !primitive
dupdate ::= {update entries}
update entries ::= update entry ∣ update entry, update entries
update entry ::= primitive −> update

Figure 3.4: Syntax of dictionary-based updates

where allProperties returns all property names in the class and all its
super classes.

5. Each value mapped by a property name in a model element dictionary
should conform to its type:

∀k ∈ dom(m) : ∀n ∈ dom(m.k) :
isPrimitive(m.k." type", n,mm,mmm)→

conform(m.k.n, getType(m.k." type", n,mm,mmm))∧
isClass(m.k." type", n,mm,mmm)→

m.(m.k.n)." type" ∈ getAllSubTypes(m.k." type", n,mm,mmm),

where isPrimitive determines whether the type of n is a primitive type,
isClass determines whether the type of n is a class type, conform checks
whether the value conforms to the primitive type and getType returns
the set of keys mapped to the type class and all its sub classes.

3.4 Dictionary-based Update Definition

Dictionaries not only allow us to represent many data structures but also
enable us to uniquely identify every location in a dictionary. We make use of
this feature to represent updates. An update on a dictionary is represented
by the location of updates and the updated value. Figure 3.4 gives the syntax
of updates. An update can be either pupdate – an update on primitive values,
dupdate – an update on dictionaries, or void – indicating that nothing has
been changed. An update on primitive values just contains a new value and
an update on dictionaries maps keys to updates. If a key does not exist in
the dupdate definition, we assume the key is mapped to void. The set of keys
that are not mapped to void is the domain of the dictionary-update, denoted
as dom(dupdate). We also use the notation dupdate.k on dictionary-updates.
Its meanings are the same as that defined on dictionaries.

Figure 3.5 shows the denotational semantics of updates. The denotation
of an update u, represented by UJuK, is a function mapping between val-
ues. The denotation of void changes nothing. The denotation of pupdate

3.4. DICTIONARY-BASED UPDATE DEFINITION 43

UJvoidK(v) = v
UJ!primitiveK(v) = primitive

UJdupdateK(d) =

{

UJdupdateK({}) d /∈ dictionary
d′ d ∈ dictionary

where d′ =
∪

∀k∈dom(dupdate)∪dom(d)
{k->UJdupdate.kK(d.k)}

Figure 3.5: Semantics of dictionary-based updates

Table 3.1: The result of u2 ∘ u1

u2 = void u2 ∈ pupdate u2 ∈ dupdate
u1 = void void u2 u2

u1 ∈ pupdate u1 u2 u2

u1 ∈ dupdate u1 u2 u3

where

u3 =
∪

∀k∈dom(u1)∪dom(u2)
{k->(u2.k ∘ u1.k)}

maps everything to the new value, e.g., UJ!3K(2) = 3. The denotation of
dupdate applies every update in the domain of the dictionary-update to the
value mapped by the same key, e.g., UJ{2->!"a"}K({2->"m"})={2->"a"}.
One property of the semantics is that the denotation of an update is always
idempotent, i.e., ∀u ∈ update, ∀v ∈ value : UJuK(UJuK(v)) = UJuK(v).

Two updates can be merged (composed). Sometime users may perform
a sequence of updates before the modeling tool can perform a fix, e.g., in
a distributed environment. In such case we need to merge a sequence of
updates into a single update. We use u2 ∘ u1 to denote merging two updates
u1 and u2 where u1 is considered earlier than u2. Table 3.1 shows the rules
for merging two updates. For example, merging {1->"a", 2->"b"} with
{1->"c", 3->"d"} results in {1->"c", 2->"b", 3->"d"}. A requirement
on merging is that merging should preserve the semantics of updates. In
other words, UJu2 ∘ u1K = UJu2K ∘UJu1K. We can easily prove that the rules
in Table 3.1 satisfy the requirement by checking the definitions. Another
property of merging is associative. That is, (u1 ∘ u2) ∘ u3 = u1 ∘ (u2 ∘ u3).

However, if two users change the same location to different values, we
say that the two updates by the two users conflict with each other. If two
updates do not conflict, we say the two updates are compatible, denoted as
u1⊕ u2. We use merging to define compatibility. Formally, u1⊕ u2 iff u1 ∘u2

= u2 ∘ u1. For example, {1->!"a"} and {1->!"b"} conflict but {1->!"a"}
and {2->!"b"} are compatible.

A partial order can be defined over updates. We may want to know if one
update u1 is completely included in another update u2. In other words, the
locations changed by u1 are all changed to the same values by u2. This can

44 CHAPTER 3. REPRESENTING MODELS AND UPDATES

Table 3.2: The result of find update(v1, v2) when v1 ∕= v2
v2 ∈ primitive v2 ∈ dictionary

v1 ∈ primitive !v2 find update({}, v2)
v1 ∈ dictionary !v2 u

where u =
∪

∀k∈dom(v1)∪dom(v2)
{k->find update(v1.k, v2.k)}

also be formally defined by merging. If u1 ∘ u2 = u2, we say u1 is included in
u2, denoted as u1 ⊑ u2.

One property of dictionary-based updates is that we can always find a
minimal updates from a value v1 to another value v2 where all other updates
from v1 to v2 include the update. We use a function find update to get the
minimal update from two values. Formally, ∀u ∈ update, UJuK(v1) = v2 =⇒
find update(v1, v2) ⊑ u. The function find update can be defined as follows:
1) it returns void if the two values are equal, and 2) it follows the rules in
Table 3.2 for other inputs.

3.4.1 From Dictionary-based Update to General Up-
date

You may have noticed that dictionary-based updates do not conform to our
definition of updates in Chapter 2. To distinguish, we call the update de-
fined in Chapter 2 edit update because it records the edits on a model. In
this section we show how dictionary-based updates can be converted to edit
updates.

The basic idea of converting a dictionary-based update to an edit update
is to make a pair containing the update and a model. As an edit update
describing how a pre-model changes to a post-model, we may consider that
the model in the pair corresponds to the pre-model and the update describing
the update process. In addition, we can get the post model by applying the
update to the model.

Theorem 3.1. The set (value× update) is an update set on values.

Proof. Let us define the two functions, pre and post, as follows.

pre(⟨v, u⟩) = v
post(⟨v, u⟩) = UJuK(v)

Then for any v1, v2 in values, we have an update � = ⟨v1, find update(v1, v2)⟩
where �.pre = v1 and �.post = v2.

3.5. REPRESENTING MODEL UPDATES 45

In addition, the union operation can be defined by merging compatible
updates, as follows. In the definition, ⊥ indicate the operation is undefined
at the input.

⟨v, u1⟩+ ⟨v, u2⟩ =

{

⟨v, u1 ∘ u2⟩ u1 ⊕ u2

⊥ otherwise

Theorem 3.2. The operation +is a union operation over the set (value ×
update).

Proof. To prove +is a union operation, we need to prove the four properties
required for the union operation.

∙ First, +is commutative. This is because it is only defined when u1⊕u2.

∙ Second, +is associative. This is because merging is associative.

∙ Third, for any ⟨v, u⟩ ∈ (values × update), we have ⟨v, u⟩ + ⟨v, u⟩ =
⟨v, u ∘ u⟩ = ⟨v, u⟩.

∙ Fourth, for any v ∈ value, voidv = ⟨v, find update(v, v)⟩ = ⟨v, void⟩.
Because merging void with any update u results in u, we have for any
� ∈ (values× update), voidv + � = �.

3.5 Representing Model Updates

After we define the updates on dictionaries, we proceed to consider how to
represent updates on models with UIDs. We use the UIDs to locate elements
and items in a model when specifying updates. Concretely, we consider
an update on model is a sequence of update operations, where the update
operations fall into nine types, as follows.

1. Insert a model element with UID e.

2. Delete a model element with UID e.

3. Replace the value of single attribute p in model element e with a new
value, v.

4. Replace an item at the location i in multiple attribute p in model
element e with a new value, v.

46 CHAPTER 3. REPRESENTING MODELS AND UPDATES

5. Insert a new value, v, at the location i in multiple attribute p in model
element e.

6. Delete an item at the location i in multiple property p in model element
e.

7. Change a single reference p in model element e to refer to model element
e’.

8. Change an item at the location i in multiple reference p in model
element e to refer to model element e’.

9. Insert an item referring to model element e’ at the location i in mul-
tiple attribute p in model element e.

When we convert a model with UIDs into a dictionary, we can represent
the nine types of updates into updates on the dictionary accordingly. Con-
cretely, the nine types of updates can be represented by the following six
updates.

1. {e->{}}
A dictionary representing the new model element is inserted, where all
properties of the new model element are left null.

2. {e->!null}
A dictionary at e is deleted.

3. {e->{p->!v}}
The value mapped by p in the dictionary representing model element
e is replaced by v.

4. {e->{p->{i->!v}}}
The value mapped by i in the dictionary representing the value of
property p in model element e is replaced by v.

5. {e->{p->{i->!v}}}
Insertion has the same form as replacement because the UID distin-
guishes insertion from replacement.

6. {e->{p->{i->null}}}
The value mapped by i in the dictionary representing the value of
property p in model element e is removed.

3.5. REPRESENTING MODEL UPDATES 47

7. {e->{p->!e’}}
This is similar to replacing an attribute except that the referred model
element is represented by its UID.

8. {e->{p->{i->!e’}}}
This is similar to replacing an item in a multiple attribute except that
the referred model element is represented by its UID.

9. {e->{p->{i->!e’}}}
This is similar to inserting an item in a multiple attribute except that
the referred model element is represented by its UID.

Using the above rules, we can represent model updates as dictionary-
based updates. On the other hand, we would like to see whether it is possible
to convert dictionary-based updates back into the nine types of model up-
dates. From the representation rules we can see that the updates converted
from model updates is a subset of all dictionary-based updates, and thus we
need to first figure out what subset can be converted back. We have the
following theorem.

Theorem 3.3. Suppose u be a dictionary-based update, m, mm and mmm
be three dictionaries, and m ∈mmm mm. If UJuK(m) ∈mmm mm, u can be
converted back into a sequence of updates on the model converted from m.

This theorem can be proved by defining algorithms to convert such a
dictionary-based update back. The algorithms are outlined below. One key
part of the algorithm is that we first insert/delete all model elements and
then set the properties of all model elements. In this way we can ensure when
we change a reference, the value of the reference is valid.

1. Update u must be a member in dupdate, otherwise UJuK(m) cannot be
converted into a model.

2. For each entry in u, the entry must have the form e->du or e->!null,
where du is another member in dupdate. If the entry is of e->!null and
e exists in m, we append “delete element e” to the generated update.
If the entry is of e->du and e does not exist in m, we append “insert
element e” to the generated update. After we converted all entries, we
use the next rule to convert all dus in the second form.

3. For each entry in du, the entry must have the form p->v or p->du’,
where p is a property name existing in mm, v is a member in pupdate
and du’ is a member in dupdate. If the entry is of p->v, p must be a

48 CHAPTER 3. REPRESENTING MODELS AND UPDATES

single property and we append “change a single attribute” or “change
a single reference” to the generated update according to the type of p.
If the entry is of p->du’, p must be a multiple property and we use the
next rule to convert du’.

4. For each entry in du’, the entry must have the form i->!v, where v

is a member of primitive. If v=null and i exists in m.k.p, we append
“delete an item in a multiple attribute” or “delete an item in a multiple
reference” to the generated update. If v ∕=null and i does not exist in
m.k.p, we append “insert an item in a multiple attribute” or “insert
an item in a multiple reference”. If v ∕=null and i exists in m.k.p, we
append “replace an item in a multiple attribute” or “replace an item
in a multiple reference”.

From the above discuss we know that not all dictionary-based updates
can be converted back into model updates. As a result, when we merge two
updates, we would like to know whether the merged result is still an update
on the same model. This property can be ensured by the following theorem.

Theorem 3.4. If m ∈mmm mm, UJu1K(m) ∈mmm mm and UJu2K(m) ∈mmm

mm, we have UJu1 ∘ u2K(m) ∈mmm mm.

Proof. This theorem can be proved by checking all the five rules are not
violated during the merging. In the following we prove two rules, and the
other rules can be similarly proved.

1. The meta model and the meta meta model, mm and mmm, are not
modified, so they still can be converted back.

2. Because we have UJu1K(m) ∈mmm mm, u1 does not change the value
part of any entry in m into non-dictionaries. Similarly, u2 does not
change the value part of any entry in m into non-dictionaries. In other
words, the value part of all entries in u1 and u2 are members in dupdate.
From the merging rule we know that merging two updates in dupdate
results in an update in dupdate, so u1 ∘ u2 does not change the value
part of any entry into non-dictionaries.

3.6 Related Work

There are many approaches provide lightweight formalization to object mod-
els. One notable approach is Alloy [Jac02], which provide a lightweight object

3.6. RELATED WORK 49

modeling notation that is noticeably more concise than MOF. Moreover, the
Alloy language has a kernel, which is defined on three types, and the other
parts of the language are mapped to the kernel. Other approaches include
providing formal semantics to UML diagrams [BC95, BG98] and providing
formal semantics to OCL [CK01]. However, all these formalizations do not
take into updates into consideration. Compared to them, our notation mainly
focuses on updates and captures data uniquely using one concept: dictionary.

Another branch of work focusing on representing updates on models.
This branch of work includes update-representing work [CRP07, CRP08] and
model difference work [AP03, AAAN+06, MGH05, XS05] which also needs
to represent update. However, those representations are directly defined on
MOF models, and the representation is relatively large and complex due to
the complexity of MOF standard. For example, Alanen and Porres [AP03]’s
representation contains of seven different update operations though many
features in MOF, like multiple attributes, are ignored in their models. Com-
pare to their representations, our representation is much simpler but can
represent most frequently-used concepts in MOF models.

50 CHAPTER 3. REPRESENTING MODELS AND UPDATES

Chapter 4

Off-Site Synchronization from
Unidirectional Transformation

4.1 Motivating Example

Model transformations play an important role in Model-driven architec-
ture(MDA), an approach to software development, which provides a way
to organize and manage software artifacts by automated tools and services
for both defining models and facilitating transformations between different
model types. Writing model transformations is becoming a common task in
software development.

ATL [JK06] is a practical batch model transformation language that has
been designed and implemented by INRIA to support specifying model trans-
formations that can cover different domains of applications [Tea]. As a simple
running example which will be used throughout this chapter, consider the
following UML2Java transformation in ATL.

module UML2Java;

create OUT : Java from IN : UML;

rule Class2Class {

from u : UML!Class (

not u.name.startsWith(’__draft__ ’)

)

to j : Java!Class (

name <- u.name ,

fields <- u.attrs

)

}

rule Attribute2Field {

from a : UML!Attribute

to f : Java!Field (

name <- ’_’ + a.name ,

51

52 CHAPTER 4. OFF-SITE SYNC FROM UNI-TRANS

type <- a.type

)

}

It uses two rules to transform a simple Unified Modeling Language (UML)
model to a simple Java model. Roughly speaking, it maps each UML class
whose name does not start with “ draft ” to a Java class with the same
name, and each attribute of the class to a field of the corresponding Java class
where the field name is the attribute name with an additional prefix “ ”. For
instance, this transformation maps the UML model (in XMI [Obj07])

<Class name="Book" description="a demo class">

<attrs name="title" type="String"/>

<attrs name="price" type="Double"/>

</Class >

<Class name="__draft__Authors "/>

to the following Java model (in XMI):

<Class name="Book">

<fields name="_title" type="String"/>

<fields name="_price" type="Double"/>

</Class >

As mentioned in Chapter 1, despite a bunch of interesting applications
of model transformations in software development, there is little work on
a systematic method to maintain models at different stages of the software
development. Models may be changed in both source and target sides after
transformation. For the above example, suppose a group of designers and
a group of programmers are working on the models at the same time. The
designers may want to add a new attribute authors to the Book class on the
UML model

<Class name="Book" description="a demo class">

<attrs name="title" type="String"/>

<attrs name="price" type="Double"/>

<attrs name=" au thor s " type="String"/>

</Class >

<Class name="__draft__Authors "/>

while at the same time the programmers may change the field name title

to bookTitle, delete the field price from the Java model, and add a new
comment to the Book class.

<Class name="Book">

<fields name=" b o o kT i t l e " type="String"/>

<comment text=" b o o kT i t l e cannot be null"/>

</Class >

4.1. MOTIVATING EXAMPLE 53

Now the UML model and the Java model become inconsistent and need to
be synchronized. Simply performing the UML2Java transformation again is
not adequate because the modifications on the Java model will be lost.

There are many challenges in automatically synchronizing these two mod-
els related by a model transformation. First, we need an automatic way to
derive from a given transformation enough necessary information, forward
and backward, such that not only modifications on the source model can be
automatically propagated to the target model, but also modifications on the
target model can be automatically reflected back to the source model.

Second, the method should be able to deal with general model transfor-
mations described in general transformation languages. In fact, the more
restriction we impose on a model transformation, the easier but less useful
the derived model synchronization process will be. Therefore, we should tar-
get a class of practically useful model transformations in order to obtain a
useful model synchronization system.

In this chapter, we describe our attempt towards automatically construct-
ing a model synchronization system from a given batch model transformation
described in ATL. The main contributions of this chapter can be summarized
as follows.

∙ We propose a new model synchronization approach that can automat-
ically synchronize two models related by a transformation described in
ATL, without requiring users to write extra synchronizing code. The
model synchronization process satisfies the required properties and en-
sures correct synchronization of models. Different from the existing
bidirectional tree transformations working on high level functional pro-
grams [FGM+05, LHT07], our approach works on low level byte codes,
which allows us to target more general transformation programs and
cover the full ATL.

∙ We have implemented a model synchronization system by extending
the ATL Virtual Machine (VM), the interpreter of ATL byte-code, and
have successfully tested several ATL transformation examples in the
ATL web site [Tea]. The current prototype system is available at our
web site [Xiob].

The rest of this chapter is organized as the follows. We start by clarify-
ing the requirement of model synchronization of two models that are related
by a model transformation in Section 4.2. We then show how to automat-
ically synchronize models from a model transformation in Section 4.3 and
Section 4.4. We give a case study to illustrate the feasibility of our system
in Section 4.5. Finally, we summarize this chapter in Section 4.6.

54 CHAPTER 4. OFF-SITE SYNC FROM UNI-TRANS

4.2 Problem Definition

Before we describe our synchronization approach, we must first precisely
define the problem so that we know what requirements the approach is going
to satisfy.

Our goal is to derive a synchronizer for off-site synchronization of two
models from a model transformation related the two models. To well-support
off-site synchronization, we would like to generate a state-based synchronizer.
To ensure the synchronizer works correctly, the generated synchronizer should
satisfy the three synchronization properties. Regarding this, several issues
need to be clarified.

First, to avoid the complexity of MOF models, we would like to base
our approach on the dictionary-based data (cf. Chapter 3). Because the
dictionary-based data and models can be mutually converted, the original
transformation can also be executed on the dictionary-based data. The sig-
nature of the transformation thus becomes f : value −→ value. From this
transformation f , the goal of this chapter is to derive a state-based syn-
chronizer syncf : (value × value) × (value × value) → (value × value). The
synchronizer takes two original models, two updates models and produces
two synchronized models. The type of the synchronizer is specialization of
the type in Chapter 2 on two models.

During the conversion from models to dictionaries, we need to assign UIDs
to model elements and items in multiple properties. When there are different
versions of models, such UIDs show the correspondence between the model
elements and items in different versions. However, as recording correspon-
dences is not required by MOF standard, it is possible the correspondences
are lost after user edit the model, either directly or through some other ap-
plications. In such cases a user of our approach may use model difference
approaches [AAAN+06, XS05] to recover the correspondence between model
elements and between items in multiple properties.

Second, to define a state-based synchronizer, another important compo-
nent is a consistency relation R over models. Because the transformation
defines a function over two sets of models, a basic idea is to use the model
transformation f to define R, where R = {⟨m, f(m)⟩}. However, this defi-
nition does not allow us to change additional attributes in the target model.
For instance, in the running example a comment attribute is added to the
target model which is not related to the source model by the transformation.

To allow such modification, we define an inclusion relation “⊑” over val-
ues, where v ⊆ v′ indicates that v′ is only expanded from v. The concrete
rule for this relation is shown in Figure 4.1. Then the consistency relation R
is defined as R = {⟨m,m′⟩ ∣ f(m) ⊑ m′}.

4.3. BACKWARD PROPAGATION OF MODIFICATIONS 55

v, v′ ∈ primitive ∧ v = v′

v ⊑ v′
v, v′ ∈ dictionary ∧ ∀k ∈ dom(v), v.k ⊑ v′.k

v ⊑ v′

Figure 4.1: Rules for the inclusion relation

Note this definition of consistency relation allows the target model not
only to have additional attributes but also to have new model elements or
new items in a multiple property. In other words, the synchronizer is consid-
ered correct even if it does not propagate the inserted model elements and
inserted item in multiple properties back to the source model. We define the
consistency relation in this way because currently there is a limitation in our
approach: we cannot reflect inserted items back on the target side into the
source model. We define a loose consistency relation so that we can judge
the correctness of the synchronizer even if it does not reflect back inserted
items.

Third, the preservation property is defined by a difference operation.
Here we define the difference operation using the find update function, as
follows. The dictionary-based update is augmented with a model to be an
edit update.

diff (⟨v, u1⟩, ⟨v, u2⟩) = ⟨v, find update(u1, u2)⟩

To sum up, the goal of this chapter is to derive a synchronizer sync :
(value × value) × (value × value) → (value × value) from a forward trans-
formation f : value −→ value, where the synchronizer satisfies the following
three properties.

consistency syncf (s, t, s′, t′) is defined =⇒ syncf (s, t, s′, t′) ∈ R, where R =
{⟨m,m′⟩ ∣ f(m) ⊑ m′}.

stability ⟨s, t⟩ ∈ R =⇒ syncf (s, t, s, t) = ⟨s, t⟩.

preservation
syncf (s, t, s′, t′) = ⟨s′′, t′′⟩ =⇒
∃u ∈ update : u⊕find update(s, s′)∧UJu∘find update(s, s′)K(s) = s′′.

syncf (s, t, s′, t′) = ⟨s′′, t′′⟩ =⇒
∃u ∈ update : u⊕ find update(t, t′) ∧ UJu ∘ find update(t, t′)K(t) = t′′.

4.3 Backward Propagation of Modifications

To synchronize two models related by a model transformation, we need to
propagate modifications between the source model and the target model. The

56 CHAPTER 4. OFF-SITE SYNC FROM UNI-TRANS

Table 4.1: The core instructions of ATL byte-code
instructions description
push push a constant to the stack
pop pop the top of the stack
store store a value into a local variable
load load value from local variable
if branch if the top of the stack is true

iterate delimitate the beginning of iteration
on collection elements

enditerate delimitate the end of iteration on col-
lection elements

call call a method
new create a new model element
get fetch an attribute of a model element
set set an attribute of a model element

propagation of modifications from the source model to the target model, i.e.,
the forward propagation, can be carried out by running the model transfor-
mation again. However, the propagation of modifications from the target
model to the source model, i.e., the backward propagation, cannot get direct
help from this transformation.

In this section, we will propose a technique to implement the backward
propagation by extending the ATL Virtual Machine (VM). Specifically, we
make two extensions to the ATL VM. First, we extend ATL VM so that it
works on dictionaries. It takes a dictionary representing the source model
and produces a dictionary representing the target model. Second, rather
than a normal dictionary, the synchronizer produces an extended dictionary,
where the value part of each entry also contains a putting-back function. If
later users modify the dictionary, we can use the function on the modified
value to reflect back the modification.

4.3.1 ATL Byte-code

An ATL transformation program is first compiled into ATL byte-code and
then executed on the ATL VM. The ATL VM, like the Java virtual machine,
contains a stack to hold local variables and partial results. An ATL byte-code
program consists of a sequence of instructions. A summary of the core ATL
instructions is given in Table 4.1. The full specification of ATL byte-code
and the ATL virtual machine can be found at the ATL web site [Tea].

As a simple example, the rule Attribute2Field in the UML2Java trans-

4.3. BACKWARD PROPAGATION OF MODIFICATIONS 57

1 push "UML!Attribute"

2 push "IN"

3 call "S.allInstancesFrom (S):QJ"

4 iterate

5 store "a"

6 push "Java!Field"

7 new

8 store "f"

9 load "f"

10 push "_"

11 load "a"

12 get "name"

13 call "S.Concatenate(S):S"

14 set "name"

15 load "f"

16 load "a"

17 get "type"

18 set "type"

19 enditerate

Figure 4.2: Byte-code for Attribute2Field

formation in Section 4.1 can be written in byte-code, as shown in Figure 4.2.
The first three lines return a list containing all UML!Attribute instances in
the source model. Then instructions between Line 4 and Line 19 iterate on
the list. Each instance is stored in a variable a (Line 5) and for each instance,
a Java!Field model element is created (Line 6-7) and stored in a variable f

(Line 8). Then the name attribute of the variable a is concatenated with “ ”
(Line 10-13) and set to the name attribute of the variable f (Line 9 and 14).
The type attribute of the variable a is retrieved (Line 16 and 17) and set to
the type attribute of the variable f (Line 15 and 18).

4.3.2 Extending the ATL Virtual Machine (VM)

The first extension we made is to execute ATL bytecode instructions on
dictionaries. Because models and dictionaries representing models have one-
to-one correspondence, the ATL byte-code instructions can be executed on
dictionaries by only a few modifications. Table 4.2 shows the modified byte-
code instructions. The main change from the original version is to replace
collections by dictionaries, replace new model element by empty dictionaries
and replace attribute access by accessing entries in dictionaries.

One extra task of executing on dictionaries is that when we create a model
element or add an item to a collection, we need to find a proper UID so that
we have a key to insert the item. To make the transformation a function,

58 CHAPTER 4. OFF-SITE SYNC FROM UNI-TRANS

Table 4.2: The ATL byte-code instructions on dictionaries
instructions description
push push a constant to the stack
pop pop the top of the stack
store store a value into a local variable
load load value from local variable
if branch if the top of the stack is true

iterate delimitate the beginning of iteration
on a dictionary

enditerate delimitate the end of iteration on a dic-
tionary

call call a method
new create an empty dictionary
get fetch a value in a dictionary at a pre-

defined key
set replace a value in a dictionary at a pre-

defined key

e-value ::= (e-singlevalue, put, val, loc)
e-singlevalue ::= primitive ∣ e-dictionary
primitive ::= NUMBER ∣ STRING ∣ BOOLEAN ∣ null
e-dictionary ::= {e-entries}
e-entries ::= entry ∣ entry, entries
entry ::= primitive −> e-value

Figure 4.3: Syntax of dictionary-based data

the UIDs should solely depend on the source model. We find a proper UID
based on the UID of the corresponding value in the source model. We shall
introduce the detailed technique when we discuss the new instruction.

The second extension is to extend dictionaries with putting-back func-
tions. The extended dictionary definition is shown in Figure 4.3. In this
definition, each value, either the top one or these inside a dictionary, is ex-
tended into e-value by adding three functions. The function put is to be
called when the value at the location is changed by user, the function val is
used to reevaluate the value from the source dictionary and the function loc
is to return the location of the related source value in the source dictionary.
A location is a tuple of keys used to read the value from the top dictionary.
For example, in a dictionary {a->{b->1}}, the location of 1 is a->b.

We convert an update into a sequence of pairs containing a location and

4.3. BACKWARD PROPAGATION OF MODIFICATIONS 59

a primitive update. For example, a dictionary update {a->!1, b->{c->!2,
d->!null}} is converted into a sequence of three pairs, as follows.

(a, !1)
(b->c, !2)
(b->d, !null)

When there is an update u to the target dictionary, we call all put func-
tions at the changed locations to put back the update. For each pair, we find
the e-value at the corresponding location in the target dictionary, pass the
primitive update to its put function to get a reflected update, and merge all
updates to form the result update on the source side. If there are conflicting
updates, we report the conflict to the users.

Specifically, we made three extensions to the ATL VM to produce the ex-
tended dictionary correctly. The first is that the source dictionary is extended
with the three functions when we load the model. The second extension is to
extend the semantics of each ATL byte-code instruction, which, if generating
new values, also associates the generated values with appropriate extensions.
In addition, each if instruction also generates a validity-checking function to
ensure that its condition is still satisfied after propagating modifications into
the source. The third extension is made on the ATL library methods, such
as Concatenate and startsWith, such that the values returned by these
methods are also associated with extensions. In most methods and some
instructions, new values are created by composing existing values. In those
cases, the putting-back functions of new values are built by composing the
putting-back functions of existing values. In this way, a call to a putting-back
function of a new value will invoke a series of calls to functions of existing
values, and will eventually call putting-back functions of values in the source
dictionary to update the source dictionary if necessary.

Extending the Source

The model elements and values in the source are extended before transfor-
mations. This is done when the ATL VM loads the source dictionary into its
runtime environment.

Suppose v is a value at the location of l, and v′ is a new value to the
original one. Then the extended value is a tuple (v, put, val, loc, where put,
val and loc are defined as follows. The functions put applies the update to
the location in the source model. The val function returns the value at the
location in the source dictionary. The expression connect(l, u) returns an
update that applies u to the location l. The expression get(d, l) returns the
value at location l in the dictionary d.

60 CHAPTER 4. OFF-SITE SYNC FROM UNI-TRANS

put(u) = connect(l, u)

val(d) = get(d, l)

loc = l

In this extension we extend not only primitive values but also dictionaries.
This is because users may apply a primitive update to a dictionary, e.g.,
applying !null to delete a dictionary.

Extending ATL Byte-code Instructions

Some instructions of ATL byte-code do not change or create values or model
elements, but move values among different parts (e.g. from a local variable
to the stack) of the running environment. The instructions pop, store, and
load in Table 4.1 belong to this case. We extend these instructions so that
they not only move the original value but also the extensions. Although
instructions get and set decompose dictionaries, we treat them as instruc-
tions moving a value from/to an entry of a dictionary and extend the two
instructions in the same way.

In the following, we explain how to extend the instructions iterate,
enditerate, new, push and if. The call instruction is discussed in the
next subsection.

new, iterate and enditerate

The new instruction creates new target model elements. However, this
instruction provides no information of what source model element or source
value corresponds to the new target model element.

To create a collection of target model elements, usually we have to traverse
a collection of values or model elements, and create a target model element
for each item in the collection. Thus items in the collection can be considered
as sources of the target model elements. In the example in Figure 4.2, a set
of Field model elements is created when traversing the set of Attribute

model elements in the source. In ATL byte-code the only way to traverse a
collection is the iterate and enditerate instructions.

Based on the above observation, we create a stack called IterObjs in the
runtime environment to remember the item being iterated. As collections
are represented as dictionaries in the extended ATL VM, iterObjs store
the value parts of the entries being iterated. The iterate and enditerate

instructions are extended to manage this stack. The iterate instruction
pushes the value being iterated onto the IterObjs stack, while enditerate

pops off the top value from the IterObjs stack. If the current value at the

4.3. BACKWARD PROPAGATION OF MODIFICATIONS 61

top of the IterObjs stack is {v′, put’, val’, loc’}, the model element created
by a new instruction has the following extension.

put(u) =

⎧



⎨



⎩

put′(!null) u = !null

void u = void

⊥ otherwise

val(d) = {}
loc = loc′

The put function checks whether the updated value is !null or void. If
it is !null, i.e., delete the model element, the original value is deleted. If it
is void, the function returns void to indicate nothing needs to be modified.
If it is neither update, the function is undefined. Here we use ⊥ to indicate
a function is not defined. In such cases, the system should report an error
message to the user.

If IterObjs is empty, the created model element is considered as a con-
stant that could not be modified.

put(u) =

{

void u = void

⊥ otherwise

val(d) = {}
loc = ""

When a new element is created, we need to insert it into a target dic-
tionary at a proper UID. The UID is obtained by concatenating the values
returned by loc of all values in IterObjs, as well as the line number of
current instruction. If IterObjs is empty or IterObjs.loc is empty, we in-
crementally assign a number to replace the location of IterObjs, staring
from 1. In this way we can ensure each target model element has a unique
UID which does not change between different transformations if the goto

instruction only jumps forward. The code generated by the ATL compiler
always ensures that the goto instruction only jumps forward.

push cst
The original semantics of this instruction is to push the constant cst

onto the top of the operand stack. For example, the instruction at line
10 in Figure 4.2 pushes a constant string ’ ’ to the stack. The extended
push works in a similar way like new. When IterObjs is empty, the pushed
constant is not allowed to be modified.

put(u) =

{

void u = void

⊥ otherwise

val(d) = cst

loc = ""

62 CHAPTER 4. OFF-SITE SYNC FROM UNI-TRANS

If the IterObjs is not empty, deletion of the pushed constant will result
in a deletion of the source value. Let {v′, put’, val’, loc’} be the top item in
IterObjs. The extension on the pushed constant is defined below.

put(u) =

⎧



⎨



⎩

put′(!null) u = !null

void u = void

⊥ otherwise

val(d) = cst

loc = loc′

if l
The if instruction jumps to the instruction with label l if the value at

the top of the operand stack is true, otherwise it falls through to the next
instruction. We call the value at the top of the stack the condition value of
the if instruction. If we execute the transformation again after backward
propagation of modifications, some condition values may become different
from their values before backward propagation. This will change the exe-
cution paths of the transformation, and probably generate target models in
which the user modifications are lost. In our synchronization algorithm, this
will violate the preservation property.

In our running example, a Java!Class model element is generated only
when the name attribute of the UML!Class model element does not start
with draft . Suppose a user happens to change the name attribute of a
Java!Class model element to a value starting with draft . After prop-
agating modifications backward and transforming again, this model element
will disappear on the target model.

To prevent such cases, we require that modifications by users should not
cause a condition value to be different before and after backward propaga-
tion. Our solution is that when executing an if instruction, the system will
generate a validity-checking function sat, and store the function into a set
Θ. After backward propagation, this validity-checking function is used to
recompute the condition value of this if instruction and check whether it
is the same as before backward propagation. If not, the system reports an
error.

Suppose when executing an if instruction, its condition value is (v, put,
val, loc). Then the function sat generated for this if instruction is: sat(d) =

if val(d) = v then true else false.

After backward propagation, the system calls all validity-checking func-
tions in Θ and reports a failure if a function returns false.

4.3. BACKWARD PROPAGATION OF MODIFICATIONS 63

Extending ATL Library Methods

The call instruction is to call ATL library methods. These methods are
implemented in Java, not ATL byte-code, so we need to extend them to
return extended model elements or extended values. In the following, we will
explain how to extend ATL library methods concatenate and startsWith

as examples.

The methods concatenate and startsWith both take as arguments the
first two strings at the top of the operand stack. Suppose the two arguments
for both concatenate and startsWith methods are (str1 , put1, val1, loc1) and
(str2 , put2, val2, loc2). For the concatenated string returned by concatenate,
its extension is defined below:

put(void) = void

put(!v) =

⎧



⎨



⎩

put1(!head(v, i)) ∘ put2(!tail(v, len(v)− i))
∃i : put1(!head(v, i))⊕ put2(!tail(v, len(v)− i))

⊥ otherwise

val(d) = concatenate(val1(d), val2(d))

loc = loc1

The function tail(v′, l) extracts the tail substring of string v′ of length l;
the function head(v′, l) extracts the leading substring of string v′ of length l.
The function concatenate concatenates two strings. For a modified string, we
try to find a proper position to split the string into two parts. If put1 and put2
are defined at the two parts, respectively, and the results are compatible, we
merge the results and return. As long as strings are separated with constants,
we can ensure a reasonable putting-back behavior.

For boolean value b returned by the startsWith method, its extension is
defined as below.

put(u) =

{

void UJuKb = b

⊥ otherwise

val(d) = substr(val1(d), val2(d))

loc = loc1

Boolean values returned by the startsWith method cannot be modified,
but these values can be reevaluated by calling the val function. The substr

checks whether the first argument is the leading substring of the second
argument.

64 CHAPTER 4. OFF-SITE SYNC FROM UNI-TRANS

Figure 4.4: Overview of synchronization algorithm

4.4 Synchronization

In this section we show how to realize our model synchronization process (as
defined in Section 4.2)

syncf : (value× value)× (value× value)→ value× value

based on a given transformation f : value → e-value which shows how to
map a source dictionary to a extended target dictionary, where the extension
(in Section 4.3) shows how to reflect updates to the target dictionary back
to the source dictionary. We shall illustrate our synchronization algorithm
by our running example, and explain why our synchronization satisfies the
properties in Section 4.2.

4.4.1 Synchronization Algorithm

An overview of our synchronization algorithm is shown in Figure 4.4. The
synchronization algorithm takes as input

∙ the original source model Orig.Src(represented as a dictionary. The
below is the same),
∙ the modified source model Updated Src,

4.4. SYNCHRONIZATION 65

∙ the modified target model Updated Tgt, and
∙ the transformation f that can generate a extended target model from

a source model

and returns as output

∙ the synchronized source model Sync.Src, and
∙ the synchronized target model Sync.Tgt.

The algorithm does not use the original target model, because the needed
information can be reproduced from the source model.

The basic idea of the algorithm is: first put back the modifications on
the target into the source and merge with modifications on the source, then
reproduce the target model. The synchronization process in all has seven
steps, which will be informally illustrated through our running example of
UML2Java in Section 4.1, where all inputs have been given.

Step 1: Generating the extended target model

This step simply applies the transformation to the original source model
to obtain the extended target model Tgt0. For our UML2Java example, we
first have the following source dictionary. For simplicity, we represent the
type by strings.

{1->{name ->"Book",

description ->"a demo class",

attrs ->{5->3, 6->4},

__type ->"Class"},

2->{name ->"__draft__Authors "

__type ->"Class"},

3->{name ->"title",

type ->"String",

__type ->"Attribute"},

4->{name ->"price",

type ->"Double",

__type ->"Attribute"}}

Then we transform it into the an extended target model. The following
code shows the model, where the extensions are omitted and the concatenated
UIDs are replaced by unique numbers for clarity.

{7->{name ->"Book",

attrs ->{10->8, 11->9},

__type ->"Class"},

8->{name ->"_title",

type ->"String",

__type ->"Field"},

9->{name ->"_price",

type ->"Double",

__type ->"Field"}}

66 CHAPTER 4. OFF-SITE SYNC FROM UNI-TRANS

Step 2: Compare the two target models to get the target update

We use the function findUpdate we defined in Chapter 3 to find the
updates from one dictionary to another dictionary. Given the following dic-
tionary representing the updated target model,

{7->{name ->"Book",

attrs ->{10->8},

comment ->12,

__type ->"Class"},

8->{name ->"_bookTitle",

type ->"String",

__type ->"Field"},

12->{text ->"_bookTitle cannot be null",

__type ->"Comment"}}

the function findUpdate returns the update as follows.

{7->{attrs ->{11->!null},

comment ->!12},

8->{name ->!"_bookTitle"},

9->!null ,

12->{text ->!"_bookTitle cannot be null",

__type ->!"Comment"}}

It should be noted that adding the comment to the class changes two
locations. First a new Comment model element needs to be inserted. Second
the comment attribute of the class needs to be modified from null to the UID
to the comment. Same as this, the deletion of the price attribute needs
modifying two locations.

Step 3: Use the extension to reflect back updates

We apply the technique described in Section 4.3 to put back updates on
the target side back to the source model.

{1->{attrs ->{6->!null}},

3->{name ->!"_bookTitle"},

4->!null}

Note that the inserted comment on the target model is not reflected to the
source model. This is because the given transformation does not write the
comment attribute nor does it create any Comment model elements. There is
no putting-back function generated for the inserted comment model element
and the changed comment attribute.

Step 4: Compare the source models to get the source update

This step is similar to Step 2 except that it is applied to the source side
instead of the target side. In our example, the updated source model is
represented by the following dictionary.

4.4. SYNCHRONIZATION 67

{1->{name ->"Book",

description ->"a demo class",

attrs ->{5->3, 6->4, 14->13},

__type ->"Class"},

2->{name ->"__draft__Authors "

__type ->"Class"},

3->{name ->"title",

type ->"String",

__type ->"Attribute"},

4->{name ->"price",

type ->"Double",

__type ->"Attribute"},

14->{name ->"authors",

type ->"String",

__type ->"Attribute"}}

After comparing, the result update is as follows.

{1->{attrs ->{14->!13}},

14->{name ->!"authors",

type ->!"String",

__type ->!"Attribute"}}

Step 5: Merging the two updates

Now we have the updates to the source and the updates reflected from
the target side, we can merge them to get the synchronized update that
contains updates from both side. We first determine whether the two updates
are compatible. We report an error message to the user when the updates
conflict, and merge the updates when they are compatible.

Since the two updates in our example are compatible, we can merge them,
and the result is as follows.

{1->{attrs ->{6->null , 14->!13}},

3->{name ->!"_bookTitle"},

4->!null ,

14->{name ->!"authors",

type ->!"String",

__type ->!"Attribute"}}

Step 6: Apply the merged update to the original source model

As we have the synchronized source update, we can apply it to original
source model to get the synchronized source. Note here applying to the orig-
inal source and applying to the updated source should have the same effect
because the user update on the source side is included in the synchronized
update.

{1->{name ->"Book",

description ->"a demo class",

68 CHAPTER 4. OFF-SITE SYNC FROM UNI-TRANS

attrs ->{5->3, 14->13},

__type ->"Class"},

2->{name ->"__draft__Authors "

__type ->"Class"},

3->{name ->"booktitle",

type ->"String",

__type ->"Attribute"},

14->{name ->"authors",

type ->"String",

__type ->"Attribute"}}

Step 7: Reproduce the target model from the synchronized source

The result source model contains synchronized update from both side,
and we would like to also propagate the synchronized update to the target
side. To do that, we perform the transformation again to produce a target
model from the synchronized source model.

{7->{name ->"Book",

attrs ->{10->8, 16->15},

__type ->"Class"},

8->{name ->"_bookTitle",

type ->"String",

__type ->"Field"},

15->{name ->"_authors",

type_ >"String",

__type ->"Field"}

Step 8: Apply the target update to the reproduced target model

The target model produced in the last step now should contain the update
on the source model and the update that have been reflected from the target
model to the source. Yet the update not reflected from the target model to
the source model is missing. To merge such modifications, we further apply
the target update on the model to get the synchronized target model.

{7->{name ->"Book",

attrs ->{10->8, 16->15},

comment ->12,

__type ->"Class"},

8->{name ->"_bookTitle",

type ->"String",

__type ->"Field"},

15->{name ->"_authors",

type_ >"String",

__type ->"Field"}

12->{text ->"_bookTitle cannot be null",

__type ->"Comment"}}

4.5. A CASE STUDY 69

4.4.2 Properties

It is worth remarking that our synchronization system satisfies the properties
we defined. In the following we discuss why these properties are satisfied.

First, our synchronization system satisfies consistency. In Step 6, we
produce a target model from the synchronized source model. If no existing
location in the target model is modified in Step 7, the two models are con-
sistent according to the relation R. Because all condition expressions will
be evaluated to the same value, all reflected updates will be produced again
following the same path. Consequently for any existing locations, the value
at the location and the value to be updated should be the same, and thus no
existing locations will be changed in Step 7.

Second, our synchronization system satisfies preservation. This is be-
cause on either side, the user update is eventually applied to the synchronized
models before they are produced.

Third, our synchronization system satisfies stability. If no model is
modified, no update will be discovered by find update, and thus no update
will be reflected. Consequently, the result models are the same as input.

4.5 A Case Study

Our system has been successfully applied to several ATL examples listed at
ATL web site [Tea]. In this section, we will use one of them to help demon-
strate our approach described before. This example is about a transformation
from class models to relational database models and is widely used in the lit-
erature of model transformations [LDGR04]. By this case study, we can see
after users write an ATL transformation, the consistency of the source and
target models can be automatically maintained by our system when they are
evolved, and the synchronization procedure exhibits some interesting prop-
erties.

To run this example, we need the ATL code, the source model as well as
the source and target metamodels. Due to space limitation, only the source
model is shown in Figure 4.5, and other files can be found at ATL web site
[Tea]. This source model includes two classes Person and Family, and two
Datatypes String and Integer. Each class has a collection of attributes
attr, which can be single-valued or multi-valued. The attribute ID in each
model element is added by us to identify model elements.

In this example, a class will be transformed into a table, and a datatype
into a type in the relational table model. Each attribute in a class, if it is
single-valued, will lead to a column in the corresponding table, otherwise a

70 CHAPTER 4. OFF-SITE SYNC FROM UNI-TRANS

0: <?xml version="1.0" encoding="ISO -8859 -1"?>

1: <xmi:XMI xmi:version="2.0" xmlns="Class"

xmlns:xmi="http: //www.omg.org/XMI" >

2: <Class name="Person" ID="1">

3: <attr name="firstName" ID="5" type="3"/>

4: <attr name="closestFriend" ID="6" type="1"/>

5: <attr name="emailAddresses " ID="7"

6: multiValued="true" type="3"/>

7: </Class >

8: <Class name="Family" ID="2">

9: <attr name="name" ID="8" type="3"/>

10: <attr name="members" ID="9"

11: multiValued="true" type="1"/>

12: </Class >

13: <DataType name="String" ID="3"/>

14: <DataType name="Integer" ID="4"/>

15: </xmi:XMI >

Figure 4.5: A source model in XMI

new table will be generated for it. And each table generated from a class
also includes a key column. The ATL web site has the detailed description
for this transformation. The target model generated by this transformation
is given in Figure 4.6.

In the following, we will give several experiments to show the synchro-
nization results of our system. Each experiment is to demonstrate some
properties that our approach has.

In the first experiment, we invoke the synchronization procedure without
changing the source model and the target model. After synchronization, the
resulting source and target models are still the same as the original ones,
embodying the property of stability.

In the second experiment, change Person emailAddresses in Line 14
to Individual emailAddresses and change the type of emailAddresses

in Line 17 from "3" to "4", that is, the type changes to Integer. In ad-
dition, we change the source model by removing the line 4, that is, the
attribute of closestFriendId in class Person is deleted. After synchro-
nization, the result source model keeps the attribute of closestFriendId

deleted while the class name in line 2 changes from Person to Individual

and the type of emailAddresses changes to "4", that is, changes to type
Integer; the result target model has closestFriend originally in Line 10
deleted, the type of emailAddresses remaining Integer and all occurrences
of the string “Person” changing to “Individual”, in other words, the table
name in Line 7 changes to Individual, the table name in Line 14 remains
Individual emailAddresses, and the column name in Line 15 changes to

4.5. A CASE STUDY 71

0: <xmi:XMI xmi:version="2.0" xmlns="Relational"

1: xmlns:xmi="http: //www.omg.org/XMI" >

2: <Table name="Family" ID="2" key="1002">

3: <col name="objectId" ID="1002" keyOf="2"

4: type="4"/>

5: <col name="name" ID="8" type="3"/>

6: </Table>

7: <Table name="Person" ID="1" key="1001">

8: <col name="objectId" ID="1001" keyOf="1"

9: type="4"/>

9: <col name="firstName" ID="5" type="3"/>

10: <col name="closestFriendId" ID="6"

11: type="4"/>

11: </Table>

12: <Type name="String" ID="3"/>

13: <Type name="Integer" ID="4"/>

14: <Table name="Person_emailAddresses" ID="7">

15: <col name="PersonId" ID="1007" type="4"/>

16: <col name="emailAddresses " ID="1008"

17: type="3"/>

18: </Table>

19: <Table name="Family_members " ID="9">

20: <col name="FamilyId" ID="1009" type="4"/>

21: <col name="membersId" ID="1010" type="4"/>

22: </Table>

23: </xmi:XMI >

Figure 4.6: A target model in XMI

IndividualID. This experiment demonstrates preservation and consis-

tency.

In the third experiment, we change the string objectId in the line 8 into
objId. This string comes from the transformation code, not from the source
model. The system reports a failure during synchronization. This shows that
our system has the ability to detect and report inappropriate modifications.

The fourth experiment is to demonstrate an interesting property of our
system: applying and synchronizing two updates in sequence is the same as
composing them and synchronizing once. We first change the table name in
the target model and delete the attribute in the source model, synchronize,
then change the type of emailAddresses in the target model and synchronize
again. After the two synchronization processes, we get the same result as
the second experiment.

72 CHAPTER 4. OFF-SITE SYNC FROM UNI-TRANS

4.6 Summary

In this chapter we have reported our attempt to automatic construction of
model synchronization systems under the condition that the models to be
synchronized are related by model transformations. In our approach, if a
model transformation from one model to another is given, these two models
can be synchronized for free without writing extra code. The key contribu-
tions of our approach are two folds: an automatic derivation of putting-back
functions from execution of a model transformation, and a new synchroniza-
tion algorithm with clear synchronization semantics. We have implemented
all the ideas as a system, SyncATL, for synchronizing models related by ATL
transformations. The experimental results are encouraging; several nontriv-
ial examples in the ATL Web site have been successfully tested.

One limitation of our current system is that it cannot deal well with in-
sertions on the target side; although the system works well when the inserted
value is not related to the source, it cannot reflect insertion when the inserted
value should also cause source changes. This is one of our future work.

Chapter 5

Off-Site Synchronization from
Bidirectional Transformation

In Chapter 4 we derive a synchronizer from a unidirectional transforma-
tion. In practice, two models are not always related by a unidirectional
transformation. Sometimes they are related by a bidirectional transforma-
tion. Bidirectional model transformation approaches [Obj08, SK08b] provide
bidirectional model transformation languages, which are used to describe the
relation between the two models symmetrically. Programs in these languages
are used not only to transform models from one format into another, but also
to update the other model automatically when a model is updated by users.

Stevens [Ste07] formalizes a bidirectional model transformation as two
functions. If M and N are meta models and R ⊆ M ×N is the consistency
relation to be established between them, a bidirectional model transformation
consists of two functions:

−→
R : M ×N → N
←−
R : M ×N →M

Given a pair of models (m,n) ∈ M × N , function
−→
R changes n to make it

consistent with m. Similarly,
←−
R changes m in accordance with n. Many

bidirectional model transformation languages fall into this model; typical
languages include Query/View/Transformation relations (QVT-R) [Obj08]
and TGGs [SK08b].

Bidirectional transformation synchronizes two models by propagating up-
dates from one to the other and vice versa. However, in some cases, models
m and n may be simultaneously updated before a bidirectional transforma-
tion can be applied. For example, a designer could be working on the design
model at the same time a programmer is working on the implementation

73

74 CHAPTER 5. OFF-SITE SYNC FROM BI-TRANS

Figure 5.1: Non-conflicting parallel updates

Figure 5.2: Conflicting parallel updates

model. Applying the transformation in either direction will result in the loss
of updates on the target side.

Because of the large number of available bidirectional transformation lan-
guages and existing transformation programs, it would be preferable if we
could synchronize parallel updates using existing bidirectional transforma-
tions. One basic idea is to sequentially apply the two updates and inter-
leave them with two transformations. Let us consider the running example
we used in Chapter 2. Suppose a user changes the price attribute into
"bookPrice" in the UML model and another user changes the title col-
umn into "bookTitle" in the database model at the same time, as shown in
Figure 5.1. We can assume that the title column in the database model is
changed first and perform a backward transformation to change the title

attribute in the UML model. Then, we change the price attribute into
"bookPrice" in the UML model and perform a forward transformation to
change the price column in the database model.

However, there are two problems in implementing this idea. First, as
with bidirectional transformation, we do not want to require users to track
updates. We thus need to identify which part of the updated UML model was
changed so that we can later apply the update to the result of the backward
transformation. Second, the sequential application of updates does not deal
with conflicts. Figure 5.2 shows an example of conflicting updates where the
title attribute and the title column are changed to different values. If we
transform backward and then go forward again, we will lose the update to
the database model. A preferable synchronization procedure would detect
such conflicts and advise the user.

In this chapter we propose a new approach based on the idea of sequen-

5.1. BACKGROUND 75

tially applying parallel updates. We use commonly used model difference
approaches [AP03, MGH05, AAAN+06] to solve the two problems above.
We design an algorithm that use model difference approaches to wrap any
bidirectional transformation into a synchronizer for parallel updates. The
synchronizer takes the two original models and two updated models as input
and produces two new models in which the updates are synchronized. The
idea of this algorithm is inspired by the algorithm in Section 4.4, but it is
significantly modified to wrap a bidirectional transformation.

The main contributions of this chapter can be summarized as follows.

∙ We propose an algorithm that can wrap any bidirectional model trans-
formation and any model difference approach into a synchronizer sup-
porting parallel updates. It treats the bidirectional model transforma-
tion and the model difference approach as black boxes and does not
require the user to write additional code. In addition, this algorithm is
adaptable in the handling of conflicts and updating failures.

∙ We prove that, for any bidirectional transformation satisfying the cor-

rectness and hippocraticness properties [Ste07], the synchronizer
satisfies consistency, stability, and preservation, ensuring cor-
rect and predictable synchronization behavior.

∙ We have used our algorithm to design an architecture-based runtime
management framework. The application not only shows that our algo-
rithm works well in practical cases but also is a significant contribution
to architecture-based runtime management.

5.1 Background: Properties of Bidirectional

Model Transformation

The definition of bidirectional transformation describes only the input and
output of a transformation; it does not constrain the behavior of the trans-
formation. Stevens [Ste07] proposes three properties that a bidirectional
transformation should satisfy to ensure that models are transformed in a
reasonable way. In this paper, however, we require only that a bidirectional
transformation satisfies two of them (correctness and hippocraticness)
because the last property, undoability, would prohibit many practical
transformations.

The first property, correctness, ensures that a bidirectional transfor-
mation does something useful. Given two models, m and n, the forward

76 CHAPTER 5. OFF-SITE SYNC FROM BI-TRANS

and backward transformations must establish consistency relation R between
them.

Property 7 (Correctness).

∀m ∈M,n ∈ N : R(m,
−→
R (m,n))

∀m ∈M,n ∈ N : R(
←−
R (m,n), n)

The second property, hippocraticness, prevents a bidirectional trans-
formation from doing something harmful. Given two consistent models m
and n, if neither model is modified, the forward and backward transforma-
tions should modify neither model.

Property 8 (Hippocraticness).

R(m,n) =⇒
−→
R (m,n) = n

R(m,n) =⇒
←−
R (m,n) = m

The last property, undoability, means that a performed transforma-
tion can be undone. Suppose there are two consistent models, m and n.
A user, working on the M side, updates m to m′ and performs a forward
transformation to propagate the updates to the N side. Immediately after
the transformation, he realizes that the update is a mistake. He modifies m′

back to m and performs the forward transformation again. If the bidirec-
tional transformation satisfies undoability, the second transformation will
produce the exact n to cancel the previous modification on the N side.

Property 9 (Undoability).

∀m′ ∈M : R(m,n) =⇒
−→
R (m,

−→
R (m′, n)) = n

∀n′ ∈ N : R(m,n) =⇒
←−
R (
←−
R (m,n′), n) = m

While undoability makes sense in some situations, here we do not re-
quire bidirectional transformations to satisfy this property because undoa-

bility imposes a strong requirement on the consistency relation, R, and pro-
hibits many useful transformations. One example is the UML-to-database
transformation. If we change the persistent property of a class to false

in the UML model, a forward transformation will delete the corresponding
table in the database model. However, if we modify the property back to
true, it is not possible for the forward transformation to recover the original
table because the value of the owner property has been lost. This problem
cannot be solved from the transformation alone. To satisfy undoability,
we must change the meta model of the database to store all deleted owner

properties, which would be impossible and unnecessary in many cases.

5.2. APPROACH 77

5.2 Approach

In this section we introduce our approach. We first discuss some needed
techniques for our algorithm. We shall create a three-way merger using a
model difference operation, and discuss how to test the preservation relation.
Based on them, we present our algorithm to wrap a bidirectional transfor-
mation into a synchronizer.

5.2.1 Three-Way Merger

With the model difference function and the union operator, we can construct
a three-way merger of models. A three-way merger takes one original model
and two independently updated copies of the model and produces a new
model in which the updates to the two copies are merged. Three-way mergers
are widely used in many distributed systems, like the Concurrent Versions
System (CVS), and in the diff3 command [KKP07] in Unix. Given an
original model mo and two independently modified copies, ma and mb, a
three-way merger is a partial function defined as the following.

merge(mo,ma,mb) = (diff (mo,ma) + diff (mo,mb)).post

If (diff (mo,ma)+diff (mo,mb)) is not defined, merge is not defined, indicting
there are conflicts between ma and mb.

One natural result is that a three-way merger will always preserve the
updates in both models.

Theorem 5.1. If mc = merge(mo,ma,mb), then mc preserves the update
from mo to ma and the update from mo to mb.

Proof. From the definition of merge we get (diff (mo,ma)+diff (mo,mb)).post =
mc. From the commutativity of +, we get (diff (mo,mb)+diff (mo,ma)).post =
mc. Because th ere exists diff (mo,mb), from the first formula, we have that
mc preserves the update from mo to ma. Similarly, from the second formula,
we have that mc preserves the update from mo to mb.

5.2.2 Testing Preservation

The definition of preservation relation on models (see Section 2.4) gives us a
basic method for testing whether model mc preserves an update from model
mo to model mo. However, to actually test it, we must iterate all possible
updates starting from mo, which is not possible in practice. What we need
is an efficient procedure for quickly testing the preservation of three models.

78 CHAPTER 5. OFF-SITE SYNC FROM BI-TRANS

Table 5.1: Modification operations
Operation Description
new(e, t) create a new element e of type t
delete(e, t) delete element e of type t
set(e, f, vo, vn) set an attribute f of element e from vo to vn
insert(e, f, et) add a link from e.f to et for an unordered

reference f
remove(e, f, et) remove a link from e.f to et for an unordered

reference f
insertAt(e, f, et, i) add a link from e.f to et at index i for an

ordered reference f
removeAt(e, f, et, i) remove a link from e.f to et at index i for an

ordered reference f

Such an efficient testing procedure is difficult to find in general. However,
given a specific model difference approach, it is often possible to define an
efficient testing procedure in accordance with the update operations consid-
ered in the difference approach. In the following we show how to efficiently
test preservation for Alanen et al.’s [AP03] model difference approach as an
example.

Alanen et al. consider an update as a sequence of update operations, and
they define seven types of operations, as shown in Table 5.1. In their work,
they assume that each element has a universally unique identifier (UUID)
that does not change across versions. Under this assumption, we can easily
identify and match model elements in different versions of objects. In addi-
tion, they consider limited types of features on the models. Features can be
classified as attributes that store primitive values and references that store
links to other model elements. They assume that all attributes are single
features (can contain only one value) and that all references are multiple
features (can contain more than one feature, either ordered or unordered).

To test whether an update from mo to ma is preserved in mc, we first
use the difference operation to get the update �oa = diff (mo,ma). Then we
examine mc for each update operation in �oa. If we find that an operation
such that the union of any operation and this operation cannot reach mc from
mo, we report a violation of preservation. The detailed rules for examining
the update operations can be found in Table 5.2.

For example, suppose the price attribute in Figure 2.1(a), the bookPrice
attribute in Figure 5.1(a), and the price attribute in Figure 5.2(a) share
UUID ep. The difference of Figure 2.1(a) and Figure 5.1(a) is thus an update
containing one update operation: set(ep, name, "price", "bookPrice"). This

5.2. ALGORITHM 79

Table 5.2: Testing of preservation
Operation in �oa Preservation condition
new(e, t) e exists in mc, and all features of e are the

same as ma

delete(e, t) e does not exist in mc

set(e, f, vo, vn) e exists in mc, and e.f is the same value as vn
insert(e, f, et) e exists in mc, and a link to et exists in e.f
remove(e, f, et) e does not exist in mc, or a link to et does not

exist in e.f
insertAt(e, f, et, i) e exists in mc, a link to et exists in e.f , and the

inserted links have their order in ma preserved
in mc for all insertAt operations on the feature

removeAt(e, f, et, i) always preserved (as deleted links can be in-
serted back)

update is not preserved in Figure 5.2(a) because the rule for set(e, f, vo, vn)
is violated: ep.name has a value of "price" and is different from "bookPrice"

in Figure 5.2(a).

5.2.3 Algorithm for Wrapping Bidirectional Transfor-
mation

Now we have a three-way merger and can test the preservation of updates.
Let us use them to wrap a bidirectional transformation into a synchronizer
for parallel updates. The basic idea is first to convert the model from the
N side to the M side using backward transformation, then to use the three-
way merger to reconcile the updates, and transform back using the forward
transformation. The detailed algorithm is shown in Figure 5.3.

We explain the algorithm using the UML-to-database example. Initially,
we have the two models in Figure 2.1, which correspond to mo and no in our
algorithm. Users modify the two models into the models in Figure 5.1, which
correspond to ma and nb in our algorithm. We use different subscripts to
show different updates, where a represents the update on mo and b represents
the update on no. The four models together comprise the algorithm input.

The first step of our algorithm is to invoke backward transformation
←−
R

to propagate the updates made to nb to mo, resulting in mb. The result is
shown in Figure 5.4(a). The attribute name is changed from "title" to
"bookTitle".

Now we have model ma containing update a and model mb containing

80 CHAPTER 5. OFF-SITE SYNC FROM BI-TRANS

mo

ma

mb

mab

no

nb

nab

1.
←−
R

2. merge 3.
−→
R

4. test
preservation

1. mb :=
←−
R (mo, nb)

2. mab := merge(mo,ma,mb)

3. nab :=
−→
R (mab, nb)

4. check if nab preserves diff(no, nb)

Figure 5.3: Synchronization algorithm

Figure 5.4: Execution of algorithm

5.2. ALGORITHM 81

Figure 5.5: Violating preservation

update b. The second step is to use the three-way merger we constructed in
the last section to merge the two updates and produce synchronized model
mab on the M side. The result is shown in Figure 5.4(b). The model has
both attributes changed; i.e., it contains updates from both sides. If the
updates to the two models conflict, the three-way merger detects the conflict
and reports an error.

The third step is to use forward transformation
−→
R to produce synchro-

nized model nab on the N side. The result is shown in Figure 5.4(c). This
model also contains updates from both sides, with both columns changed.

Now we have two synchronized models to which the updates have propa-
gated. It looks as if we have performed enough steps to finish the algorithm.
However, the above steps do not ensure the detection of all conflicts and may
lead to violation of preservation due to the heterogeneousness of the two
models.

To see how this can happen, let us consider the example in Figure 5.5.
Initially we have only one class and one table, and they are consistent. Then
suppose that a user changes the persistent feature of the class to false and
changes the owner of the table to "xiong". Because the owner feature is not
related to the UML model, the backward transformation changes nothing,
and mb is the same as mo. The three-way merger detects no updates in
mb and produces a model that is the same as ma. Finally, we perform the
forward transformation, and the table is deleted because of the change to
the persistent feature. However, as the user has modified a feature of the

82 CHAPTER 5. OFF-SITE SYNC FROM BI-TRANS

table, so he or she will expect to see the existence of the table in the final
result. The input models contain conflicting updates, but the synchronization
process does not detect them.

This kind of violation is caused by the heterogeneity of M and N . Due
to the heterogeneity, not all updates to N are visible on the M side. As the
three-way merger only works on the M side, it cannot detect such invisible
conflicts.

To capture such conflict, we add an additional step, preservation testing,
to the end of the algorithm. It is shown as the fourth step in Figure 5.3.
This step uses the preservation testing procedure described in Section 5.2.2
and checks whether the update from no to nb is preserved in nab. If not, the
algorithm reports an error.

The models used in Figure 5.4 and Figure 5.5 are simply examples. The
actual execution depends on the bidirectional transformation and the model
difference approach used in the synchronization and may differ from the
above execution. Nevertheless, whatever bidirectional transformation and
model difference approach we choose, our algorithm ensures the three syn-
chronization properties: consistency, stability, and preservation.

Theorem 5.2. If the bidirectional transformation satisfies correctness,
the synchronization algorithm satisfies consistency.

Proof. Because
−→
R (mab, nb) = nab, we have R(mab, nab).

Theorem 5.3. If the bidirectional transformation satisfies hippocratic-

ness, the synchronization algorithm satisfies stability.

Proof. If we have mo = ma and no = nb, we have R(mo, nb). Because of

hippocraticness, we have mb =
←−
R (mo, nb) = mo. Because of stabil-

ity of model difference, mab = merge(mo,ma,mb) = (diff (mo,ma) +
diff (mo,mb)).post = (diff (mo,mo) + diff (mo,mo)).post = mo. On the other

hand, nab =
−→
R (mab, nb) =

−→
R (mo, no) = no, and the preservation testing

always passes because of the existence of identity update.

Theorem 5.4. The synchronization algorithm always satisfies preserva-

tion.

Proof. Because of Theorem 5.1, the update on the M side is preserved. Be-
cause of the last preservation test, the update on the N side is preserved.

It is worth noting that our algorithm works even if the bidirectional trans-
formation does not satisfy correctness or hippocraticness. This has
practical value because many bidirectional transformation languages in prac-
tice do not guarantee the properties [Ste07]. In such cases, the algorithm still

5.3. EXTENDING THE ALGORITHM 83

produces output but does not guarantee the corresponding synchronization
properties (consistency or stability).

Bidirectional transformations are symmetrical, so we can also implement
this algorithm in the opposite direction. We can start a forward transforma-
tion first, merge models on the N side, perform a backward transformation,
and check preservation on the M side. Implementing the algorithm in both
directions can guarantee the three properties. However, due to the hetero-
geneity of M and N , it is possible that different directions may produce
different results for some input. The difference is related to the specific bidi-
rectional transformation approach and the difference approach used in the
algorithm, and we do not discuss it in this paper.

5.3 Extending the Algorithm

In the previous section we discuss the basic algorithm for wrapping a bidi-
rectional transformation into a synchronizer, but several issues are needed
to be discussed to put the algorithm into piratical use. In this section we
discuss two issues and extend the algorithm to deal with the two issues.

The first issue is about handling conflicts. The algorithm presented in
the previous section only reports the existence of a conflict but provide little
support in resolving the conflict. A desirable support of conflict resolution
should represent the location of conflicts and the reason of conflicts to users
and provide options for users to choose from. However, this kind of sup-
port requires us to treat the bidirectional transformation and the updates as
white boxes to locate the location and the reason of conflicts, which is differ-
ent from our goal of treating them as black boxes. However, although it is
difficult to provide full support of conflict resolution, some simplified strate-
gies can be provided for specific situations. Here we consider one simplified
strategy: overwriting all conflicting updates on one model with updates on
the other model. In many cases, the two models being synchronized are not
symmetric. One model may have high priority than the other and the up-
dates on one model can override the updates on the other. One example is
a management system where the updates from some human administrator
on the management model can overwrite the system changes on the system
being managed.

As the union operator is undefined when the input updates conflict, we
need other operators to deal with conflicts. In this section we define a se-
quential composition operator over updates. The operator is similar to the
merge operator on the dictionary update. A sequential composition operator
defined on meta model M is a total function ∘ : ΔM ×ΔM → ΔM , where a

84 CHAPTER 5. OFF-SITE SYNC FROM BI-TRANS

mo

ma

mb

mab

no

nb

nab

1.
←−
R

2. merge′ 3.
−→
R

Figure 5.6: The synchronization algorithm for conflict resolving

sequential composition of m1 and m2, denoted as m2 ∘m1, is an update that
is considered to have the same effect of first applying m1 and then applying
m2. Many model difference representation approaches [AP03] provide this
operation. When we sequentially apply two updates, the later one will over-
write the early one if there are conflicts. In this way we can use this operator
to overwrite conflicts by the update from one side.

Using the sequential composition operator, we can define a three-way
merge operation that deals with conflicts. This three-way merger, denoted
as merge′, is defined below. The updates in ma will overwrite the updates in
mb.

merge′(mo,ma,mb) = (diff (mo,ma) ∘ diff (mo,mb)).post

Using merge′, we construct the synchronization algorithm for conflict re-
solving, as shown in Figure 5.6. This algorithm is similar to the original
one, except that we use merge′ instead of merge and we do not post-check
preservation. We can similarly prove that the algorithm ensure stability,
consistency. However, preservation is not satisfied because the updates
may be overwritten by the updates from the other side.

The second issue is about update failures. There are various reasons that
an update to a model may fail. For example, there may be constraint rules
that some updates is not allowed on the model, or the system represented
by the models runs into some state where certain types of updates are not
allowed. In such cases, it is possible that some updates reflected from the
other side cannot be applied to the model, and we need to undo these updates

5.4. APPLICATION 85

on the other side to ensure the two models are consistent. This can be handled
by adding an extra step after the synchronization.

Before we describe the extra step, we need to clarify how the synchro-
nizer knows the update failure. As the synchronizer interacts with the sys-
tem in a state-based way, taking models and producing models, we ab-
stract the procedure of updating a model in meta model M as a function
writeM : M ×M → M , which takes the current model, a model to be up-
dated to, and produce the updated result. If writeM(mo,m) = m, then the
system model is successfully changed to m and there is no update failure.
If writeM(mo,m) ∕= m, some part of the update is not successfully applied
and writeM(m) satisfies that ∃u1, u2 ∈ ΔM : u1.pre = u2.pre = mo ∧ u1.post =
m ∧ u2.post = writeM(mo,m) ∧ u2 ⊑ u1.

The goal of handling update failure is that when some part of the update
cannot be applied on one side, we need to undo the corresponding part of
update in the other side to ensure the consistency of the two models. As in
the end of the synchronization we already have two consistent models, mab

and nab, the writeM(m,ma) can be considered as an update on mab, where
mab is updated into writeM(m,mab). In this way we can use the bidirectional
transformation to undo the update.

Suppose on the M side there may be update failures, the step for handling
update failures will produce a new model on the N side, which is defined as
n′
ab =

−→
R (writeM(ma,mab), nab). Similarly, when the N side may have update

failures, we produce a new model on the M side m′
ab =

←−
R (mab,writeM(nn, nab)).

We currently do not consider the situation where both sides may have update
failures.

In the handling of both conflicts and update failures, part of the update
may not be preserved on the model, and we should inform users of the loss
of updates. We can first compare mo and ma to find the original update,
and then compare mo with the result model, and compare the two updates
to find which part of user update is not preserved. In an application system,
the comparison of updates can be done by white-box analysis of updates.

5.4 Application: Architecture-based Runtime

Management

In this section we use our algorithm to construct a general framework for
architecture-based runtime management. When software systems are run-
ning, their environments and user requirements are constantly changing,
which calls for an effective way to manage the systems during runtime to

86 CHAPTER 5. OFF-SITE SYNC FROM BI-TRANS

find and fix defects, adapt to the changed environments, or meet new re-
quirements [KM07, FR07]. This has attracted many researchers to inves-
tigate architecture-based runtime management [KM90, OMT98, GCH+04,
BCRP98], which uses architecture models to represent the running system
states, and supports management agents (human administrators or auto-
mated software agents [FR07]) to monitor and control the systems by di-
rectly reading and editing the architecture models. In general, researchers
realize such architecture-based runtime management by developing synchro-
nizers to synchronize the architecture modifications and system changes, and
to “maintain the correspondence” [OMT98] between architecture models and
system states. Such synchronizers are also known as “runtime architecture
infrastructures” [OMT98], “reflection infrastructures” [BBF06], “translation
layers” [GCH+04], etc.

An important issue of architecture-based runtime management is how
to support a wider scope of systems and management activities [OMT98,
GCH+04]. As a matter of fact, there are many kinds of systems that provide
low-level mechanisms and APIs for manipulating their running states [SBP08],
and many kinds (styles) of architecture models that are proper for different
high level management activities [OMT08]. Since the types of architecture
models and systems are rich and diverse and different pairs of them require
different synchronizers, it is valuable to provide support for the development
of synchronizers.

In this section we use our algorithm to build a framework for generating
such synchronizers. As the architecture model and the system state are
usually heterogeneous, we need to use model synchronization approaches.
As architecture modifications and system changes might happen at the same
time, we need to handle parallel updates. Consequently, our algorithm is
suitable to work here. In this framework, developers write a bidirectional
transformation in the QVT language [Obj08], and the framework wraps it
into a synchronizer between an architecture model and a running system
using our algorithm.

In addition, to manage a running system, the usual way is through man-
agement APIs rather than modifying models. To make model synchroniza-
tion work on management API, we need first to wrap the management APIs
into a model. As APIs vary from system to system and there is no universe
standard about management APIs, a general solution for wrapping APIs is
needed. Our framework also allows users to specify how to wrap management
APIs into models. User specify a meta model and an “access model” describ-
ing the relation between the meta model and the management APIs, and our
framework automatically generates an adapter relating models in the meta
model with the running system. These adapters are also integrated into the

5.4. APPLICATION 87

synchronizer to make synchronizers work on management APIs. As a result,
a synchronizer consists of two parts, adapters for invoking management APIs
through model modification, and the model synchronizer generated by our
algorithm to synchronize models. To distinguish, we call the model synchro-
nizer synchronization engine.

We have implemented the framework as a toolset on Eclipse platform,
which can automatically generate a synchronizer from a specification given
by synchronizer developers. We have successfully applied this toolset to
generate many practical synchronizers, including the one to support typical
C2-based runtime management [OMT98] on practical JOnAS-based JEE sys-
tems [JOn]. The toolset, the specifications and the generated synchronizers
are available in our open source project1.

Related work

Architecture-based runtime management is a hot topic in the recent decade,
and lots of work has been devoted to the high-level architecture styles to sup-
port management activities, the low-level mechanisms to manipulate running
systems.

For high-level management activities, Kramer et al.[KM90] first propose
to represent system states as Nodes and Links to support intuitive runtime
management. Oreizy et al.[OMT98] use C2 architecture style to support
runtime evolution of GUI-centric systems. Garlan et al.[GCH+04] use design-
time information carried by architecture models to support self-adaptation.
Oreizy et al.[OMT08] surveyed many relevant approaches, and summarized
several typical architecture styles.

For the low-level mechanisms, researchers have investigated on utilizing
reflective middleware [BCRP98, HMY06], inserting “probes” and “executors”
[GCH+04], capturing system events [CC03], and re-writing the configura-
tion files [BGF+08]. They also try to maintain the system integrity during
the reconfiguration process [ZC06]. Currently, many mainstream platforms
[PLA, JOn] have built-in management mechanisms, and provide management
APIs for external programs to utilize these mechanisms. Sicard et al.[SBP08]
surveyed several typical management APIs.

All these previous researchers focus on management activities or mecha-
nisms, but only develop synchronizers proper for their specific cases. Differ-
ent from them, we focus on the development of synchronizers. We assume
that the developers have already decided the proper architecture style and
the target system with capable management API, and we provide automated

1http://code.google.com/p/sandtablist/

88 CHAPTER 5. OFF-SITE SYNC FROM BI-TRANS

support for them to develop the synchronizer.
There has been much effort made in automated support for the develop-

ment of architecture-based runtime management. Rainbow [GCH+04] is a
framework for reusing existing work on runtime architecture, but for a new
architecture style and a new type of system, developers still have to write
much code. DiscoTECH [SAG+06] provides a high-level, domain specific
language for specifying relation between architecture and system, but it only
supports propagating changes from system to architecture. Genie [BGF+08]
supports automated transformation from architecture modifications to the
changes on configuration files, but currently this tool is specific to the Grid-
kit platform.

Our work is related with the research on self-management. Kramer and
Margee [KM07] proposed a reference architecture for self-management, where
management plans are executed in an abstract level. Our synchronizers could
help bridge the abstraction gap between the plan execution and the raw
system state. But in this paper, we do not emphasize the ability of self -
management.

Recently, many researchers propose to utilize modeling technologies for
runtime management [FR07, BBF06]. We adopt standard XMI files, so that
developers can also utilize modeling technologies on our architecture models.

Antkiewicz et al. [AC06] prove that it is feasible to specify the framework
APIs as models, and to generate code for using these APIs. Based on a
similar idea, we designed the access model for specifying the management
API, and implement the tool for generating adapters that “use” this API to
manage the system state.

5.4.1 Framework Overview

In this section, we give an overview about our approach with the help of a
small example, which will be used throughout this paper.

The example is shown in Figure 5.7. The right part shows a simple mobile
computing system, where three mobile devices communicate with a desktop
computer via PLASTIC Multi-radio Networking Platform [PLA]. The left
part shows a Client/Server architecture model representing the current state
of this system. We would like to develop a synchronizer between them that
can enable the administrator to use this architecture model to intuitively
monitor and control the system. Specifically, monitor means that if the
system state changes, the synchronizer will refresh the architecture model to
let the administrator know this change intuitively, and control means that
if the administrator modifies the architecture model, the synchronizer will
reconfigure the system state according to his modification.

5.4. APPLICATION 89

Figure 5.7: The running example

Before discussing how to develop this synchronizer, let us have a deep in-
spect about the runtime management case for which this synchronizer should
work. 1) The architecture model is in Client/Server style. It contains a
Server and several Clients and Links. The Server records the name of
current administrator (“a” for admin). The Clients have unique names,
and the Links have specific types. The architecture model is stored as
XMI [Obj07] files. 2) The system state is constituted of a local desktop com-
puter, some remote devices and devices’ active networks. The synchronizer
can manipulate them by invoking PLASTIC management API. For example,
it can inspect the active devices by broadcasting a request and collecting the
devices’ responses. 3) The architecture model and the system state have a
specific relation. The Server represents the desktop computer, the Clients
represent the active devices, and the Link between a client and a server
represents an available network provided by the corresponding device.

In our framework, we only require developers to provide the above in-
formation about what the runtime management case is, and our toolset will
generate the synchronizer which works for this case. Figure 5.8 is an overview
of our approach from a developer’s perspective. Developers can specify the
architecture style as an MOF meta-model, specify the management API as
another MOF meta-model (what can be manipulated) and an access model
(how to invoke the management API), and specify the relation between them
as a QVT transformation. And our system automatically generates the re-
quired synchronizer. Detailed discussion about the specification work will be
given in Sections 5.4.2.

Let us use a simple scenario to illustrate how the generated synchronizer
supports this runtime management case. Suppose an administrator named
“Yingfei” changed all the link types to “Wi-Fi”, and changed the server’s
admin from “Hui” to “Yingfei”. In the meantime, the running system itself
also changed: the tablet computer stopped.

If the synchronizer is launched at this time, it will do the following tasks.
1) It identifies the above architecture modifications and system changes by

90 CHAPTER 5. OFF-SITE SYNC FROM BI-TRANS

Figure 5.8: Approach overview

loading the XMI file and invoking the PLASTIC API. 2) It figures out that
modifying the link type from “Bluetooth” to “Wi-Fi” means reconfiguring
the network of the “phone” device, and thus it invokes the PLASTIC API
to send a “network reset” request to this device. We assume this request
succeeds and the network becomes “Wi-Fi” 3) It ignores the other modifi-
cation of link type because of conflict. Specifically, the modification means
a system change for reconfiguring the network of the “tablet” device. This
is an illegal system change, because the device is stopped, and thus if the
synchronizer sends a request to the tablet computer, it has to wait for the
response until timeout. 4) It deletes the “tablet” client and the link in the
architecture model, according to the system change. In the meantime, it
preserves the modification of the server’s admin, so that the subsequent ad-
ministrator knows her predecessor. In this way, the synchronizer reconfigures
the system for the administrator, and returns a new architecture model to
inform him the system changes and the reconfiguration result. But the syn-
chronizer’s work is still not over, because the invocation to management API
may fail. For example, if the phone currently does not support “Wi-Fi”, then
the request in task 2 will not have any effect. This time, the synchronizer
returns an architecture model where the first link is still “Bluetooth”, and it
also returns a warning about this failure.

In section 5.4.3, we will present how we realize the automated generation
of the synchronizer that carries out the above tasks for this specific case.

5.4.2 Specification

This section presents how to specify the architecture style, the system’s man-
agement API, and the relation between them, as shown in Figure 5.8.

An architecture style defines what kinds of elements may exists in an ar-
chitecture model (usually, but not necessarily, some kinds of components and
connectors), the properties of each kind of elements, and the possible con-
tainments and configurations between model elements [GCH+04]. Table 5.3
shows how to specify these concepts using MOF meta-models. Following

5.4. APPLICATION 91

Table 5.3: Concept mapping
Architecture style MOF meta-model

Element type Class
Property Attribute
Composition Containment Reference2

Configuration Reference

Type of managed states MOF meta-model

Managed Element Type Class
Local State Attribute
Composition Containment Reference
Functional Link Reference
Connection Reference

Figure 5.9: The meta-model for Client/Server style

this guidance, we can specify the architecture style in our running example
as Figure 5.9. A Structure could contain several Clients and Servers, and
they are connected by Links. The Server provides a number of resources,
and each Client consumes part of these resources (which are not illustrated
in Figure 5.7).

According to Sicard et al. [SBP08], the system state that can be manip-
ulated through a management API is constituted of managed elements (like
the Local computer, the Remote devices and their Networks). Managed el-
ements have local states (like the maximal number of threads (maxThreads)
required by a device or provided by the local computer). They could be
composed by other managed elements (like a device contains networks), and
they could have functional links or connections between each other. Ta-
ble 5.3 shows how to define these concepts using MOF meta-models, and
Figure 5.4.2 shows the sample MOF meta-model we defined for PLASTIC.
As a simple example, this specification does not involve functional links and
connections.

92 CHAPTER 5. OFF-SITE SYNC FROM BI-TRANS

Figure 5.10: The Meta-model for PLASTIC states

Figure 5.11: Access model for PLASTIC

We designed a domain-specific modeling language named “access model”
for specifying how to invoke management APIs. The relation between the
system meta-model and this access model is similar to the relation between
the “syntax pattern” and the “semantic action” in Yacc. Developers could
decorate each of the classes, attributes and references in the meta-model with
some pieces of code for invoking the management API.

Figure 5.11 shows part of the access model for our running example. We
defined a ClassMap (Element 1) and a PropertyMap (4) to decorate the Local
class and its remote aggregation (see Figure 5.4.2). Under the PropertyMap,
we add a ListSub (5) to specify how to list all the active remote devices.
The corresponding Java code is directly specified by the Code:Fragment (6).
The code is shown in List 1, where we launch a listening thread (Lines 2-
3), and then broadcast a request (Lines 4-7). During the sleep time (Line
8), the listening thread collects the active devices’ responses and stores the
information of each device under a hash map. The logic for broadcasting
and listening under PLASTIC API is specified inside the two Java classes
Broadcast and Listen, which are defined under the UtilField (3). The two
variables mncListner and mncBroadcast are also declared in UtilField (3)
and the logic for instantiating and configuring them is defined in Lookup (2).
In the same way, we also specified how to get and set the local computer’s
maximal thread number (8,9), and how to active a new network for a device
(12).

5.4. APPLICATION 93

Listing 5.1: Code for listing remote devices

1 HashMap res = new HashMap ();

2 Listen lt = new Listen(mncListner , res);

3 new Thread(lt). start ();

4 Broadcast bt = new Broadcast(mncBroadcast ,

5 name+"Group",

6 mncListner.getMyPlasticAddress ());

7 new Thread(bt). start ();

8 Thread.sleep (1000);

9 return new ArrayList(res.values ());

When developers define the architecture style and the state type as MOF
meta-models, they implicitly regard the architecture models and system
states as MOF-compliant models. Therefore, it is natural to specify the
relation between them using a QVT transformation. List 2 is the sample
QVT transformation for the running example.

This QVT transformation contains three top relations, specifying the
relation as described in Section 5.4.1. For example, the third relation,
Link2Network (Line 5), specifies that “the link between a client and a server
represents an available network provided by the corresponding device”. We
can read this rule as follows. For each link in the architecture model (Line 7),
if its parent is strctr (Line 8), its type is ltype, and it connects clnt and
srvr, then there must be a network in the system model (Line 12). This
network is available (Line 14) and its type equals ltype (Line 15). Moreover,
the network’s grandparent lcl (Line 13) satisfies the StrServer2Local re-
lation with strctr and srvr (Line 16), and its parent rmt (Line 13) satisfies
the Client2Remote relation with clnt (Line 17). These when clauses locate
the network under the correct client. This QVT transformation is bidirec-
tional, and thus the above rule also means that for each network there must
be a link.

5.4.3 Generation

This section presents how we achieve the automated generation of synchro-
nizers. Figure 5.12 is a layered illustration of our generation approach. From
the developer’s specifications (Layer 3), our generation toolset (Layer 2) could
automatically generate the synchronizer (Layer 1) between the architecture
model and the system state(Layer 0).

We divide the synchronizer into three components (which is a common
structure for synchronizers [OMT98, GCH+04, SAG+06]). The architecture

94 CHAPTER 5. OFF-SITE SYNC FROM BI-TRANS

Listing 5.2: Sample QVT transformation

1 transformation CS2PLA(arc:CS ,sys:Plastic){

2 key S t r u c t u r e {name };...key Network{type};
3 top re lat ion StrServer2Local{ ... }

4 top re lat ion Client2Remote{ ... }

5 top re lat ion Link2Network{

6 ltype:String;
7 enforce domain arc link:Link {
8 parent=strctr: S t r u c t u r e {},
9 client=clnt: C l i e n t {},

10 server=srvr: Se r v e r {},
11 type=ltype };

12 enforce domain sys network:Network{
13 parent=rmt:Remote{parent=lcl:Loca l {}},
14 available=true ,

15 type=ltype};

16 when{StrServer2Local(strctr ,srvr ,local) and
17 Client2Remote(clnt ,rmt); } } }

adapter manipulates architecture models by reading and writing XMI files,
and the system adapter manipulates system states by invoking the man-
agement API. The synchronization engine interacts the adapters through a
standard MOF reflection interface, so that it can manipulates the various ar-
chitecture models and system states in a unique way. This enables the engine
to use a general solution to address the issues like propagating changes, han-
dling conflicts, etc. We developed two generation tools, which generate Java
code that implements MOF reflection interface, loads and saves XMI files,
and invokes the management API. Such code constitutes the two adapters.
We also designed a synchronization algorithm to address the common issues,
and implement it as a general synchronization engine. When we generate a
specific synchronizer, we just configure this general engine with the specific
QVT transformation and meta-models.

Generating the two adapters

We utilize the EMF (Eclipse Modeling Framework) code generation engine
[BBM03] to generate the architecture adapters. EMF generates a Java class
for each of the MOF classes defined in the architecture meta-model. These
Java classes contain the standard methods that conform to the MOF reflection
interface. External programs could use these standard methods to manipulate

5.4. APPLICATION 95

Figure 5.12: Generation overview

a set of member variables, whose values are bound with a XMI file by an XMI
parser.

We extend the EMF generation engine to generate the system adapters.
The generated adapters are also constituted of Java classes that implement
the MOF reflection interface. But besides the standard methods, we also
generate some specific methods from the access model for invoking the man-
agement API. When an external program invokes a standard method, the
generated code inside the standard methods will forward the invocation to
the proper specific methods.

We use an example to illustrate the above presentation. List 3 is a sam-
ple Java Class in the system adapter for PLASTIC. It is generated from
the Local class (Figure 5.4.2) and its ClassMap(Element 2 in Figure 5.11).
Lines 2-4 are generated from the UtilField (4). Lines 5-6 are generated
according to the “remote” aggregation, where EListSubAdapter is a utility
class dealing with multiple properties. Line 7 is generated from Lookup and
contains the instantiation logic. listSubCores (Line 8) is a specific method
generated from ListSub (5), which lists all the active devices. eGet (Line
18) is a standard method for getting property values.

The generated adapters hide the variance of architecture models and sys-
tem states. External programs could manipulate the different architecture
models and system states by invoking the same set of standard methods.
We use one example to illustrate how the adapters work. The tool in this
example will be used later in the synchronization algorithm.

The “model clone” tool in EMF [BBM03] provides a copy(mod1, mod2)

method to clone the content from mod2 to mod1. If we invoke copy(mod1,

96 CHAPTER 5. OFF-SITE SYNC FROM BI-TRANS

Listing 5.3: Sample of generated system adapter

1 public c la s s LocalImpl extends EObjectImpl{

2 c la s s Listen implements Runnable {...}

3 private s ta t i c MNClient mncListener =

4 new MNClient(name + "Listener", maxThreads);

5 private EListForAdapt <Remote > remote=

6 new EListForAdapt <Remote >(...);

7 public Object lookupCore () {...}

8 public List listSubCores(int featureID) {

9 switch(featureID){

10 case PlasticSystemPackage .LOCALREMOTE:

11 HashMap remotes = new HashMap ();

12 Listen lt = new Listen(mncListner , remotes);

13 new Thread(lt). start ();

14 /*The same lines in List 1 */

15 return new ArrayList(remotes.values ());

16 }

17 }

18 public Object eGet(int featureID ...) {

19 switch (featureID){

20 case PlasticSystemPackage .LOCALREMOTE:

21 remote.refresh ();

22 return remote;

23 } } }

5.4. APPLICATION 97

sysAdapter), the clone tool will load the current system state into a model.
Let us see how this tool interacts with the system adapter. Suppose now
this clone tool wants to copy the children of the root Local element. It
first checks the meta-model (Figure 5.4.2) and find out that Local has an
aggregation named “remote”, and so it invokes eGet(’remote’) on this root
element. The invoked eGet (Line 18) refreshes the remote list (Line 21). This
refresh() method of EListForAdapter invokes back the listSubCores

(Line 8) to collect the information of all the active remote devices (Lines
12-16, as we have introduced in Section 5.4.2), and instantiate a RemoteImpl

for each of the devices. In this way, the copy method obtained a list with
instances of RemoteImpl.

Synchronization Algorithm

With the above preparations, we can construct our synchronization algo-
rithm. The algorithm is constructed using the extensions in Section 5.3 to
handle conflicts and update failures. Because the updates to the architecture
model representing the management behavior of users, we use the update to
the architecture to overwrite that to the system when they conflict. Because
updates to the system sometimes may fail, we handle update failure on the
system side.

To construct the algorithm, we need to provide some core components
used in the algorithm. First, the bidirectional transformation is obtained
from the QVT bidirectional transformation program. Although QVT en-
ables rapid development of bidirectional transformations, it does not always
guarantee correctness and hippocraticness. If a program has complex
interaction with the constraints on the meta models, it may produce incon-
sistent result. As a result, it is up to programmers to carefully check their
programs to ensure the two properties. Nevertheless, as synchronization in
architecture-based runtime management mainly involves attribute-mapping,
the two properties are often satisfied.

Second, the model difference operation is obtained from our dictionary
representations (c.f. Chapter 3). We first convert models into dictionaries,
and then use find update to compare dictionaries. To assign the UIDs across
different version of models, we assume each model elements has a special
attribute that uniquely identifies this model element and will not be changed
when user modify the models. If model elements in two versions of models
have the same value in their identifying attributes, we assign the same UID
to them.

Third, the write operation is constructed use the copy tool that we
constructed in the end of the last section. We first copy the target model to

98 CHAPTER 5. OFF-SITE SYNC FROM BI-TRANS

the system adapter, and then read the adapter again. The model obtained by
reading the adapter is the result of the write operation, where the applicable
updates are all applied, and the inapplicable updates, if any, are discarded
away.

Finally, because the updates on the architecture model may not be suc-
cessfully applied, we need to report the failed updates to users. This is
achieved by first comparing models to find the user updates and the applied
updates, then converting updates into a set of pairs containing locations and
primitive updates for comparison, and reporting the pairs missing in the
applied updates.

5.4.4 Properties of the Synchronizer

Applying our algorithm not only helps construct the synchronizer, but also
ensures many important properties on the synchronizer, which ensure the
synchronizer works correctly in the runtime management.

Property 1. The result architecture model and system state are consistent
according to the specified relation, even though there are conflicts or failures.
This directly follows the consistency property of our algorithm. In addi-
tion, this is also known as a basic property of runtime management [OMT98].
It ensures that the management agents always get the right representation
of system state.

Property 2. Unchanged architecture model does not cause system change.
This is a reduced version of stability and can be proved similarly. This
property prevents the synchronizers from polluting the running system with-
out the management agents’ intention.

Property 3. Conflicts do not harm the system. This is because we over-
write the system updates with architecture updates when there are conflicts.
This property liberates management agents from worrying about conflicts
when they modify the architecture.

Property 4. “Irrelevant” architecture modifications remain in the result
architecture model. “Irrelevant” modifications are the ones that do not have
meanings on the system state, like the change of server’s administrator name
(see Section 5.4.1). This property allows management agents to record ir-
relevant information on architecture models to assist further management
activities.

Property 5. The synchronization result is unambiguous. From the syn-
chronizers’ perspective, they will try to propagate every change without con-
flict, according to the behavior of the three-way merger. From the manage-
ment agents’ perspective, if their modifications remain in the final architec-
ture model, then these modifications must have been propagated successfully,

5.5. SUMMARY 99

otherwise the agents could receive warnings.
Note that we require some premises on the running system. For Prop-

erty 2, we require that the API method for retrieving states does not have
side-effects. For Property 3, we require that the system does not change dur-
ing the process of three way merge. For some kinds of systems that do not
satisfy these premises, developers have to do some extra work when defining
the access model, e.g. utilizing state-locks.

5.5 Summary

In this chapter we have proposed an approach that wraps a bidirectional
transformation program and a model difference approach into a synchronizer
for parallel updates. Our approach is general and predictable. It is general
in the sense that it allows the use of any bidirectional transformation and
any model difference approach, and it is predictable because it satisfies three
model synchronization properties: consistency, stability and preser-

vation. We also use algorithm to construct an architecture-based runtime
management framework, which not only certifies the usefulness of our al-
gorithm, but also greatly facilitate the development of architecture-based
runtime management systems.

100 CHAPTER 5. OFF-SITE SYNC FROM BI-TRANS

Chapter 6

Beanbag: An On-Site
Synchronization Language

6.1 Motivation Example

In the previous two Chapters we have seen our support for off-site synchro-
nization. In this chapter we introduce our support for on-site synchroniza-
tion. Chapter 1 has discussed the difference between off-site synchronization
and on-site synchronization and Figures 1.1-1.3 has shown an example of
on-site synchronization.

Although there is currently no high-level language for writing on-site syn-
chronizers, there are languages for defining consistency relations over models
[Obj06, Jac02]. One of such languages is the Object Constraint Language
(OCL) [Obj06] that is to define and check consistency relations over models.
As an example, we give two OCL relations describing the consistency relation
over the UML model in Figure 1.1.

C1: context Message

inv let rec = self.receiver in

let ops = rec.base.operations in

ops ->exists(oper | oper.name = self.name)

C2: context Message

inv self.sender <> null and self.receiver <> null

C1 requires every message in a sequence diagram to be declared as an op-
eration in the receiver’s class. The context keyword states that it will be
applied to every Message object. The concrete relation definition starts from
a message (self), finds the receiver object (rec), finds the operation set in
the class of the receiver object (ops) and check if there exists an operation
having the same name of the message. C2 requires every message to have

101

102 CHAPTER 6. BEANBAG

a sender object and a receiver object by disallowing related features to be
null.

As there are many existing OCL programs, we would like to ask whether
we can automatically derive synchronizers from OCL programs. As a mat-
ter of fact, if we examine the definitions of consistency relations, we would
find that some relations have already implicitly included the definitions of
synchronizers. Consider a simple relation that two primitive values a and
b are equal: a=b. If a user changes a, the only reasonable action to take is
to change b accordingly. The same strategy also works when b is changed.
However, it is not easy to automatically derive synchronizers beyond the
simplest relations. First, many consistency relations, like C1, have multiple,
even infinite numbers of actions to take for some updates. How to choose
one among them is unknown. Second, consistency relations may be com-
posed by operators like and, or and quantifiers. It is unclear how to compose
synchronizers accordingly while ensuring a correct synchronization behavior.

In this chapter we suggest a compromising approach. Instead of deriving
synchronizers purely from consistency relations, we ask users to provide some
extra information so that we can determine a unique synchronization behav-
ior from a consistency relation. In this way we can greatly reduce the effort
in implementing a synchronizer (because the amount of extra information is
usually small) and we can ensure the correctness of the synchronizer from
the derivation process.

To achieve this, we design a language, Beanbag, for users to define a
consistency relation and a synchronization behavior at the same time. The
Beanbag language defines consistency relations in OCL-like syntax, but every
relation in Beanbag also has a synchronization semantics describing when
some parts of the data are changed by users, how to change the other parts
to ensure consistency. For relations with multiple synchronization behavior,
Beanbag provides users with more than one way to construct one relation,
where a different way indicates a different synchronization behavior.

We evaluate the expressiveness and usability of Beanbag by developing
Beanbag programs for consistency relations in MetaObject Facility (MOF)
[OMG02] and UML [Egy07, ELF08] models. The evaluation shows that
Beanbag greatly eases the development and can support many useful scenar-
ios in practice.

To have a concrete idea of Beanbag, let us write a Beanbag program for
relation C1. A Beanbag relation describing C1 can be defined as follows.

def C1(msg , model) :=

let rec = model.(msg."receiver") in

let opRefs = model.(rec."base")."operations" in

6.1. MOTIVATION EXAMPLE 103

opRefs ->exists(opRef | model.opRef."name"=msg."name")

We can see that the Beanbag program is very similar to the OCL expression.
One small difference is that Beanbag is built on dictionaries. Therefore, in-
stead of writing msg."receiver", we need to write model.(msg."receiver").
This difference is not important for now.

To apply this relation to all instances of Message, we further write the
following code:

def C1onAll(model , meta) :=

model ->forall(obj |

isTypeOf(obj , "Message", meta) and C1(obj , model)

or not isTypeOf(obj , "Message", meta)

)

The C1onAll relation works in two modes. In the checking mode, it runs
as a normal OCL expression, takes the current model and the meta model
as input and produces a boolean value indicating whether the relation is
satisfied. In the synchronization mode, it takes as input the current model,
the meta model and the updates that users try to apply to the model, and
produces new updates representing actions to take to make the model consis-
tent. The input updates can be a single update, changing a single feature or
inserting/deleting an object. It can also be a combination of several updates
performed by different users in a distributed environment, changing several
locations or inserting/deleting several objects.

Putting it more concretely, the synchronization mode of C1onAll proceeds
in a similar way to the checking mode, but propagates updates when it
encounters one. Suppose a user has renamed an operation to a new name.
C1onAll will invoke C1 on all Message objects and C1 will check if there
exists an operation with the same name. For the renamed message, such
an operation cannot be found. Then the exists statement will insert a
new null reference in the collection and proceed to the inner relation. The
expression model.opRef will create a new operation and replace the null

reference with the actual reference. Finally, the equality relation will assign
the changed name to the newly created operation. We will see the precise
semantics in Section 6.2.3.

As discussed in Chapter 1, when an operation is renamed, we can either
insert a new operation or rename an existing operation. To rename an ex-
isting operation, what we need to do is to change exists to exists! in the
last line. The new Beanbag program runs the same in the checking mode,
but in the synchronization mode it will rename the operation that originally
corresponded to the message.

Note that the current program for C1 can be improved; the current version

104 CHAPTER 6. BEANBAG

c ::= v=v

∣ c and c

∣ c or c

∣ d->forall(v|c)

∣ d->exists(v|c)

∣ d->exists!(v|c)

∣ let v=e in c

∣ protect v in c

∣ test c

∣ not c

e ::= const

∣ d.k

∣ let v=e in e

v ::= any variable
d ::= a dictionary variable
k ::= a key variable

Figure 6.1: Core synatx

will insert a new operation even when we change the receiver of a message or
when we delete/rename an operation in the class diagram. We can describe a
more natural synchronization behavior by extending C1 to allow the message
name to be null. We will see a full featured program in Section 6.2.4.

6.2 The Beanbag Language

6.2.1 An Overview

Figure 6.1 shows the syntax of the core Beanbag language. The Beanbag
language has similar syntax as OCL [Obj06]. It has the primitive constraint
“=” to describe equal relation between two variables, uses logic operators of
and, or and not, and quantifiers of forall and exists on keys of dictionaries
to construct complex constraints, and binds variables with expressions with
the let construct. An expression may be a constant value, a dictionary key
indexing d.k, or a local binding expression with let. With these constructs,
Beanbag is powerful to describe various kinds of constraints; we have seen
several examples in the introduction, and will see more examples in Section
6.2.4.

As we have seen in Section 6.1, a Beanbag program can be executed in
either the checking mode or the synchronization mode. We use two func-
tions to describe the semantics in the two modes. In the two functions, we

6.2. THE BEANBAG LANGUAGE 105

use two sets of bindings to pass the information. The variable-value bind-
ings, often denoted as � : VAR → value, bind variables to data values. The
variable-update bindings, often denoted as � : VAR → update, bind vari-
ables to updates. We write var� or var� for the value or the update bound
to variable var in binding set � or � . We write dom(�) for the set of all
variables in �. We also write �(�) to denote applying all updates in � to
the corresponding variables in � and returning a new set of variable-value
bindings.

Suppose c is a constraint (an instantiated relation) defined by Beanbag.
The checking function evaluates c according to a set of variable bindings.

EJcK : (VAR→ value)→ BOOLEAN

For example, EJa=bK returns true for an input � where a� = b�.
The synchronization function is a partial function takes the current values

and the updates on the variables and produces new updates on the variables
to satisfy the constraint.

RJcK : (VAR→ value)× (VAR→ update)→ (VAR→ update)

The function is partial (returning ⊥ on some input) because the updates may
conflict with each other or may not be allowed by the program. In such cases
the modeling tool should report an error message to users. For example,
given an input (�, �) where a� = b� = 1, a� = void, and b� = !2, RJa=bK
returns � ′ where a�

′

= !2 and b�
′

= !2. If a� = !3 and b� = !2, RJa=bK
returns ⊥.

Different from OCL, the Beanbag provides the following declarative ways
for people to define synchronization behavior for reestablishing the consis-
tency relation after an update happens.

∙ Each standard constraint operator is equipped with a specific synchro-
nization operation. For example, the primitive equation constraint
“v1 = v2” will propagate updates from one to the other while treating
v1 with higher priority (so v2 = v1 has different synchronization behav-
ior from v1 = v2). The conjunction “c1 and c2” synchronize updates
using the synchronization functions of both c1 and c2. The disjunction
“c1 or c2” will synchronize updates by first trying the synchronization
function of c1 if c1 was satisfied before updates happen, and that of
c2 otherwise, and if this fails we try the synchronization function of
the other. The forall qualifier ”d->forall(v|c)” will synchronize up-
dates by synchronizing each dictionary entry with the synchronization
function of c if necessary.

106 CHAPTER 6. BEANBAG

∙ New constraint constructors are introduced to describe different syn-
chronization functions. Two forms of the existence constraint are pro-
vided to dealing with flexible synchronization of dictionary structures.
For instance, the two constraints

model ->exists(class|class."name"=x)

model ->exists !(class|class."name"=x)

describe the same consistent relation that there exist a class in the
model whose name is equal to x. But they behave differently when the
consistency is destroyed by, for example, a change of x. The former
will create a new class with its name equal to the changed x, while the
later will rename the existing class whose name is equal to x before x

is changed.

∙ New constructs are introduced to restrict synchronization behavior. The
construct “protect v in c” describes the same constraint as c but
does not allow its synchronization function to update v, while the test
construct “test c” describes the same constraint as c and allows no
update on any variable.

In the following, after briefly explaining the common checking semantics,
we focus on a detailed and formal definition of our new synchronization
semantics of the language.

6.2.2 Checking Semantics

Figure 6.2 shows the checking semantics of the Beanbag language. EJcK(�)
and EJeK(�) evaluate a constraint c to a boolean value and an expression to
a value under a set of variable-value bindings, respectively.

We write �[var 7→ v] to indicate a new set of bindings that maps a
variable var to value v and maps all other variables to the same values as �.
We will also use this notation for dictionaries and updates on dictionaries.

We can see that the checking semantics of Beanbag is the same as what
we can expect from the syntax. In the following part we will focus on the
fixing semantics.

6.2.3 Synchronization Semantics

One of our major contributions is a natural and correct synchronization se-
mantics for Beanbag, an extended constraint language. Our idea is to prop-
agate updates through equality constraints, control the propagation order

6.2. THE BEANBAG LANGUAGE 107

EJv1=v2K(�) =

{

true v1
� = v2

�

false v1
� ∕= v2

�

EJc1 and c2K(�) = EJc1K(�) ∧ EJc2K(�)
EJc1 or c2K(�) = EJc1K(�) ∨ EJc2K(�)
EJd->forall(v|c)K(�) = ∀k ∈ dom(d�) : EJcK(�[v 7→ d�.k])
EJd->exists(v|c)K(�) = ∃k ∈ dom(d�) : EJcK(�[v 7→ d�.k])
EJd->exists!(v|c)K(�) = EJd->exists(v|c)K(�)
EJlet v=e in cK(�) = EJcK(�[v 7→ EJeK(�)])
EJprotect v in cK(�) = EJcK(�)
EJtest cK(�) = EJcK(�)
EJnot cK(�) = ¬EJcK(�)
EJconstK(�) = const
EJd.kK(�) = d�.k�

EJlet v=e1 in e2K(�) = EJe2K(�[v 7→ EJe1K(�)])

Figure 6.2: Checking semantics

by logic operators, derive structural updating through logic quantifiers, re-
strict synchronization behavior through special constructs, and introduce
recursion for describing more involved synchronization strategies. We will
use RJcK(�, �) to describe the synchronization for the constraint c under the
variable-value binding set � and an update described by the variable-update
binding set � . Its result is a new variable-update binding set showing how
to update variables in such a way that c is satisfied again. We will define
RJcK(�, �) by induction on the construction of c. For simplicity, we assume
all bound variables introduced by forall, exists and let have different
names from the free variables.

Update Propagation based on Equality Constraints Propagating
updates from one part to another to synchronize updates can be reduced
to dealing with the following three equality constraints in our framework.
This reduction will be explained in the synchronization semantics for the
let construct.

∙ RJv1=v2K(�, �). To establish the equality constraint between two vari-
ables, we propagate updates on v1 and v2 to each other, and compute
a new variable-update binding set � ′ such that v1

� ′(�) = v2
� ′(�). Let

us first consider a simple case, where the values of v1 and v2 are equal
before updating � , that is, v1

� = v2
�. In this case, we simply merge

the input updates on v1 and v2 when they are compatible, and return

108 CHAPTER 6. BEANBAG

⊥ when they conflict.

RJv1=v2K(�, �) =

{

� [v1 7→ u][v2 7→ u] v1
� ⊕ v2

�

⊥ otherwise

where u is an update merging the updates on v1 and v2, i.e., u =
v1

� ∘ v2
� . Generally, the values of v1 and v2 may be unequal before

updating, i.e., v1
� ∕= v2

�. In this case, we first apply both updates to v2
to get a new value new v, and then we calculate the update u by merging
the two updates on v1 and v2 with the update find update(v1

�, new v)
that are used to change the value of v2 to new v.

RJv1=v2K(�, �) =

{

� [v1 7→ u][v2 7→ u] v1
� ⊕ v2

�

⊥ otherwise
where u = (v1

� ∘ v2
�) ∘ find update(v1

�, new v)
new v = UJv1

� ∘ v2
�K(v2

�)

It is worth noting that after the synchronization, both v1 and v2 are
equal to new v.

∙ RJv=constK(�, �). To establish the equality constraint between a vari-
able and a constant, we calculate an update over v� by finding an
update to change the updated v (i.e., v�(�)) to the constant.

RJv=constK(�, �) =

{

� [v 7→ u ∘ v�] u⊕ v�

⊥ otherwise

where u = find update(v�(�), const)

∙ RJv=d.kK(�, �). To establish the equality constraint between a variable
v and a dictionary key indexing d.k, we first check the key k. If k is
original null with no update, denoted by isNull(k), we create a new key
using the function newID(�, �) and do synchronization. If k is deleted,
i.e., k� = !null, we have no way to do synchronization and return ⊥.
Otherwise, we do synchronization on RJv=v′K(�, �) where v′ is a fresh
variable referring to the same value and update that k�(�) is mapped
to by d. When v′

� or v′
� changes, the d�.k�(�) or d� .k�(�) changes

accordingly. This is denoted by RJv=v′K(�[v′=d.k�(�)], � [v′=d.k�(�)]).

RJv=d.kK(�, �) =
⎧



⎨



⎩

RJv=d.kK(�, � [k 7→ !newID(�, �)]) isNull(k)
⊥ k� = !null
RJv=v′K(�[v′=d.k�(�)], � [v′=d.k�(�)]) otherwise

6.2. THE BEANBAG LANGUAGE 109

Propagation Order Control based on Logic Operators We assign
a synchronization semantics to the logic operators of and and or to control
the order of update propagation.

∙ The synchronization function RJc1 and c2K is to establish both c1 and c2.
To do this, we call RJc1K and RJc2K one by one in this order to propagate
updates. Since RJc2K may propagate new updates to variables used in
c1, we may need to call RJc1K again to satisfy c1. Similarly, a call
of RJc1K may require a call of RJc2K. Hence in the synchronization
function we repeatedly call RJc1K and RJc2K until we reach a fixed
point where no new update is propagated.

RJc1 and c2K(�, �) =

{

� ′ � ′ = �
RJc1 and c2K(�, �

′) � ′ ∕= �
where � ′ = RJc2K(�,RJc1K(�, �))

Beanbag does not guarantee the existence of such a fixed point, and
thus RJc1 and c2K does not always terminate. However, this will not be
a problem in practice because most programs will terminate. We will
discuss more on this issue in Section 6.3.

It is worth noting a different order of c1 and c2 sometimes leads to differ-
ent synchronization behavior. We can write “c1 and c2” or “c2 and c1”
to customize the behavior in such cases.

∙ The synchronization function RJc1 or c2K is to make either c1 or c2
be satisfied. As a result, in the synchronization mode we can choose
to use either RJc1K or RJc2K to propagate updates. However, to sat-
isfy stability, we must first use the one that is previously established
on the data, otherwise the other constraint may produce updates to
change the data and violate stability. For example, let us consider
RJa=b."x" or a=b."y"K. Suppose in the input data bindings a is
equal to b."y" and the update bindings map both a and b to void. If
we choose the first constraint, a will be changed to b."x" and stabil-

ity is violated.

In RJc1 or c2K, we first find out the constraint that is previously estab-
lished by calling EJc1K and EJc2K, and use the constraint to propagate
updates. If the constraint fails to propagate updates, we use the other
constraint. Because here we switch from one constraint to the other,
the data that is previously consistent for the former may not be consis-
tent for the latter. That is why we require synchronization functions to
handle inconsistent data bindings. When both EJc1K and EJc2K evalu-
ates to false, that is, when the input data bindings are not consistent,

110 CHAPTER 6. BEANBAG

we first try RJc1K and then try RJc2K. This strategy is very useful in
customizing the synchronization behavior: programmers can assign a
higher priority to a constraint by writing it first.

RJc1 or c2K(�, �) =
⎧







⎨







⎩

RJc1K(�, �) if EJc1K(�) ∧RJc1K(�, �) ∕= ⊥
RJc2K(�, �) elif EJc2K(�) ∧RJc2K(�, �) ∕= ⊥
RJc1K(�, �) elif RJc1K(�, �) ∕= ⊥
RJc2K(�, �) otherwise

Derivation of Structural Updating based on Logic Quantifiers The
forall and exists statements both involve invoking an inner constraint on
values in a dictionary. We will assign a synchronization semantics to them
to deal with updating on dictionary structures.

∙ The forall constraint is satisfied only if the inner constraint is satis-
fied by all entries in the domain of the dictionary. Consequently we can
call the synchronization function of the inner constraint on all entries
in the domain. Since sometimes we need to propagate from the dele-
tion of an entry, we also call on the deleted entries. Because updates
may be propagated to variables other than v, we recursively call the
synchronization function until we reach a fixed point, the same as the
and operator. In the definition we use an union operator on update
bindings to construct the result. The union �1 ∪ �2 is a set of bindings
where the updates on the same variable in �1 and �2 are merged, and
is ⊥ when some updates conflict, or any of its operands is ⊥.

RJd->forall(v|c)K(�, �) =
{

� ′ � ′ = �
RJd->forall(v|c)K(�, � ′) � ′ ∕= �

where
� ′ =

∪

∀k∈dom(d�)∪dom(d�(�))
.RJcK(�[v=d.k], � [v=d.k])

∙ The exists constraint is satisfied if one entry in the dictionary satisfies
the inner constraint. Therefore, we can reestablish the relation by in-
serting a new entry in the dictionary that satisfies the inner constraint.
When we insert a new entry, we generate a new ID as the key of the
entry with the function newID(�, �). The value part of the new entry
is generated by invoking the synchronization function of the inner con-
straint on the new key. Because the key does not in the domain of the
dictionaries, v will be mapped to null and void in the two binding

6.2. THE BEANBAG LANGUAGE 111

sets. The inner constraint must change v to some value different from
null otherwise the synchronization function will return ⊥.

RJd->exists(v|c)K(�, �) =
⎧



⎨



⎩

� if EJd->exists(v|c)K(�(�))
RJc and not (v=null)K(�[v=d.k], � [v=d.k])

otherwise
where k = newID(�, �)

∙ The exists! construct locates an entry that previously satisfies the
inner constraint and updates the entry. However, such an entry may
not be found because the input value bindings may not be consistent.
In this case it just proceed as exists.

RJd->exists!(v|c)K(�, �) =
⎧







⎨







⎩

RJc and not (v=null)K(�[v=d.k], � [v=d.k])
if ∃k ∈ dom(d�) : EJcK(�[v 7→ d�.k])

RJd->exists(v|c)K(�, �)
else

Restricting Fixing Behavior The constructs protect, test and not

restrict its inner constraint from taking some fixing actions. These constructs
are needed because sometimes we may want to reduce the fixing behavior.
For example, it is possible that in a=b, a is considered as a source while b is
considered as a read-only view where only source updates can be propagated
to views and view updates cannot affect source. In this case we want to
protect a from being modified by the fixing function of a=b.

∙ The “protect v in c” statement protects a variable from being mod-
ified by c. If c changes the variable, the protect statement will return
⊥.

RJprotect v in cK(�, �) =
{

RJcK(�, �) UJvRJcK(�,�)K(v�) = v�(�)

⊥ otherwise

∙ The test construct protects all variables in the inner constraint. This
construct is useful when we build an or constraint and we want to test
some condition without changing anything.

RJtest cK(�, �) =

{

� EJcK(�(�))
⊥ ¬EJcK(�(�))

112 CHAPTER 6. BEANBAG

∙ The operator not reverses a constraint. A constraint containing not

is usually unfixable because we may face infinite choice of actions. For
example, if “not a=b” is violated, we can change a and b to any pair
of values that is not equal, and a fixing function cannot decide one.
Nevertheless, not is still useful in testing conditions, so in Beanbag we
define not in a similar way to test, where the fixing function simply
returns ⊥ when the constraint is not satisfied.

RJnot cK(�, �) =

{

� ¬EJcK(�(�))
⊥ EJcK(�(�))

The let construct In previous part we have mentioned the fixing se-
mantics of expressions can be reduced to an equality constraint in the “v=e”
form. This reduction is done by the two let constructs when the constructs
connect expressions and constructs together.

∙ The constraint “let v=e in c” is similar to “v=e and c” because it
establishes the relations of both e and c. In the latter e becomes an
equality constraint v=e. Since all expressions will eventually connect
to a constraint by let, all expressions can be reduced to a equality
constraint in this way.

However, one notable difference between the above two constraint is
that the let constraint has an inner variable v that initially has no
bounded value. We must first set a proper value on v so that we can
invoke the fixing functions of e and c. If e can be evaluated under the
input value bindings, we produce the value by just evaluating e. If e
cannot be evaluated (e.g., k is bound to null in d.k), we simply set
the value of v to null to indicate an unknown value. After the value
of v is properly set, we proceed to use the fixing function of and.

RJlet v=e in cK(�, �) =
{

RJv=e and cK(�[v 7→ val], � [v 7→ void]) val ∕= ⊥
RJv=e and cK(�[v 7→ null], � [v 7→ void]) otherwise
where val = EJeK(�)

∙ The statement “let v=e in e” will also be reduced to the “v=e” form
and we define its fixing semantics using the previous let construct.

RJv1=(let v2=e1 in e2)K(�, �) =
RJlet v2=e1 in v1=e2K(�, �)

Recursion for More Involved Fixing Recursion is important to the
description power of a language as it allows us to iterate over a recursive

6.2. THE BEANBAG LANGUAGE 113

structure of a language. Beanbag supports recursion by allowing us to de-
fine named constraints (called relations) and named expressions (called func-
tions). We have seen C1 and C1onAll, which are two examples of relations.
Relations and functions can both be recursively called. For example, we can
check if a class is not inherited from a particular class using the following
code.

def check(class , parentRef , model) :=

test class.parent = null or

(not class."parent" = parentRef and

check(model.(class."parent"), parentRef , model))

6.2.4 Examples

In this section we give a few examples to show how to write Beanbag programs
in practice. First, let us implement the same synchronization behavior for
relation C2 as IBM RSA: 1) users cannot set the sender/receiver feature
of a message to null, and 2) when a class instance in the sequence diagram is
deleted, delete the connected messages. These requirements also correspond
to the composite property in the MOF model. The Beanbag program is as
follows.

def C2onAll(model) :=

model ->forall(obj |

isTypeOf(obj , "Message", metamodel)

and not model.(obj."sender") = null

and not model.(obj."receiver") = null

or not isTypeOf(obj , "Message", metamodel)

or obj = null)

The program uses forall to check all objects and within forall there are
three constraints connected by or. The first constraint deals with Message

objects and requires their sender and receiver features not to be null. The
second constraint deals with non-Message objects and the third constraint
deals with object deletion. The third constraint is actually included in the
second, but it can take a synchronization action (setting obj to null) while
the second cannot.

When users try to change, for example, the sender feature to null, none
of the three constraint is able to reestablish the relation (the first two con-
straints have no synchronization action to take and the last one cannot change
obj to null because of preservation) and the synchronization function
will return ⊥ to denote the update is not allowed. Now suppose users try to
delete a class instance. When we visit to a message connected to the class

114 CHAPTER 6. BEANBAG

instance, the first constraint will fail because the referred object is null and
no synchronization action can be taken. The second constraint will also fail
because it has no associated synchronization action. Finally, the third con-
straint will set obj to null to delete the message. In this way we can ensure
all connected messages are deleted when a class instance is deleted.

The second example shows how to customize synchronization behavior
using or. Suppose we have a set of object that may be persistent. If an
object is persistent, it must be assigned to a persistent container. As a
result, when a persistent container is deleted, we may have multiple actions
to take on the persistent object belonging it. 1) We may delete the persistent
objects. 2) We may simply change the persistent attribute of these object
to false. The following program implements the first option.

def persistentConsistent(objs , model) :=

objs ->forall(obj |

obj."persistent" = true

and not model.(obj."persistentContainer") = null

or obj = null

or obj."persistent" = false

and obj."persistentContainer" = null)

This program has a similar structure to the first one. We use three con-
straints to deal with three different situations: the object is persistent, the
object is deleted and the object is not persistent. When a persistent container
is removed, the second constraint will delete the objects belonging to it. If
we want to instead change the persistent attribute of these object, we can
just swap the last two constraints. After swapping, the attribute-changing
constraint will have higher priority to the object-deleting constraint and the
synchronization function will change the attribute rather than delete an ob-
ject.

Finally, let us construct the full program for relation C1. The program
in Section 6.1 will always insert a new operation to resolve an inconsistency.
However, if the inconsistency is caused by changing the receiver of a message,
changing the base type of a class instance, or deleting an operation, we would
prefer to set the name of the affected message to null to indicate that it
does not related to an operation. If users rename an operation in the class
diagram, we would prefer to rename the related messages accordingly. The
following program implements this synchronization behavior.

def C1(msg , model) :=

let rec = model.(msg."receiver") in

let opRefs = model.(rec."base")."operations" in

protect model in

6.3. PROPERTIES 115

(opRefs ->exists !(r | msg."name"=model.r."name")

and not msg."name" = null)

or msg."name"=null

or (opRefs ->exists(r | model.r."name"=msg."name")

and not msg."name" = null)

This program connects three constraints using the or operator. The
first constraint protects model so that updates are only propagated from
operations to msg. The second constraints force the message name to null.
The last one is similar to the first but it does not protect model. When we
rename an operation in a class diagram, the first constraint will propagate
the update to the related messages. If we change the receiver of a message,
change the type of a class instance, or delete an operation, the first constraint
will fail because we cannot insert a new operation, and the second constraint
will set the message name to null. If we rename a message to a new name,
the first two will both fail and the third constraint will insert a new operation.
In addition, we can still customize the synchronization behavior of renaming
a message by changing the last “exist” to “exist!”.

6.3 Properties

One important question to ask is whether the semantics of Beanbag satisfies
the three properties for operation-based synchronizers. If we consider the
consistency relation is defined by the checking mode of Beanbag and a general
update consists of a dictionary-based value and a dictionary-based update (cf.
Section 3.4.1), the three properties can be redefined on Beanbag constraints.

Property 10 (Consistency for Beanbag constraints).
RJcK(�, �) = � ′ =⇒ EJcK(� ′(�))

Property 11 (Preservation for Beanbag constraints).
RJcK(�, �) = � ′ =⇒ ∀var ∈ dom(�) : var� ⊑ var�

′

Property 12 (Stability for Beanbag constraints).
EJcK(�) ∧ �(�) = � =⇒ RJcK(�, �)(�) = �

Based on these property definitions, we can prove the following theorem.

Theorem 6.1. Any Beanbag constraint satisfies consistency, preserva-
tion and stability.

Proof. As the full proof is very long, here we only outline the proof. The
basic procedure is to use structural induction over the syntax rules for con-
straints. We first prove that the primitive constraints satisfy the three prop-
erties, and then prove other constructs will ensure the three properties when

116 CHAPTER 6. BEANBAG

their sub-constraints satisfy the properties. Most of the syntax rules can be
straightforwardly proved by checking the semantics definition, but there are
two issues needed to be addressed. First, the let statement contains an ex-
pression and we need to know the properties of expressions before we discuss
let. By using structural induction on expressions, we can see that there is
a expression counterpart for each property on constraint.

Property 13 (Consistency for expressions).
RJv=eK(�, �) = � ′ =⇒ EJeK(� ′(�)) = v�

′(�)

Property 14 (Preservation for expressions).
RJv=eK(�, �) = � ′ =⇒ ∀var ∈ dom(�) : var� ⊑ var�

′

Property 15 (Stability for expressions).
EJeK(�(�)) = v ∧ v�(�) = v =⇒ (vRJv=eK(�,�))(v�) = v

Then we can reason the let statement using the above properties.
Second, several constraints and expressions use recursive calls to reach a

fixed point. To satisfy stability, we must ensure such a fixed point always
exist under the precondition of stability. A fixed point exists if the function
is increasing and has a upper bound. Because of preservation, the input
updates must be included in the output. In this sense the fixing function is
increasing. Because all inner constraints and expressions satisfy stability,
no variables will be changed when the precondition of stability is satisfied.
As a result, the updates on the variables cannot grow beyond the size of the
bound values, and thus a fixed point always exists under the precondition of
stability.

Although the three properties are satisfied, it is possible that the fixing
function of a Beanbag constraint does not terminate for some input when
the precondition of stability is not satisfied. For example, the synchro-
nization function RJa."x"=b and b."x"=aK does not terminate for a input
(�, �) where a� = void and b = {}. However, such a non-terminating Beanbag
program often involves some counter-intuitive constraints (e.g., the example
constraint is universally invalid) and is rarely encountered in practice. Based
on our experience, most Beanbag programs in practice always terminate.

6.4 Evaluation

Since Beanbag satisfies the correctness properties, in the evaluation we focus
on the expressiveness and usability. We collected 32 consistency relations
from the MOF standard [OMG02] and 34 consistency relations on UML

6.4. EVALUATION 117

models from Alexander Egyed who used the relations to evaluate their syn-
chronization action generation work [Egy07, ELF08]1. From the 66 relations
we identify 18 relations that can be automatically established through syn-
chronization actions. (Some consistency relations can be automatically estab-
lished without synchronization actions, and these relations are not counted.
For example, the name of a class should not be null. We can simply dis-
allow users to change the name to null.) These consistency relations range
from high level semantic relations like C1 to low-level syntactic relations like
C2. For some relations, we also designed multiple synchronization behavior
for each of them. As a result, we have the requirements for 24 Beanbag
programs.

Then we proceed to implement these programs in Beanbag to see whether
Beanbag is expressive enough for MOF and UML models. The result is
positive. We have successfully implemented 17 programs, that is, about 71%
of all programs. This result shows that although Beanbag is not expressive
enough for any synchronization behavior, it can support many scenarios and
is useful in practice.

Reviewing the 7 unimplemented programs, we noticed that one program
can be implemented with a trivial extension to Beanbag: a function counting
the number of entries in a dictionary with no synchronization action need.
The other 6 programs need a non-trivial, yet small extension to Beanbag: the
ability to access the key when iterating entries in forall. This observation
shows that the problems on expressiveness are not fundamental. All the
7 programs can be implemented by extensions under the basic philosophy
of Beanbag: attaching synchronization actions to primitive constraints and
expressions, and composing them using high-level constructs.

On the whole, the development of Beanbag program is much easily than
manually implementing the synchronizer. A Beanbag program is usually
much shorter than a manually implemented synchronizer, and Beanbag en-
sures consistency, preservation and stability of a program, which
already eliminates many bugs.

However, during our development we also identified several problems on
usability. First, Beanbag only ensures the correctness of the output updates,
but does not ensure the existence of an output. It is up to the programmers
to ensure the primitive constraints and functions are composed correctly so
that the synchronization function will not return ⊥ for a proper input. As the
interaction among constraints and expressions may be complex, it sometimes
needs quite some efforts to achieve this. Second, the synchronization behavior

1In their publications they only mentioned 24 relations, but actually they have 34
relations in total.

118 CHAPTER 6. BEANBAG

involving inconsistent data is sometimes difficult to analyze. When we take
inconsistent data into account, the domain of the synchronization function
becomes much larger. It is sometime very difficult to consider all situations.
One possible solution to the two problems is to find some design patterns of
Beanbag. We leave this for future work.

One issue often discussed in synchronization is how to deal with the inter-
action of consistency relations [NEF03, ELF08]. In Beanbag this is handled
by connecting all consistency relations by “and” in a proper order. If one rela-
tion propagates user updates to some other locations, other related relations
will be invoked and further propagate the updates to more locations.

6.5 Summary

In this chapter we have presented a novel language, Beanbag, for developing
on-site synchronizers. Beanbag attaches synchronization actions to primitive
constraints and functions, and composing them through logic operators and
other high-level constructs. As a result, one Beanbag program has two mean-
ings: one for defining a relation over data, and one for defining a synchronizer
that establish the relation over data by automatically propagating updates.
Our study has shown that this approach greatly eases the development of
on-site synchronizers and can support many, though not all, useful fixing
scenarios in practice.

Chapter 7

Implementation and
Application of Beanbag

In the previous chapter we have seen the syntax and the semantics of the
Beanbag language, and how this language is effective for describing the syn-
chronization behavior and implementing synchronizers. However, although
the semantics are given formally in mathematical terms, it is not quite clear
how to convert these mathematical terms into programs so that we can com-
pile a Beanbag program into an executable piece of software. In this chapter
we discuss the key issues in the implementation of Beanbag.

One of the key issues in implementing Beanbag is how to implement
synchronization functions. In the definition of Beanbag semantics, synchro-
nization functions are partial functions. The function returns a set of up-
date bindings when the input updates are possible to be synchronized and is
undefined when the input updates conflict. The domains of constraints con-
structed using logic operators and quantifiers often depend on the domains
of their inner synchronizers. For example, RJa and bK is defined only when
RJaK and RJbK are defined in the series of synchronization invocations.

There can be many ways to represent a synchronization function in a
common programming language like C or Java. For example, we can repre-
sent a synchronization function as a procedure returning a new set of update
bindings, where the procedure throws an exception when the input updates
conflict. We can also let the procedure return bool and modify the input
updates at the spot. Furthermore, we can use two exception-free procedures,
one for testing whether the input will lead to an output and one for returning
output updates. Nevertheless, whichever method we use, we must ensure the
synchronization function is free of side-effect when the synchronization fails.
In other word, when the synchronization fails, the input value bindings and
update bindings should not be modified.

119

120 CHAPTER 7. IMPLEMENTATION AND APPLICATION

This property is not easy to achieve. In the semantics definitions, many
language constructs have to apply a series of modifications to the input up-
date bindings to reach the output. If any of these steps fail, the whole
synchronization fails. To recover the original input update bindings, we need
to either 1) backup the update bindings at the start of the procedure, or 2)
undo all the applied modifications when we encounter a failure.

The first option is not preferred because of performance. In a large ap-
plication, it is possible that many parts of a large model is updated and the
input update bindings may be large. It may take too much time if we copy
the whole update bindings every time we invoke a synchronization procedure.
The second option solves the performance problem, as in most cases the size
of the modifications on the update bindings is smaller than the that of the
whole bindings. However, this option requires a lot more efforts on imple-
mentation. We have to develop an inverse operation for every modification
operation, and be very careful to ensure each operation applied is correctly
undone in every synchronization function.

In this chapter we solve this dilemma by implementing Beanbag in Haskell
[BW88], a functional programming language. Different from traditional im-
perative languages, a modification operation in Haskell does not change the
data in memory. Instead, it stores the update operation, and execute the
operations only when the data is really needed. Intuitively, the new data
is stored as a link to the old data and the operation that changes the old
data to the new data. As a result, a copy operation in Haskell is very cheap
because we only need to store an “identity” operation and a link to the old
value. The execution time is constant regardless of the size of the copied
value. Using Haskell does not only provide an elegant solution for represent-
ing synchronization functions. The closeness of Haskell to the mathematical
terms also greatly facilitates the implementation, making the implemented
code similar to the semantics definitions.

Although we can provide a clean solution in Haskell, people may prefer
implementations in other languages so that the synchronizers can be better
integrated into their system. In this chapter we also discuss how to ensure
the synchronization function is free of side effect at failures when using an
imperative language. The basic idea is to use aspect-oriented techniques to
reduce the development cost in the second option. Aspect-oriented extensions
widely exist in popular imperative languages [KHH+01, RS03, ALS08]. Using
our reusable aspects, one can effective avoid the extra care taken in the
implementation of synchronization functions and only have to implement an
inverse operation for every operation used.

More concretely, the contributions of this chapter can be summarized as
follows.

7.1. IMPLEMENTING IN HASKELL 121

∙ We present an implementation of a Beanbag compiler in Haskell. This
implementation features clean and correct code, and the full code is
available at the Beanbag website [Xioa].

∙ We discuss the implementation issues in imperative languages. We use
aspect-oriented techniques to reduce the development cost and show a
reusable aspect written in AspectJ [KHH+01].

∙ We present an application where we use Beanbag to build a multi-view
modeler. This application shows how to use beanbag in productive
cases.

The rest of this chapter is organized as follows. We first introduce our
Haskell implementation in Section 7.1. We classify the implementation into
three parts and introduce them one by one. We start with the dictionary-
based data and updates (Section 7.1.1), build synchronizers upon them (Sec-
tion 7.1.2), and then compile Beanbag code into Haskell code that invokes
these synchronizers (Section 7.1.3). We then discuss the implementation is-
sues in Java in Section 7.2. Finally, we present the application in Section 7.3.

7.1 Implementing in Haskell

7.1.1 Dictionary-based Data and Updates

The key concept used in dictionary-based data and updates is dictionary. The
structured data are described by dictionaries. The updates on dictionaries
are described by dictionaries. Furthermore, the sets of value bindings and
update bindings can be also considered as dictionaries mapping variables to
values/updates. To implement dictionary-based data and updates, the first
thing we should do is to implement a reusable data structure for dictionaries.

Haskell already provides a data structure, Data.Map, that maps keys to
values. Data.Map is a suitable candidate for implementing dictionaries, but
there is a gap between Data.Map and dictionaries. All keys that are not in the
domain of a dictionary has a default value. For example, the dictionary value
has a default value of null. The dictionary updates have a default value of
void. The value bindings and update bindings also have corresponding default
values. Data.Map does not support default values, and we have to implement
this mechanism ourselves.

To support default values, we define a data type DValMap, as shown in
Figure 7.1. The name DValMap is an abbreviation of the default value map.
This map contains an ordinary map and a default value. Three basic opera-
tions are provided for DValMap: get for getting a value at specified key, set

122 CHAPTER 7. IMPLEMENTATION AND APPLICATION

data DValMap k a = DValMap (Map k a) a

deriving (Eq)

get :: (Ord k) => (DValMap k v) -> k -> v

get (DValMap theMap value) k =

Map.findWithDefault value k theMap

infixl 9 #

(#) :: (Ord k) => (DValMap k v) -> k -> v

(#) = get

set :: Ord k => Eq v =>

(DValMap k v) -> k -> v -> (DValMap k v)

set (DValMap theMap value) k v

| value == v && Map.notMember k theMap =

DValMap theMap value

| value == v && Map.member k theMap =

DValMap (Map.delete k theMap) value

| otherwise =

DValMap (Map.insert k v theMap) value

infixl 8 \\

(\\) dict (k, v) = set dict k v

getDefaultValue (DValMap theMap value) = value

foldWithKey :: Ord k => (k->v->a->a)->a->DValMap k v->a

foldWithKey func initValue (DValMap theMap value) =

(Map.foldWithKey func initValue theMap)

Figure 7.1: The data type DValMap

7.1. IMPLEMENTING IN HASKELL 123

for changing a value at a specified key and getDefaultValue for returning
the default value. When we get a value from the map, get returns the value
at the input key when the key exists in the map and returns the default value
when the key does not exist. When we set a value at a key, set will compare
the value with the default value. If it is the default value and the key does
not exist in the dictionary, set returns the original dictionary. If the key
exist, set deletes the key to free up space. If the value is not the default
value, set proceeds like normal Map.insert. We also define two operators,
and \\, for users to easily access the map.

Other functions in Data.Map can also be adapted to the default value
version. In Figure 7.1 we show an example function mapWithKey. Compare
to normal mapWithKey function, this function takes an extra parameter, the
default value, and construct the target map with the default value. Note the
target map is constructed with \\ instead of Data.Map to avoid storing the
default value into the target map.

Based on DValMap, we can build values, updates, value bindings and up-
date bindings. Their definitions are shown in Figure 7.2. These definitions
just follow the mathematical definitions in Chapter 3. A value is either Prim
or Dict where Prim defines primitive values including Null and Dict is a
DValMap mapping Prim to Value with a default value Null. An update
is either a primitive update (PUpdate), a dictionary update (DUpdate) or
Void, where PUpdate is simply Prim and DUpdate is a DValMap mapping
Prim to Value with a default value Void. The set of bindings is called en-
vironment in the implementation. Value environment ValEnv is a DValMap

mapping variables to values with a default value Null while update environ-
ment UpdateEnv is a DValMap mapping variables to updates with a default
value Void.

Several other functions and operators are also defined for manipulate
these data types, including function apply that applies an update to a value,
operator <* that merges two updates, function findUpdate that returns the
minimal updates between two values. Because the definitions of these func-
tions simply follow the formal definition we presented in Chapter 3, we only
list their types here.

7.1.2 Constraints and Expressions

Based on the definition of the data and updates, we turn to the implementa-
tion of constraints and expressions. One option is to use the same method in
the implementation of data and updates, declaring a data type of synchro-
nizers. The following code shows this option.

data Synchronizer = Equal Var Var

124 CHAPTER 7. IMPLEMENTATION AND APPLICATION

-- Values

data Prim = Int Int | String String | Null

deriving (Eq, Ord)

type Dict = DValMap Prim Value

data Value = Prim Prim | Dict Dict

deriving (Eq)

emptyDict = empty (Prim Null)

-- Updates

type PUpdate = Prim

type DUpdate = DValMap Prim Update

data Update = PUpdate PUpdate | DUpdate DUpdate | Void

deriving (Eq)

emptyDUpdate = empty Void

apply :: Update -> Value -> Value

-- apply an update to a value

(<*) :: Update -> Update -> Update

-- merge an update with another update , where the

-- first update is considered to be applied earlier

findUpdate :: Value -> Value -> Update

-- find the minimal update that changes the first

-- value into the second value

-- Variables

data Var

string2Var :: String -> Var

-- create a variable from a string

-- Environments (sets of bindings)

type ValEnv = DValMap Var Value

type UpdateEnv = DValMap Var Update

Figure 7.2: The basic definitions of values and updates

7.1. IMPLEMENTING IN HASKELL 125

| And Synchronizer Synchronizer

| Or Synchronizer Synchronizer

| ...

However, to implement the checking semantics and the synchronization
semantics, we have to create functions where each function deals with all of
these constructors, as the following code shows.

check (Equal v1 v2) env = env#v1 == env#v2

check (And s1 s2) env = check s1 env && check s2 env

check (Or s1 s2) env = check s1 env || check s2 env

...

Because there are a number of constructs for constraints and expressions,
this leads to large functions that are difficult and error-prone to implement.
If we miss one synchronizer in the function definition, the system will only
check and report the error during the runtime. Furthermore, this causes
maintenance problems. Every time we want to add a new construct, we
have to modify the functions. Omission of modifying a function is also only
checked at runtime.

To avoid these problems, we capture constraints and expressions as classes.
A class captures the common features of a set of types. In this way, when
we add a new constraint or a new expression into the system, we only need
to define a new data type and declare the new data type is an instance of
the corresponding classes. The large functions are now implemented in small
pieces under the instance declaration, and the original maintenance problem
is avoided.

The definitions are shown in Figure 7.3. Each constraint has two func-
tions. Function check takes the constraint and a set of value bindings, and
returns a boolean value to indicate whether the constraint is satisfied or not.
Function sync takes the constraint, a set of value bindings and a set of update
bindings, and returns a new set of update bindings to make data consistent.

The definition of Expression is more interesting. Besides function eval

that evaluates the expressions according to the input value bindings, every
expression also has a function esync, which is similar to sync, but takes an
extra variable as parameter. This design is originated from the semantics
definitions in Chapter 6, where we define the synchronization semantics of
expressions by deducing expressions into the var = expr form. In this way
an expression plus a variable form a synchronizer.

Based on class Constraint, we can define constraints as data types, and
declare them as instances of the class. The instance declaration just directly
follows the semantics definition in Chapter 6. Here we give two constraints
as examples.

126 CHAPTER 7. IMPLEMENTATION AND APPLICATION

type Check = ValEnv -> Bool

type Eval = ValEnv -> Maybe Value

type Sync = ValEnv -> UpdateEnv -> Maybe UpdateEnv

class (Show a) => Constraint a where

check :: a -> Check

sync :: a -> Sync

class (Show a) => Expression a where

eval :: a -> Eval

esync :: a -> Var -> Sync

Figure 7.3: The definitions of Constraint and Expression

data EqualCstraint = EqualCstraint Var Var

instance Constraint EqualCstraint where

check (EqualCstraint v1 v2) env =

(env # v1) == (env # v2)

sync (EqualCstraint v1 v2) vEnv uEnv = do

u <- syncTwoValues (vEnv # v1)

(vEnv # v2) (uEnv # v1) (uEnv # v2)

return (uEnv \\ (v1 , u) \\ (v2 , u))

syncTwoValues v1 v2 u1 u2

| compatible u1 u2 =

Just (u1 <* u2 <* findUpdate v1 new_v)

| otherwise = Nothing

where new_v = apply (u1 <* u2) v2

Figure 7.4: The implementation of v1=v2

7.1. IMPLEMENTING IN HASKELL 127

data (Constraint c1, Constraint c2) =>

AndCstraint c1 c2 = AndCstraint c1 c2

applyUntilEqual :: (Monad m, Eq a) => (a->m a)->a->m a

applyUntilEqual f v = do

v’ <- f v

if v’ == v then return v’ else applyUntilEqual f v’

instance (Constraint c1 , Constraint c2) =>

Constraint (AndCstraint c1 c2) where

check (AndCstraint c1 c2) env =

(check c1 env) && (check c2 env)

sync (AndCstraint c1 c2) vEnv uEnv =

applyUntilEqual f uEnv

where

f uEnv ’ = (sync c1 vEnv uEnv ’) >>= (sync c2 vEnv)

Figure 7.5: The implementation of c1 and c2

Figure 7.4 shows the first example, the equal constraint. The constructor
takes two variables and this constraint ensures the two variables are equal.
Function check just checks if the two variables are equal according to env.
Function sync uses function syncTwoValues to synchronize the two updates,
and syncTwoValues is defined according to the definition of u in the seman-
tics definition. In sync, we treat the returned Maybe values as monads. In
this way we can keep the code in a clean flow while ensuring Nothing is
returned whenever a step fails.

Figure 7.5 shows the second example, the and operator. The definition
first requires c1 and c2 are constraints, and then declares AndCstraint c1

c2 as a constraint. Functions check and sync just follow the semantics
definitions. Function check checks if both c1 and c2 are satisfied while sync

repeatedly applies c1 and c2 until we reach a fixed point.

Similarly, we can define expressions based on class Expression. Here we
give one example, the constant expression, in Figure 7.6. The data construc-
tor takes only a constant as parameter, function eval returns the constant,
and the function sync changes var to be equal to the constant.

In Chapter 6, we assume all bound variables have different names from
free variables when defining the semantics. This assumption is useful in
simplifying the definition, but in actual implementation we must handle this
issue. We introduce an extra variable replacement step to handle this issue.
We explain this using the Let statement as an example. The other constructs
involving bound variables, forall, exists and exists!, are implemented

128 CHAPTER 7. IMPLEMENTATION AND APPLICATION

data ConstExpr = ConstExpr Value

instance Expression ConstExpr where

eval (ConstExpr c) _ = Just c

esync (ConstExpr c) var vEnv uEnv

| compatible u (uEnv # var) =

return (uEnv \\ (var , u <* uEnv # var))

| otherwise = fail ""

where

u = findUpdate (apply (uEnv # var) (vEnv # var)) c

Figure 7.6: The implementation of the constant expression

in a similar way. The implementation code of let is shown in Figure 7.7.

The synchronization semantics of let is first to find the value of the
bound variable, and then proceed like and by repeatedly invoking the in-
ner expression and the inner constraint. To invoke the inner expression, we
introduce ExprCstraint to wrap an expression into a constraint. The con-
structor of ExprCstraint takes a variable and an expression to construct a
constraint. Its check function checks the value of the variables is equal to
the value returned by the expression. Its sync function invokes esync by
passing the variable to the esync.

We implement let using ExprCstraint. The data type definition and
function check are same as the semantics definitions. Function sync first
evaluates the expression, then uses applyUntilEqual to repeated apply
invokeOnce to reach the fixed point. Function invokeOnce first invokes the
expression and then invokes the constraint, where each invocation is through
the function invoke. Function invoke performs the replacement step. It
takes a constraint to be invoked, a bound variable, the environment, and the
value and the update to be set to the bound variable. It changes the value
and the update on the variable according to the input before invocation, and
restores the original update after the invocation. In this way we can ensure
that the value and the update in the environment are correctly changed ac-
cording to the scope of the variable even if there is a free variable having the
same name as the bound variable,

Another issues we have omitted in the formal semantics definition is the
named relation and recursive relation references. In imperative languages,
named relation are often implemented by keeping a lookup table of relation
definitions and each relation reference is a pointer to a definition in the
lookup table. In Haskell, this implementation can be greatly simplified by
the lazy evaluation mechanism of Haskell. Haskell evaluates a value only

7.1. IMPLEMENTING IN HASKELL 129

data (Expression expr) =>

ExprCstraint expr = ExprCstraint Var expr

deriving (Show)

instance (Expression expr) =>

Constraint (ExprCstraint expr) where

check (ExprCstraint var e) env = case eval e env of

Just c -> c == env # var

Nothing -> False

sync (ExprCstraint var e) vEnv uEnv =

esync e var vEnv uEnv

data (Expression expr , Constraint cst) =>

LetCstraint expr cst = LetCstraint Var expr cst

instance (Expression expr , Constraint cstraint) =>

Constraint (LetCstraint expr cstraint) where

check (LetCstraint var expr cst) env =

let evalResult = eval expr env in check ’ evalResult

where

check ’ (Just v) = check cst (env \\ (var , v))

check ’ Nothing = False

sync (LetCstraint var expr cstraint) vEnv uEnv =

let replaced = case eval expr vEnv of

Just v -> v

Nothing -> Prim Null

in do

(_, _, result) <- applyUntilEqual invokeOnce

(replaced , Void , uEnv)

return result

where

invokeOnce e = invokeExpr e >>= invokeCstraint

invokeExpr = invoke (ExprCstraint LetVar expr) LetVar

invokeCstraint = invoke cstraint var

invoke c var (v, u, uEnv) = do

resultEnv <-

sync c (vEnv \\ (var , v)) (uEnv \\ (var , u))

return (v, resultEnv # var ,

resultEnv \\ (var , uEnv # var))

Figure 7.7: The implementation of the letstatement

130 CHAPTER 7. IMPLEMENTATION AND APPLICATION

when needed, and thus can support recursive data definitions. Consequently
we can simply define relations as Haskell values and define recursive relations
as recursive values. For example, a Beanbag relation

def c1(a, b) := a = b

can be implemented as

c1 a b = EqualCstraint a b

When this relation is referenced in other places, the parameters, a and b,
will be replaced by the concrete arguments, and the relation reference thus
has the same semantics of defining the relation in place.

Now let us consider a recursive relation, def c2(a, b) := a = b and

c2(a, b). This is clearly a non-terminating relation, but it is enough for
illustration purpose here. Following the above strategy, the implementation
code should be:

c2 a b = AndCstraint (EqualCstraint a b) (c2 a b)

This code looks correct. According to the lazy evaluation mechanism of
Haskell, the enclosed c2 definition will be unfolded only when needed. How-
ever, when we compile this code, we will get the following message.

Occurs check: cannot construct the infinite type:
c2 = AndCstraint EqualCstraint c2

This is because although Haskell supports infinite values, it does not sup-
port infinite types. The type of c2 is defined by the type of AndCstraint.
However, as the type of AndCstraint is parameterized on its operands, the
compiler needs the type of c2 to calculate the type of AndCstraint.

To solve this problem, we have to break the dependence chain on type
deduction, either to make c2 not depend on the type of AndCstraint or
to make AndCstraint not depend on the type of c2. Fortunately, there is
one extension to Haskell, the existential type provided by the GHC compiler
[Jon96], supporting removing type dependence. For example, we may define
the following existential type, where the type parameter on the right does
not appear on the left.

{-# OPTIONS_GHC -fglasgow -exts #-}

data DynCstraint = forall a. Constraint a => DynCstraint a

This code is similar to data DynCstraint a = DynCstraint a but the type
is always DynCstraint regardless of the type of a. The trade-off is that
we can only use a as an instance of Constraint and can never know the

7.1. IMPLEMENTING IN HASKELL 131

concrete type of a. However, this is enough for our purpose. We can use
DynCstraint to wrap a recursive relation and unwrap the inner relation
during synchronization. To make the process easier, we can further define
DynCstraint as an instance of Constraint.

instance Constraint DynCstraint

where

check (DynCstraint c) = check c

sync (DynCstraint c) = sync c

Using DynCstraint, we can define the previous c2 relation as follows.

c2 = AndCstraint EqualCstraint (DynCstraint c2)

Finally, to make the construction of Beanbag program easier, we provide
a set of auxiliary functions as shown in Figure 7.8. Using these auxiliary
functions, we can write Beanbag program directly in Haskell using a Beanbag-
like syntax. For example, the constraint

(let c = "1" in a = c) or (a = b)

can be written in Haskell as

letc "c" (intConst 1) ("a" <=> "c") <|> "a" <=> "b"

7.1.3 Compiler

Although we provide functions for writing Beanbag program in Haskell, the
ultimate goal of our implementation is to convert a Beanbag program into
a Haskell program so that we can invoke the program to check data or syn-
chronize updates. In our implementation of Beanbag we have implemented
a compiler that converts a Beanbag source file into a Haskell source file that
uses the above functions to define Beanbag relations in Haskell. This com-
piler is implemented using the lexical analyzer generator Alex [Mar] and the
parser generator Happy [GM].

One interesting issue is after we compile the generated Haskell file, how
we interact with the program to check or to synchronize models. In the
implementation we use standard input and output to pass values. In this
way if users integrate the synchronizer into an application not written in
Haskell, they can redirect the standard input and output, avoiding more
expensive operations, e.g., file operations.

Suppose the Beanbag program is

main(a, b) := a == b

and the compiled file is equal.exe (on Windows), we can invoke the checking
mode using the following command.

132 CHAPTER 7. IMPLEMENTATION AND APPLICATION

-- v1 = v2

infixl 5 <=>

(<=>) :: String -> String -> EqualCstraint

-- c1 and c2

infixl 4 <&>

(<&>) :: (Constraint c1 , Constraint c2) =>

c1 -> c2 -> AndCstraint c1 c2

-- c1 or c2

infixl 3 <|>

(<|>) :: (Constraint c1 , Constraint c2) =>

c1 -> c2 -> OrCstraint c1 c2

-- d->forall(v|c)

forall :: (Constraint c) =>

String -> String -> c -> ForAllCstraint c

-- d->exists(v|c)

exists :: (Constraint c) =>

String -> String -> c -> ExistsCstraint c

-- d->exists !(v|c)

exists ’ :: (Constraint c) =>

String -> String -> c -> Exists ’Cstraint c

-- test c

test :: Constraint c => c -> TestCstraint c

-- protect v in c

protect :: (Constraint c) =>

String -> c -> ProtectCstraint c

-- not c

notc :: Constraint c => c -> c

-- let v = e in c

letc :: (Expression e, Constraint c) =>

String -> e -> c -> LetCstraint e c

-- constant

intConst :: Int -> ConstExpr

stringConst :: String -> ConstExpr

nullConst :: ConstExpr

-- d.k

infixl 6 <.>

(<.>) :: String -> String -> DictGetExpr

-- let v = e in e

lete :: (Expression expr1 , Expression expr2) =>

String -> expr1 -> expr2 -> LetExpr expr1 expr2

Figure 7.8: Auxiliary functions for building Beanbag constraints

7.2. IMPERATIVE IMPLEMENTATION ISSUES 133

>equal.exe --check

The program will then wait for you to input the data for the main relation.
We can input the data using the syntax we presented in the previous chapter,
and Beanbag will prompt whether the constraint is satisfied or not.

>{a=1, b=1}

The constraint is satisfied.

Alternatively, if we provide no argument for the executable file, the pro-
gram will enter synchronization mode. The program will wait for us to input
two lines of text, where the first line is interpreted as the value bindings and
the second line is interpreted as the update bindings. After typing the two
lines, the program output the updates to make the variables consistent.

>{a=1, b=1}

>{a->2}

output updates: {$a ->2,$b ->2}

We can further ask the program to output the updated data (using pa-
rameter ”–updatedValues”) as well as the effective update (using parameter
”–effectiveUpdates”) that actually changes the data.

>equal.exe --updatedValues --effectiveUpdates

>{a=1, b=2}

>{}

output updates: {$a ->2,$b ->2}

effective updates :{$a ->2,}

output values: {$a ->2,$b ->2}

It is worth remarking the output of the compiled program is always
through a standard format. If a user wants to integrate this program into
an application written in another programming language, it should be easy
for him to write code to interact the Beanbag program through standard IO,
generating input and parsing output.

7.2 Imperative Implementation Issues

Although the Haskell implementation is easy and clean, people may still want
to implement Beanbag in other languages so that the generated synchronizers
can be better integrated into applications written in other languages. An-
other reason for implementing Beanbag in other languages is performance.
Haskell language is designed to be a high-level language independent of hard-
ware model of computation. Optimizing the performance of Haskell programs
often requires the knowledge of particular implementations and is very diffi-
cult in general.

134 CHAPTER 7. IMPLEMENTATION AND APPLICATION

As we have discussed, one of the most difficult issue in implementing
Beanbag is how to ensure the synchronization function is free of side-effect
at failures while ensuring efficiency both in development and in execution.
One method is to copy the update environment every time, which is efficient
in development but is not efficient in execution. Another one is to directly
change the input update environment to reach the output. Every time we
change the update environment, we store an inverse operation to cancel the
operation, and when the synchronization fails, by throwing an exception
or returning a failure flag, we invoke all stored operations to roll back the
updates.

This second method has better performance, but every time we implement
a synchronization function, we have to store and inverse operations, which
is a development-intensive task. Here we use aspect-oriented techniques to
solve this problem. We capture the repeated code as a reusable aspect and
let aspect-orient compiler to automatically weave the aspect into the imple-
mentation code. Figure 7.9 shows the pseudo code of the aspect. The syntax
is borrowed from AspectJ [KHH+01], but the concepts are general and can
be applied to other aspect-oriented languages.

We assume class Operation is the base class of all operations applied on
an update environment, where its apply method changes the update envi-
ronment, and its getInverse method returns an inverse operation to cancel
the operation. Note here we are talking about the update operations on
update environments, and should be distinguished from updates on values.
Nevertheless, as the update environments share the similar dictionary struc-
ture as values, the update operations on the environments can be similar
implemented.

The aspect contains two abstract pointcuts, where callSynchronize is
supposed to capture the join points where the synchronization functions are
called, and modifyUpdateEnvironment is supposed to capture the join points
where the update environment is changed by users.

We use a stack of stack to store operations, where the external stack is
to distinguish different invocations in nested invocations. A stack of opera-
tions is created before any invocation to the synchronization function, and is
popped out after the invocation. Every time an operation is to be applied,
we push the inverse of the operation into the stack at the top of the external
stack. If the synchronization function fails, the operations in the top stack
are applied in the inverse order to cancel the changes. If the synchronization
function succeeds, the operation in the top of the stack is popped without
applications. One special case is that the external stack is not empty when
the synchronization successfully returns. In other words, the synchroniza-
tion function is invoked by some external synchronization function. We need

7.2. IMPERATIVE IMPLEMENTATION ISSUES 135

public abstract aspect StateAspect {

abstract pointcut callSynchronize ();

abstract pointcut modifyUpdateEnvironment (Operation op);

Stack <Stack <Operation >> opeartionStack ;

before () : callSynchronize () {

operationStack .push(new Stack <Operation >());

}

after() returning : callSynchronize () {

Stack <Operation > ops = operationStack .pop ();

if (! operationStack .empty ()) {

operationStack .peek (). addAll(ops);

}

}

after() throwing : callSynchronize () {

Stack <Operation > ops = operationStack .pop ();

while (!ops.emtpy ())

ops.pop (). apply ();

}

before(Operation op) : modifyUpdateEnvironment (op) {

operationStack .peek (). push(op.getInverse ());

}

}

Figure 7.9: The pseudo code for the state aspect

136 CHAPTER 7. IMPLEMENTATION AND APPLICATION

to append all operations to the stack of the external function so that the
operations are successfully canceled when the external functions fails.

7.3 Application

In software engineering, there exist many applications that Beanbag can be
applied to. Examples include synchronizing multi-views in visual language
editors [GHZL06], integration of heterogeneous tools [Tra05], synchronizing
software architecture and runtime system [HMY06], and etc. We have suc-
cessfully applied Beanbag to several case studies. In this section we describe
one application - a multi-view Enterprise JavaBean (EJB) modeling tool.
This application shows a typical architecture of integrating a Beanbag syn-
chronizer into an application. We implement this application using a Java
implementation of a previous version of Beanbag [XZH+08] that is slightly
different from the version described in the thesis. However, the techniques
described here also apply to the new language and the Haskell implementa-
tion.

Figure 7.10: An EJB modeling tool

Figure 7.10 shows the interface of the EJB modeling tool. The tool pro-
vides two types of editable diagrams: the deployment diagram and the per-
sistent diagram. The deployment view shows how EJBs are organized into
modules, while the persistent diagram shows a list of persistent EJBs (en-
tity beans). In the figure there are three EJBs: SignOnEJB, UserEJB, and
DepartmentEJB, all of which belong to a module SignOn. The persistent at-
tributes of UserEJB and DepartmentEJB are true, indicating they are entity

7.3. APPLICATION 137

D e p l o y m e n t
M o d e l

D e p l o y m e n t
V i e w

r e f r e s h

u p d a t e

P e r s i s t e n t
M o d e l

P e r s i s t e n t
V i e w

r e f r e s h

u p d a t e

U p d a t e L i s t e n e r

B e a n b a g
S y n c h r o n i z e r

M o d e l U p d a t e r

[U p d a t e s]

[s y n c h r o n i z e d u p d a t e s]

a p p l y a p p l y

v a l u e s

Figure 7.11: The architecture of the EJB tool

beans and are listed in the persistent diagram. For each entity bean, we list
its EJB name, its module name and its primary key.

Several consistency relations exist over the two diagrams. For example,
the EJB name and the module name of an entity bean should be equal the
names in the deployment diagram. An EJB should only exist when there is
a module. We capture the consistency relation between the two diagram by
a Beanbag program.

The main components of the tool are editing components generated by
Eclipse Graphical Modeling Framework (GMF) [Ecl08] and a synchronization
component generated from the Beanbag program, and we only write a few
hundred lines of Java code to glue them together.

GMF is a framework for generating graphical editors. Given a model
definition, a view definition and their mappings, GMF generates a graphical
view that reads from and writes to the model. GMF can generate multiple
views for one model, but in a quite limited way: the views and the model
cannot be structurally different, and multiple views cannot be edited at the
same time. As the two views in the EJB modeling tool are structurally
different (one hierarchical and one flat), the tool cannot be directly generated
by GMF.

Therefore we discard the usual way of generating two views for one model.
Instead, we generate two editors, each with an independent model. The two
models can be structurally different and their consistency is maintained by
a Beanbag synchronizer. On the interface side, the two editors are both
integrated into Eclipse and act like one application.

The architecture of our implementation is shown in Figure 7.11. Besides

138 CHAPTER 7. IMPLEMENTATION AND APPLICATION

the two diagrams, we also keep a set of dictionary-based values representing
the contents of the diagrams. Initially, the values are empty dictionaries,
corresponding to empty diagrams. When users update a model, we capture
the updates by an update listener. When the two views need to be synchro-
nized (when users explicitly request synchronization or, more automatically,
whenever users update a model), we pass the updates and the values to the
synchronizer. After synchronization, a model updater updates the models
as well as the values according to the output. By keeping the dictionary-
based values, we avoid converting models into dictionaries, saving both the
development cost and the execution time.

One issue of implementing the update listener is how to convert the GMF
updates to the Beanbag format. The GMF updates refer to objects through
the in-memory addresses, but in Beanbag we generate unique keys for each
object. To convert the object addresses into Beanbag keys, we keep a bijective
mapping between the keys and the in-memory addresses of objects. Because
the generated keys are just integers, we can easily save the mapping with
models using the serialization support of GMF, ensuring that the object
addresses are always valid.

This small technique has great value in practice. To identify objects in
state-based synchronization, users are often required to designate some key
attributes [Obj08][BFP+08] whose values are unique among all instances.
However, based on our experience, many application data do not have a
suitable candidate to be a key attribute [YKW+08]. On the other hand, as
operation-based synchronizers are tightly integrated into the system, we can
directly use the in-memory address and get rid of the key attribute.

Chapter 8

Concluding Remarks

In this thesis we propose a language-based approach for model synchroniza-
tion. We give synchronization semantics to high-level specification languages
and derive synchronizers from high-level specifications in these languages.
In particular, for off-site synchronization, we show that synchronizers can
be derived from a unidirectional transformation program by recording an
executable trace. We also show that a bidirectional model transformation
can be wrapped into a synchronizer by a model difference operation. For
on-site synchronization, we propose a first-order logic language to write syn-
chronizer, showing that complex synchronization behavior can be specified
by assigning synchronization semantics to (mainly) the original constructs
in first-order logic. We also show that this language can be compiled into
an efficient incremental synchronizer to ensure short synchronization time
in practice. All these techniques are built upon our theoretical foundation
framework for model synchronization, which includes three properties to en-
sure the correctness of synchronization and discusses the relation between
operation-based synchronizer and state-based synchronizer. In addition, all
the languages and algorithms have been implemented and have shown their
usefulness in practical cases.

In the following, we highlight some interesting future work.

Conflict Management

Through this thesis, conflicts are treated in a simplified way. In the the-
oretical foundation, conflicts are defined by the union operation and the
synchronization function. This definition does not really impose the require-
ment of conflict handling on these operations. One can, for example, define
a function that is undefined at all input.

In the languages and algorithms for synchronization, we only report the

139

140 CHAPTER 8. CONCLUDING REMARKS

existence of conflict and provide no support for conflict-resolving. This makes
it difficult to resolve conflicts in some situations. For example, it is possible
that two users have edited the models a lot before synchronization in a dis-
tributed environment. If there is a conflict, users have to check through all
edited parts to find the conflict updates.

To support real world synchronization work, the current approach needs
to be augmented with conflict management. In the theoretical foundation, we
need to clearly define what a conflict is and requires the union operation and
synchronization function to capture conflicts. As a conflict in heterogeneous
synchronization is often related to the consistency relations considered, we
need to build a model to capture updates and consistency relations together.
In addition, as the existence of conflicts differs when we consider different
sets of updates, we probably need to neglect the current black-box way of
treating updates as single units and defining consistency using a subset, and
use a white-box means so that we can analyze the structure of updates and
the consistency relations. One possible way to achieve this is to capture
consistency relations as classic logic expressions and use paraconsistent logic
to build a model that connects the classic logic expression and conflicts.

In the languages and algorithms, we need to add the capability of handling
conflicts. Grundy et al. [GHM98] discuss a set of requirements for conflict
management. Besides the detection of conflicts, we need at least to represent
the conflicts and the reason of conflicts to users, interact with users to resolve
the conflicts and support negotiation if there is more than one user involved
in conflict resolution. Most of these requirements are related to the definition
of conflicts and are highly promising to be satisfied if we build a well formal
foundation of conflicts.

Handling Ordered Data

The approach in this paper depends on the dictionary-based representation
of models and updates. We show how to represent most concepts of models
in dictionaries but so far we have not developed a method to represent order
attributes in dictionaries. This is a pragmatic simplification so that we can
focus on other aspect of synchronization by considering only a small set
of data types. However, as ordered data plays an important role in many
systems, we need to handle ordered data to make our synchronization system
practical.

One possible way of handling ordered data is to represent ordered data
in dictionaries. Foster et al. [FGM+07] discuss a method to represent or-
dered data as a dictionary of two entries where the first entry is the first
item in the list and the second entry is the rest of the list. For example, a se-

141

quence of two elements, <"e1", "e2">, can be represented as {head->"e1",
tail->{head->"e2", tail->null}}. However, on this representation it is
difficult to define some common list operations like removing an item at an
index using the current dictionary updates.

Another possible way is to develop a new data representation which con-
tains ordered data. However, how to represent updates on order data, how
to calculate the union of updates so that the result preserves both updates,
and how to detect conflicts between updates are all unsolved problem. Both
semantic foundation and practical algorithm are needed for a ordered data
structure.

142 CHAPTER 8. CONCLUDING REMARKS

Bibliography

[AAAN+06] Marwan Abi-Antoun, Jonathan Aldrich, Nagi Nahas, Bradley
Schmerl, and David Garlan. Differencing and merging of ar-
chitectural views. In ASE ’06: Proceedings of the 21st IEEE
International Conference on Automated Software Engineering,
pages 47–58, Washington, DC, USA, 2006. IEEE Computer So-
ciety.

[AC06] Michal Antkiewicz and Krzysztof Czarnecki. Framework-
specific modeling languages with round-trip engineering. In
Proc. 9th MoDELS, pages 692–706, 2006.

[AC08] Michal̷Antkiewicz and Krzysztof Czarnecki. Design space of het-
erogeneous synchronization. Generative and Transformational
Techniques in Software Engineering II: International Summer
School, GTTSE 2007, Braga, Portugal, July 2-7, 2007. Revised
Papers, pages 3–46, 2008.

[ALS08] S. Apel, T. Leich, and G. Saake. Aspectual feature mod-
ules. IEEE Transactions on Software Engineering, 34(2):162–
180, 2008.

[AP03] Marcus Alanen and Ivan Porres. Difference and union of mod-
els. In Proceedings of the 6th International Conference on the
Unified Modeling Language, Modeling Languages and Applica-
tions (UML’03), volume 2863/2003 of Lecture Notes in Com-
puter Science, pages 2–17. Springer Berlin / Heidelberg, 2003.

[Arn96] Robert S. Arnold. Software Change Impact Analysis. IEEE
Computer Society Press, Los Alamitos, CA, USA, 1996.

[Bal91] Robert Balzer. Tolerating inconsistency. In ICSE ’91: Pro-
ceedings of the 13th international conference on Software engi-
neering, pages 158–165, Los Alamitos, CA, USA, 1991. IEEE
Computer Society Press.

143

144 BIBLIOGRAPHY

[BBF06] N. Bencomo, G. Blair, and R. France. Summary of the work-
shop Models@run.time at MoDELS 2006. In Lecture Notes in
Computer Science, Satellite Events at the MoDELS 2006 Con-
ference, LNCS,, pages 226–230, 2006.

[BBM03] F. Budinsky, S.A. Brodsky, and E. Merks. Eclipse modeling
framework. Pearson Education, 2003.

[BBS01] G.J. Badros, A. Borning, and P.J. Stuckey. The Cassowary lin-
ear arithmetic constraint solving algorithm. ACM Transactions
on Computer-Human Interaction (TOCHI), 8(4):267–306, 2001.

[BC95] Robert H. Bourdeau and Betty H.C. Cheng. A formal seman-
tics for object model diagrams. IEEE Transactions on Software
Engineering, 21(10):799–821, 1995.

[BCRP98] G.S. Blair, G. Coulson, P. Robin, and M. Papathomas. An
architecture for next generation middleware. In IFIP Interna-
tional Conference on Distributed Systems Platforms and Open
Distributed Processing, 1998.

[BDE+05] AW Brown, M. Delbaere, P. Eeles, S. Johnston, and R. Weaver.
Realizing service-oriented solutions with the IBM rational soft-
ware development platform. IBM systems journal, 44(4):727–
752, 2005.

[BFBW92] A. Borning, B. Freeman-Benson, and M. Wilson. Constraint
hierarchies. Lisp and symbolic computation, 5(3):223–270, 1992.

[BFP+08] Aaron Bohannon, J. Nathan Foster, Benjamin C. Pierce,
Alexandre Pilkiewicz, and Alan Schmitt. Boomerang: Resource-
ful lenses for string data. In Proc. 35th POPL, 2008.

[BG98] M. Bickford and D. Guaspari. Lightweight analysis of UML.
Technical report, TM-98-0036, Odyssey Research Associates,
Ithaca, NY, 1998.

[BGF+08] N. Bencomo, P. Grace, C. Flores, D. Hughes, and G. Blair.
Genie: Supporting the model driven development of reflective,
component-based adaptive systems. In Proceedings of the 30th
International Conference on Software Engineering (ICSE’08),
pages 811–814, 2008.

BIBLIOGRAPHY 145

[BMS08] Claus Brabrand, Anders Møller, and Michael I. Schwartzbach.
Dual syntax for XML languages. Information Systems, 33(4),
June 2008. Earlier version in Proc. 10th International Workshop
on Database Programming Languages, DBPL ’05, Springer-
Verlag LNCS vol. 3774.

[Bor81] A. Borning. The programming language aspects of ThingLab,
a constraint-oriented simulation laboratory. ACM Transactions
on Programming Languages and Systems, 3(4):353–387, 1981.

[BRST05] Jean Bézivin, Bernhard Rumpe, Andy Schürr, and Laurence
Tratt. Model transformations in practice workshop. In Satellite
Events at MoDELS, pages 120–127, 2005.

[BS81] François Bancilhon and Nicolas Spyratos. Update semantics
of relational views. ACM Trans. Database Syst., 6(4):557–575,
1981.

[BW88] R. Bird and P. Wadler. An introduction to functional program-
ming. Prentice Hall International (UK) Ltd. Hertfordshire, UK,
UK, 1988.

[CC03] Alvin T. S. Chan and Siu-Nam Chuang. MobiPADS: a reflective
middleware for context-aware mobile computing. IEEE Trans.
Softw. Eng., 29(12):1072–1085, 2003.

[CD+99] J. Clark, S. DeRose, et al. XML path language (XPath) version
1.0. W3C recommendation, 16:1999, 1999.

[CFH+09] Krzysztof Czarnecki, J. Nathan Foster, Zhenjiang Hu, Ralf
Lämmel, Andy Schürr, and James F. Terwilliger. Bidirectional
transformations: A cross-discipline perspective. GRACE meet-
ing notes, state of the art, and outlook. In International Confer-
ence on Model Transformations (ICMT), Zurich, Switzerland,
June 2009. Invited paper. To appear.

[CK01] M.V. Cengarle and A. Knapp. A formal semantics for OCL 1.4.
Lecture notes in computer science, pages 118–133, 2001.

[CRE06] Antonio Cicchetti, Davide Di Ruscio, and Romina Eramo. To-
wards propagation of changes by model approximations. In In-
ternational Workshop on Models for Enterprise Computing, In
Proc. EDOC, 2006.

146 BIBLIOGRAPHY

[CRP07] Antonio Cicchetti, Davide Di Ruscio, and Alfonso Pierantonio.
A metamodel independent approach to difference representa-
tion. Journal of Object Technology, 6(9):165–185, 2007.

[CRP08] Antonio Cicchetti, Davide Di Ruscio, and Alfonso Pierantonio.
Managing model conflicts in distributed development. In Proc.
11th MoDELS, pages 311–325. Springer, 2008.

[DB82] U. Dayal and P.A. Bernstein. On the correct translation of
update operations on relational views. ACM Transactions on
Database Systems, 8(3):381–416, 1982.

[DDH01] AnHai Doan, Pedro Domingos, and Alon Y. Halevy. Recon-
ciling schemas of disparate data sources: a machine-learning
approach. SIGMOD Rec., 30(2):509–520, 2001.

[Dis08] Zinovy Diskin. Algebraic models for bidirectional model syn-
chronization. In MoDELS ’08: Proceedings of the 11th inter-
national conference on Model Driven Engineering Languages
and Systems, pages 21–36, Berlin, Heidelberg, 2008. Springer-
Verlag.

[Ecl08] Eclipse Consortium. The Eclipse Graphical Modeling Frame-
work. http://www.eclipse.org/modeling/gmf/, 2008.

[Ede93] D. Vera Edelstein. Report on the ieee std 1219–1993—
standard for software maintenance. SIGSOFT Softw. Eng.
Notes, 18(4):94–95, 1993.

[EGSK07] Bassem Elkarablieh, Ivan Garcia, Yuk Lai Suen, and Sarfraz
Khurshid. Assertion-based repair of complex data structures. In
ASE ’07: Proceedings of the twenty-second IEEE/ACM inter-
national conference on Automated software engineering, pages
64–73, 2007.

[Egy07] Alexander Egyed. Fixing inconsistencies in UML design models.
In ICSE ’07: Proceedings of the 29th international conference on
Software Engineering, pages 292–301, Washington, DC, USA,
2007. IEEE Computer Society.

[ELF08] Alexander Egyed, Emmanuel Letier, and Anthony Finkelstein.
Generating and evaluating choices for fixing inconsistencies in

BIBLIOGRAPHY 147

UML design models. In Proceedings of 23rd IEEE/ACM Inter-
national Conference on Automated Software Engineering (ASE
2008), pages 99–108. IEEE, 2008.

[EMRP01] Todd Ekenstam, Charles Matheny, Peter Reiher, and Gerald J.
Popek. The bengal database replication system. Distrib. Par-
allel Databases, 9(3):187–210, 2001.

[Erl00] Len Erlikh. Leveraging legacy system dollars for e-business. IT
Professional, 2(3):17–23, 2000.

[FGH+94] A. C. W. Finkelstein, D. Gabbay, A. Hunter, J. Kramer, and
B. Nuseibeh. Inconsistency handling in multiperspective speci-
fications. IEEE Trans. Softw. Eng., 20(8):569–578, 1994.

[FGK+05] J. Nathan Foster, Michael B. Greenwald, Christian Kirkegaard,
Benjamin C. Pierce, and Alan Schmitt. Schema-directed data
synchronization. Technical Report MS-CIS-05-02, University of
Pennsylvania, March 2005. Supersedes MS-CIS-03-42.

[FGM+05] J. Nathan Foster, Michael B. Greenwald, Jonathan T. Moore,
Benjamin C. Pierce, and Alan Schmitt. Combinators for bi-
directional tree transformations: a linguistic approach to the
view update problem. In POPL ’05 : ACM SIGPLAN–SIGACT
Symposium on Principles of Programming Languages, pages
233–246, 2005.

[FGM+07] J. Nathan Foster, Michael B. Greenwald, Jonathan T. Moore,
Benjamin C. Pierce, and Alan Schmitt. Combinators for bidirec-
tional tree transformations: A linguistic approach to the view-
update problem. ACM Trans. Program. Lang. Syst., 29(3):17,
2007.

[FR07] Robert France and Bernhard Rumpe. Model-driven develop-
ment of complex software: A research roadmap. In Future of
Software Engineering (FOSE) in ICSE ’07, pages 37–54, 2007.

[FW04] D.C. Fallside and P. Walmsley. XML Schema Part 0: Primer
Second Edition. W3C Recommendation 28 October, 2004.
World Wide Web Consortium, pages 0–20041028, 2004.

[GCH+04] David Garlan, ShangWen Cheng, AnCheng Huang, Bradley R.
Schmerl, and Peter Steenkiste. Rainbow: Architecture-
based self-adaptation with reusable infrastructure. Computer,
37(10):46–54, 2004.

148 BIBLIOGRAPHY

[GHM98] John Grundy, John Hosking, and Warwick B. Mugridge. Incon-
sistency management for multiple-view software development
environments. IEEE Trans. Softw. Eng., 24(11):960–981, 1998.

[GHZL06] John C. Grundy, John G. Hosking, Nianping Zhu, and Na Liu.
Generating domain-specific visual language editors from high-
level tool specifications. In Proc. 21st ASE, pages 25–36, 2006.

[GM] Andy Gill and Simon Marlow. Happy: The parser generator for
haskell. http://www.haskell.org/happy/.

[HMY06] Gang Huang, Hong Mei, and Fu-Qing Yang. Runtime recovery
and manipulation of software architecture of component-based
systems. Automated Software Eng., 13(2):257–281, 2006.

[ISO06] ISO. International Standard - ISO/IEC 14764 IEEE Std 14764-
2006. ISO/IEC 14764:2006 (E) IEEE Std 14764-2006 Revision
of IEEE Std 1219-1998, pages 1–46, 2006.

[Jac02] D. Jackson. Alloy: a lightweight object modelling notation.
ACM Transactions on Software Engineering and Methodology
(TOSEM), 11(2):256–290, 2002.

[JK06] Frdric Jouault and Ivan Kurtev. Transforming models with
ATL. In Proceedings of Satellite Events at the MoDELS 2005
Conference, volume 3844 of Lecture Notes in Computer Science,
pages 128–138. Springer, 2006.

[JOn] JOnAS Project, http://jonas.objectweb.org. Java Open
Application Server.

[Jon96] S.L.P. Jones. Compiling Haskell by program transformation: A
report from the trenches. Lecture Notes in Computer Science,
pages 18–44, 1996.

[Kel85] Arthur M. Keller. Algorithms for translating view updates to
database updates for views involving selections, projections, and
joins. In PODS ’85: Proceedings of the fourth ACM SIGACT-
SIGMOD symposium on Principles of database systems, pages
154–163, New York, NY, USA, 1985. ACM.

[KH06] Shinya Kawanaka and Haruo Hosoya. biXid: a bidirectional
transformation language for XML. In Proceedings of the 11th
ACM SIGPLAN International Conference on Functional Pro-
gramming (ICFP’06), pages 201–214, 2006.

BIBLIOGRAPHY 149

[KHH+01] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and
W.G. Griswold. An overview of AspectJ. Lecture Notes in
Computer Science, pages 327–353, 2001.

[KKP07] Sanjeev Khanna, Keshav Kunal, and Benjamin C. Pierce. A
formal investigation of diff3. In Arvind and Prasad, editors,
Foundations of Software Technology and Theoretical Computer
Science (FSTTCS), pages 485–496, December 2007.

[KM90] Jeff Kramer and Jeff Magee. The evolving philosophers prob-
lem: Dynamic change management. IEEE Trans. Softw. Eng.,
16(11):1293–1306, 1990.

[KM07] J. Kramer and J. Magee. Self-Managed Systems: an Architec-
tural Challenge. In Future of Software Engineering (FOSE) in
ICSE, pages 259–268, 2007.

[KRSD01] Anne-Marie Kermarrec, Antony Rowstron, Marc Shapiro, and
Peter Druschel. The icecube approach to the reconciliation of
divergent replicas. In PODC ’01: Proceedings of the twentieth
annual ACM symposium on Principles of distributed computing,
pages 210–218, New York, NY, USA, 2001. ACM.

[LDGR04] Michael Lawley, Keith Duddy, Anna Gerber, and Kerry Ray-
mond. Language features for re-use and maintainability of MDA
transformations. In Workshop on Best Practices for Model-
Driven Software Development, 2004.

[LHG07] Na Liu, John Hosking, and John Grundy. Maramatatau: Ex-
tending a domain specific visual language meta tool with a
declarative constraint mechanism. In Proceedings of 2007 IEEE
Symposium on Visual Languages and Human-Centric Comput-
ing, 2007.

[LHT07] Dongxi Liu, Zhenjiang Hu, and Masato Takeichi. Bidirectional
interpretation of XQuery. In PEPM ’07: Proceedings of the
2007 ACM SIGPLAN symposium on Partial evaluation and
semantics-based program manipulation, pages 21–30, New York,
NY, USA, 2007. ACM.

[LNH+07] Dongxi Liu, Keisuke Nakano, Yasushi Hayashi, Zhenjiang Hu,
Masato Takeichi, Akimasa Morihata, and Yingfei Xiong. Bi-X
core: A general-purpose bidirectional transformation language.

150 BIBLIOGRAPHY

In Proceedings of the 24th Japan Society for Software Science
and Technology Conference (JSSST’07). JSSST, 2007.

[Mar] Simon Marlow. Alex: A lexical analyser generator for haskell.
http://www.haskell.org/alex/.

[Mas84] Yoshifumi Masunaga. A relational database view update trans-
lation mechanism. In VLDB ’84: Proceedings of the 10th Inter-
national Conference on Very Large Data Bases, pages 309–320,
San Francisco, CA, USA, 1984. Morgan Kaufmann Publishers
Inc.

[Mee98] L. Meertens. Designing constraint maintainers for user inter-
action. ftp://ftp.kestrel.edu/pub/papers/meertens/dcm.
ps, 1998.

[MGH05] Akhil Mehra, John Grundy, and John Hosking. A generic
approach to supporting diagram differencing and merging for
collaborative design. In ASE ’05: Proceedings of the 20th
IEEE/ACM international Conference on Automated software
engineering, pages 204–213, New York, NY, USA, 2005. ACM
Press.

[MHN+07] Kazutaka Matsuda, Zhenjiang Hu, Keisuke Nakano, Makoto
Hamana, and Masato Takeichi. Bidirectionalization transforma-
tion based on automatic derivation of view complement func-
tions. In ICFP ’07: Proceedings of the 2007 ACM SIGPLAN
international conference on Functional programming, pages 47–
58, New York, NY, USA, 2007. ACM.

[MOSMI03] Pascal Molli, Gérald Oster, Hala Skaf-Molli, and Abdessamad
Imine. Using the transformational approach to build a safe and
generic data synchronizer. In GROUP ’03: Proceedings of the
2003 international ACM SIGGROUP conference on Supporting
group work, pages 212–220, New York, NY, USA, 2003. ACM.

[MT86] C.B. Medeiros and F.W. Tompa. Understanding the implica-
tions of view update policies. Algorithmica, 1(1):337–360, 1986.

[NEF03] Christian Nentwich, Wolfgang Emmerich, and Anthony Finkel-
stein. Consistency management with repair actions. In ICSE
’03: Proceedings of the 25th International Conference on Soft-
ware Engineering, pages 455–464, Washington, DC, USA, 2003.
IEEE Computer Society.

BIBLIOGRAPHY 151

[Obj06] Object Management Group. Object constraint language speci-
fication 2.0. http://www.omg.org/spec/OCL/2.0, 2006.

[Obj07] Object Management Group. XML metadata interchange spec-
ification. http://www.omg.org/docs/formal/07-12-01.pdf,
2007.

[Obj08] Object Management Group. MOF query / views / transfor-
mations specification 1.0. http://www.omg.org/docs/formal/
08-04-03.pdf, 2008.

[OMG02] OMG. MetaObject Facility specification. http://www.omg.

org/docs/formal/02-04-03.pdf, 2002.

[OMT98] Peyman Oreizy, Nenad Medvidovic, and Richard N. Taylor.
Architecture-based runtime software evolution. In Proceedings
of the 20th International Conference on Software Engineering
(ICSE’98), pages 177–186, 1998.

[OMT08] Peyman Oreizy, Nenad Medvidovic, and Richard N. Taylor.
Runtime software adaptation: framework, approaches, and
styles. In Proceedings of the 30th International Conference
on Software Engineering (ICSE’08), Companion version, pages
899–910, 2008.

[PLA] PLASTIC Team, http://www.ist-plastic.org/. The PLAS-
TIC Platform.

[PSR+89] G. Priest, R. Sylvan, R. Routley, J. Norman, and A.I. Arruda.
Paraconsistent logic: essays on the inconsistent. Philosophia
Verlag Gmbh, 1989.

[RS03] H. Rajan and K. Sullivan. Eos: instance-level aspects for in-
tegrated system design. ACM SIGSOFT Software Engineering
Notes, 28(5):297–306, 2003.

[SAG+06] Bradley Schmerl, Jonathan Aldrich, David Garlan, Rick Kaz-
man, and Hong Yan. Discovering architectures from running
systems. IEEE Trans. Softw. Eng., 32(7):454–466, 2006.

[SBP08] Sylvain Sicard, Fabienne Boyer, and Noel De Palma. Using
components for architecture-based management: the self-repair
case. In Proceedings of the 30th International Conference on
Software Engineering (ICSE’08), pages 101–110, 2008.

152 BIBLIOGRAPHY

[SK03] S. Sendall and W. Kozaczynski. Model transformation: The
heart and soul of model-driven software development. IEEE
software, 20(5):42–45, 2003.

[SK08a] Andy Schürr and Felix Klar. 15 years of triple graph grammars.
In Proc. 4th ICGT, pages 411–425, 2008.

[SK08b] Andy Schürr and Felix Klar. 15 years of triple graph gram-
mars. In Proc. of the 4th International Conference on Graph
Transformation, pages 411–425, 2008.

[SMFBB93] M. Sannella, J. Maloney, B. Freeman-Benson, and A. Borning.
Multi-way versus one-way constraints in user interfaces: Ex-
perience with the DeltaBlue algorithm. Software-Practice and
Experience, 1993.

[SMSJ03] Ragnhild Van Der Straeten, Tom Mens, Jocelyn Simmonds,
and Viviane Jonckers. Using description logic to maintain con-
sistency between UML models. In UML 2003 - The Unified
Modeling Language, Modeling Languages and Applications, 6th
International Conference, Proceedings, volume 2863 of Lecture
Notes in Computer Science, pages 326–340. Springer, 2003.

[SSZH07] Hui Song, Yanchun Sun, Li Zhou, and Gang Huang. Towards in-
stant automatic model refinement based on OCL. In APSEC07:
Proceedings of the 14th Asia-Pacific Software Engineering Con-
ference, pages 167–174, 2007.

[Ste07] Perdita Stevens. Bidirectional model transformations in QVT:
Semantic issues and open questions. In Proceedings of 10th In-
ternational Conference on Model Driven Engineering Languages
and Systems (MoDELS 2007), pages 1–15, 2007.

[Sut95] Jeff Sutherland. Business objects in corporate information sys-
tems. ACM Comput. Surv., 27(2):274–276, 1995.

[SXH+08] Hui Song, Yingfei Xiong, Zhenjiang Hu, Gang Huang, and
Hong Mei. A model-driven framework for constructing run-
time architecture infrastructures. Technical Report GRACE-
TR-2008-05, Center for Global Research in Advanced Software
Science and Engineering, National Institute of Informationtics,
Japan, Dec 2008. http://grace-center.jp/downloads/GRACE-
TR-2008-05.pdf.

BIBLIOGRAPHY 153

[Tea] Atlas Team. The ATL web site.
http://www.eclipse.org/m2m/atl/.

[Tra05] Laurence Tratt. Model transformations and tool integration.
Journal of Software and Systems Modelling, 4(2):112–122, May
2005.

[Tra08] Laurence Tratt. A change propagating model transformation
language. Journal of Object Technology, 7(3):107–126, March
2008.

[Tsa93] Edward Tsang. Foundations of Constraint Satisfaction. Aca-
demic Press, 1993.

[XHZ+09] Yingfei Xiong, Zhenjiang Hu, Haiyan Zhao, Hui Song, Masato
Takeichi, and Hong Mei. Supporting automatic model inconsis-
tency fixing. In Proceedings of 7th joint meeting of the European
Software Engineering Conference (ESEC) and the ACM SIG-
SOFT Symposium on the Foundations of Software Engineering
(FSE) (to appear), August 2009.

[Xioa] Yingfei Xiong. The Beanbag website. http://www.ipl.t.

u-tokyo.ac.jp/˜xiong/beanbag.html.

[Xiob] Yingfei Xiong. The SyncATL website. http://www.ipl.t.

u-tokyo.ac.jp/˜xiong/modelSynchronization.html.

[XLH+07] Yingfei Xiong, Dongxi Liu, Zhenjiang Hu, Haiyan Zhao, Masato
Takeichi, and Hong Mei. Towards automatic model synchroniza-
tion from model transformations. In ASE ’07: Proceedings of
the twenty-second IEEE/ACM international conference on Au-
tomated software engineering, pages 164–173, New York, NY,
USA, 2007. ACM.

[XS05] Zhenchang Xing and Eleni Stroulia. Umldiff: an algorithm for
object-oriented design differencing. In ASE ’05: Proceedings of
the 20th IEEE/ACM international Conference on Automated
software engineering, pages 54–65, New York, NY, USA, 2005.
ACM.

[XSHT09] Yingfei Xiong, Hui Song, Zhenjiang Hu, and Masato Takeichi.
Supporting parallel updates with bidirectional model transfor-
mations. In Proceedings of the Second International Conference

154 BIBLIOGRAPHY

on Model Transformation (ICMT’09) (to appear). Springer,
2009.

[XZH+08] Yingfei Xiong, Haiyan Zhao, Zhenjiang Hu, Masato Takeichi,
Hui Song, and Hong Mei. Beanbag: Operation-based syn-
chronization with intra-relations. Technical Report GRACE-
TR-2008-04, Center for Global Research in Advanced Software
Science and Engineering, National Institute of Informationtics,
Japan, Dec 2008. http://grace-center.jp/downloads/GRACE-
TR-2008-04.pdf.

[YBP+04] F. Yergeau, T. Bray, J. Paoli, C.M. Sperberg-McQueen, and
E. Maler. Extensible markup language (XML) 1.0. W3C Rec-
ommendation, 2004.

[YKW+08] Yijun Yu, Haruhiko Kaiya, Hironori Washizaki, Yingfei Xiong,
and Zhenjiang Hu. Enforcing a security pattern in stakeholder
goal models. In Proceedings of the 4th Workshop on Quality of
Protection, 2008.

[ZC06] Ji Zhang and Betty H. C. Cheng. Model-based development
of dynamically adaptive software. In Proceedings of the 28th
International Conference on Software Engineering (ICSE’06),
pages 371–380, 2006.

	cover.pdf
	Thesis

