
Accelerating Program Analyses in Datalog by
Merging Library Facts

Yifan Chen1, Chenyang Yang1, Xin Zhang1 ?, Yingfei Xiong1, Hao Tang2,
Xiaoyin Wang3, and Lu Zhang1

1 Key Laboratory of High Confidence Software Technologies, MoE
Department of Computer Science and Technology, EECS, Peking University

Beijing, China
{yf chen, chenyangy, xin, xiongyf, zhanglucs}@pku.edu.cn

2 Alibaba Group
Hangzhou, China

albert.th@alibaba-inc.com
3 Department of Computer Science, University of Texas at San Antonio

Texas, USA
xiaoyin.wang@utsa.edu

Abstract. Static program analysis uses sensitivity to balance between
precision and scalability. However, finer sensitivity does not necessar-
ily lead to more precise results but may reduce scalability. Recently, a
number of approaches have been proposed to finely tune the sensitivity
of different program parts. However, these approaches are usually de-
signed for specific program analyses, and their abstraction adjustments
are coarse-grained as they directly drop sensitivity elements.
In this paper, we propose a new technique, 4DM, to tune abstractions for
program analyses in Datalog. 4DM merges values in a domain, allowing
fine-grained sensitivity tuning. 4DM uses a data-driven algorithm for
automatically learning a merging strategy for a library from a training
set of programs. Unlike existing approaches that rely on the properties
of a certain analysis, our learning algorithm works for a wide range of
Datalog analyses. We have evaluated our approach on a points-to analysis
and a liveness analysis, on the DaCapo benchmark suite. Our evaluation
results suggest that our technique achieves a significant speedup and
negligible precision loss, reaching a good balance.

Keywords: Static Analysis · Datalog · Data-Driven Analysis · Domain-
Wise Merging

1 Introduction

One key problem in program analysis is to choose what information to keep
in the program abstraction in order to balance its precision and scalability. It
is often controlled through a domain of sensitivity elements. For example, call-
site sensitivity [19, 17] distinguishes information under different calling contexts

? Corresponding Author

2 Authors Suppressed Due to Excessive Length

using the string of most recent call sites, and it is parameterized by the length
of this string. In general, the finer the sensitivity is, the higher the precision is,
yet the lower the scalability is. However, it is not always the case. Under some
circumstances, coarse-grained sensitivity is enough and making it finer does not
lead to higher precision. Using fine-grained sensitivity in such cases would lead
to unnecessary time cost.

In order to reduce the time spent by such “inefficient” sensitivity, many
existing approaches focus on using sensitivity selectively. A common practice
is to drop sensitivity elements at specific program points. Take tuning call-site
sensitivity as an example: Smaragdakis et al. [20] used a crafted rule to decide
whether to keep the contexts for specific call sites; Jeong et al. [11] tried to
cut the context length for each call site using a data-driven method; and Zhang
et al. [27] proposed an approach which started by dropping all contexts and
then selectively added them back by identifying call sites where adding contexts
helps. However, a binary choice of whether to drop a sensitivity attribute can
be too coarse-grained to achieve the best precision and efficiency. Imagine, in a
1-object-sensitive points-to analysis, a method is invoked by 10 different objects
at a call site, 9 of them leading to the same analysis result while the other one
leading to a different result. Dropping all of the contexts would lead to imprecise
analysis, but keeping the contexts leads to 8 rounds of unproductive analysis.

Recently, Tan et al. [21] proposed a different idea of tuning abstraction which
is more fine-grained. Their method, MAHJONG, merges heap objects into dif-
ferent equivalent classes according to type and field-points-to information. In
the previous example, if certain conditions are met, MAHJONG could merge
the 9 objects that lead to the same analysis result, therefore achieving the same
precision as a 1-object-sensitive analysis but with better efficiency. However,
this approach is limited to tuning heap abstraction for type-related queries in
points-to analysis. Specifically, it only allows merging heap objects and relies on
a pre-analysis to identify which objects to merge. If the query is not about types,
e.g., querying aliases of a variable, it is not applicable.

We propose a new merging-based method, named 4DM (Data-Driven Data-
log Domain-wise Merging), to resolve the weakness of the above two approaches.
For given domains, 4DM’s domain-wise merging merges concrete values that
contribute to similar results into the same abstract value. It makes finer ad-
justment on domains of sensitivity elements by merging into multiple abstract
values than simply dropping as in context reduction. Furthermore, it generalizes
context reduction. For example, reducing the contexts for a particular call site
c from 2-objective-sensitive to 1-object-sensitive can be seen as transforming all
triples (o1i , o

2
i , c) to (∗, o2i , c), where o1i and o2i are the calling contexts and ∗ is

an abstract value. 4DM merges values in various domains as opposed to only
heap objects, e.g. call sites, program points, variables, and can be applied to
tune various sensitivities in a wide range of analyses.

In order to apply merging to various domains in different analyses, 4DM
employs a general framework for Datalog-based analyses. It transforms Datalog
rules to embed merging in them, and guarantees soundness.

Accelerating Program Analyses in Datalog by Merging Library Facts 3

1 package library;

2

3 public class Lib {

4 public static A id(A x){

5 return x;

6 }

7 public static A foo(A u){

8 v = id(u); // cs5
9 return v;

10 }

11 public static A bar(A s){

12 t = id(s); // cs6
13 return t;

14 }

15 }

1package client1;

2import library;

3public class Clt1 {

4public static void main(String[] args){

5A p1 = new A(); // o1
6A p2 = new A(); // o2
7x1 = library.Lib.id(p1); // cs1
8x2 = library.Lib.id(p1); // cs2
9x3 = library.Lib.foo(p2); // cs3
10x4 = library.Lib.bar(p2); // cs4
11assert(x1==x2); // Q1: safe?

12assert(x3==x4); // Q2: safe?

13assert(x1==x3); // Q3: safe?

14}

15}

Listing 1.1: Example code that higher sensitivity leads unnecessary computation

Now the challenge is to find an effective merging strategy under 4DM’s rep-
resentation that accelerates analysis while keeping precision. Our insight to ad-
dress this challenge is that library code occupies a large part in analysis and the
merging strategy on shared library code would be similar for different programs.
Under this insight, we propose a data-driven method to learn a good merging
for programs that share a common library.

We have implemented 4DM, and evaluated it on two different Datalog-based
analyses, a points-to analysis and a liveness analysis. The results suggest 4DM
could achieve significant speedup on both analyses with minimal precision loss.

This paper makes the following contributions:

– A general framework for accelerating analyses in Datalog by merging sensi-
tivity elements.

– A learning algorithm to discover an effective strategy for merging sensitivity
elements in library code.

– Empirical evaluation that demonstrates the effectiveness our approach.

The rest of this paper is organized as follows. Section 2 uses a motivat-
ing example to give a comprehensive overview of 4DM. Section 3 prepares some
knowledge of Datalog. Section 4 describes how to apply 4DM’s merging to Data-
log rules in detail and proves some of its important properties. Section 5 explains
4DM’s algorithm to learns a merging strategy from input programs that share a
common library. Section 6 describes the implementation and evaluation of 4DM.

2 Overview

In this section, we informally describe 4DM using a motivating example.
Listing-1.1 demonstrates an example where finer-grained sensitivity leads to

unnecessary computation. The code snippet contains two packages, i.e. library

4 Authors Suppressed Due to Excessive Length

and client1. Package library declares method foo, bar and id. Package
client1 declares method main. In the comments, cs1 . . . cs6 represent the six
call sites in the program, while o1, o2 represent abstract objects allocated by
new statements in the corresponding lines. At the end of the main method, the
developer queries whether three assertions may be violated, denoted as Q1, Q2,
and Q3 respectively. It is easy to see that while Q1 and Q2 hold, Q3 does not.

We can derive the correct results by applying a 1-call-site-sensitive (1cs)
points-to analysis. In particular, it is sufficient to distinguish calls to id in main

and calls to id in foo and bar. When applying a 1cs analysis, there are 4 different
contexts for variable x in line 5 of library, and x points to different objects in
these contexts, as follows.

x 7→ {o1} in two contexts [cs1], [cs2]
x 7→ {o2} in two contexts [cs5], [cs6]

While 1cs analysis successfully resolves all three queries, there is redundancy
in the computation. In particular, distinguishing the call sites cs1 and cs2 does
not increase the precision. Similar for cs5 and cs6. Ideally we want to remove
such redundancy.

2.1 Accelerating by Domain-Wise Merging

Before introducing our idea, let us first see whether we can remove this re-
dundancy using existing methods. A dominating approach for tuning analysis
abstractions is to select different sensitivities for different program points [11, 10,
14, 15, 26, 16]. In this case, it allows dropping the contexts for certain call sites
to id. However, to preserve the precision, we can only drop the contexts either
for both {cs1, cs2} or for both {cs5, cs6}. However, there is still redundancy in
the call sites where the context is not dropped. On the other hand, a previous
merging-based approach, Mahjong [21], only allows merging heap objects.

4DM uses a novel method for abstraction-tuning, which we refer to as “domain-
wise merging”. In the running example, our approach would conclude that the
call sites cs1 and cs2 have the same effect on the queries (Q1, Q2 and Q3) and
thus can be merged. Therefore, our approach would treat them as an equivalent
class and use symbol ∗1 to represent the equivalent class. Similarly, our approach
would identify cs5 and cs6 as equivalent and use ∗2 to represent the class. As a
result, the original four contexts for variable x in line 5 become 2 contexts:

[∗1] = {[cs1], [cs2]} and [∗2] = {[cs5], [cs6]}
This merged abstraction of calling contexts removes the redundancy in the orig-
inal analysis while keeping the precision.

In order to apply the idea of domain-wise merging to different sensitivities
in a wide range of analysis, we propose a general framework that allows rich
ways to merge facts in Datalog-based analyses (Section 4). Further, we prove
that under this framework, any merging strategy would yield a sound analysis
if the original analysis is sound.

Accelerating Program Analyses in Datalog by Merging Library Facts 5

1 package client2;

2 import library;

3 public class Clt2 {

4 public static void main(String[] args) {

5 A q1 = new A(); // o3
6 y1 = library.Lib.foo(p1); // cs7
7 y2 = library.Lib.bar(p1); // cs8
8 assert(y1==y2); // Q4: safe?

9 }

10 }

Listing 1.2: Another example client that uses the library package

2.2 Learning a Merging Over library Code

While the above framework defines the space of sound merging strategies, the
next question is how to find a merging that accelerates the analysis while keeping
the precision as much as possible.

We propose a data-driven method focusing on library code. Many modern
program analyses spend a large portion of its time in analyzing large library code
(e.g., JDK for Java programs). Based on the assumption that different programs
use libraries in similar ways, we can obtain a heuristic that merges facts in a
library by observing analysis runs on a training set of programs that share this
library. Then we can use this heuristic to accelerate analyzing a new program
that also uses this library.

For example, suppose there is another client package client2 in Listing-1.2
that also invokes foo and bar in the library package. Similar to the client1,
it passes the same object to these two functions. At the end, there is an aliasing
assertion Q4. In a 1cs analysis, it still takes a large portion of runtime on package
library, while the merging strategy on library is the same as client1, as
merging call sites cs5 and cs6 in function foo and bar can accelerate the analysis
without losing precision for Q4. Inspired by this observation, we can discover
this merging strategy by trying out various merging strategies on client1, and
then use this strategy to accelerate analyzing client2.

We describe a general method for obtaining such merging strategies in Sec-
tion 5. In particular, our approach allows training on multiple programs. When
the training set is large enough, we are confident that the learnt merging can
be applied to programs outside the training set. Furthermore, our framework
is general to allow specifically-designed training algorithms for certain analyses,
and our evaluation shall demonstrate such an algorithm for liveness analysis.

3 Preliminary

Before we describe 4DM, we first briefly introduce Datalog. Datalog is a declara-
tive logic programming language, which started for querying deductive database.
Recently, it has been widely used for specifying program analyses.

6 Authors Suppressed Due to Excessive Length

(program) C ::= c̄; o
(rule) c ::= l← l̄
(literal) l ::= r(ā)
(argument) a ::= v | d
(output) o ::= ′output′ r̄

(relations) r ∈ R = {R0, R1, . . .}
(variables) v ∈ V = {X,Y, . . .}
(constants) d ∈ D = {0, 1, . . .}
(domains) D ∈M = {D1, D2, . . .} ⊆ P(D)

dom(r) = D
(tuples) t ∈ T ⊆ R× D∗
(substitutions) σ ∈ Σ ⊆ V→ D

Fig. 1: Syntax of Datalog and auxiliary definitions

JCK ∈ P(T) FC , fc ∈ P(T)→ P(T)
JCK = lfp(FC) FC(T) = T ∪

⋃
{fc(T) | c ∈ C}

fl0←l1,...,ln(T) = {σ(l0) | σ(lk) ∈ T for 1 ≤ k ≤ n
∧σ(l0)[i] ∈ dom(l0)[i] for 1 ≤ i ≤ |l0|}

Fig. 2: Semantics of Datalog

The syntax of Datalog is listed in Figure 1. A Datalog program is constructed
from a list of rules and an output instruction. (Here, overbar like c̄ represents
a list of zero, one or more elements.) Each rule has a head and a body. A head
is one literal, and a body is a list of literals. Each literal consists of a relation
name and several arguments. Each argument is either a variable or a constant.
We call literals containing no variables as ground literals or tuples, and call
constants in tuples as values. A rule should be well-formed, in the sense that all
variables occurring in the head should also appear in the body. In addition, we
use an output instruction to mark some relations as the analysis results.

All relations are assigned with domains for each of its dimensions. The do-
main constrains possible constants that a variable at this dimension can be sub-
stituted with, and constants should also conform the constraints. We define a
relation super-domain among domains: – when a variable appears both in the
head and body in rule, the corresponding domain DH in the head is a (direct)
super-domain of the corresponding domain DB in the body, – and transitively,
super-domains of DH are also super-domains of DB .

Each Datalog program C denotes a set of tuples derived using its rules, as
detailed in Figure 2. Each rule l0 ← l1, . . . , ln is interpreted as deriving a tuple
from known tuples: if there exists a substitution σ such that σ(l1), . . . , σ(ln) are
all known tuples, and every constant in σ(l0) satisfies the domain constraint,
σ(l0) is derived. The program denotes the least fixed-point (lfp) of repeated
applications of the rules in C. We use a subscript JCKo to denote the derived
tuples of output relations o.

Usually, we want to keep all derived tuples, so we require that if domain DH

in the head is a super-domain of DB in the body, DH ’s valueset should also
be a superset of DB ’s. Thus, the domain constraints are always satisfied during
derivation.

Accelerating Program Analyses in Datalog by Merging Library Facts 7

4 Constructing Domain-wise Merging in Datalog

In this subsection we introduce our definition of domain-wise merging and how
we transform the Datalog rules to implement domain-wise merging.

4.1 1-Domain-Wise Merging

We first give our definition of 1-domain-wise merging, which specifies what ele-
ments in a domain should be merged into an abstract element. Then we discuss
how to transform the Datalog rules to support this kind of merging. Finally,
we prove our transformation is sound: any facts that can be produced by the
original rule set can still be produced by the transformed rule set.

Defining Merging. Usually, for a Datalog program, we only cares about de-
rived tuples of output relations. Our goal is to keep derived tuples in output
relations unchanged, so we hope not to merge any values in domains of output
relations. We also need to avoid merging values in the domains where output
tuples are derived from. Therefore, we first give the definition of sensitivity do-
mains, in which the values can be merged.

Definition 1 (Sensitivity Domain). For a Datalog program C and a set of
output relations o, a domain D ∈ M is a sensitivity domain iff no domain of
output relations is D’s super-domain.

Then, a 1-domain-wise merging is defined as a function mapping concrete
values in a domain to abstract values. When multiple concrete values are mapped
to the same abstract values, these values are merged. As a result, the domain
itself is also changed.

Definition 2 (1-Domain-Wise Merging). A (1-domain-wise) merging in the
sensitivity domain Dα is a function that maps some of its values ∆ = {d1, d2, . . .}
to abstract values ∆̂ = {α1, α2, . . .} while keeping other values unchanged.

π : Dα → D̂α, where D̂α = (Dα \∆) ∪ ∆̂

In Section 5 we shall discuss how to obtain mergings through learning over
a set of client programs.

Transforming Datalog Programs. When we have a merging π on domain
Dα, we would like to perform the Datalog analysis over the merged abstract val-
ues rather than the original concrete values to accelerate the analysis. Therefore,
we propose a transformation of Datalog rules to apply this merging.

We start from replacing all occurrences of the concrete values to merge in
Dα with abstract values, changing Dα to D̂α:
– If there is a constant d in the corresponding dimension of Dα, it is changed

to π(d).
– If Dα is derived from other domains, or say, there is a variable X of Dα in

a rule head,
R0(. . . , X : Dα, . . .)← . . . , Rk(. . . , X, . . .),

8 Authors Suppressed Due to Excessive Length

we add a relation Abstract(X, X̂) (dom(Abstract) = Dα × D̂α) in the rule

body and change X in the head to X̂,
R0(. . . , X̂ : D̂α, . . .)← . . . , Rk(. . . , X, . . .), . . . , Abstract(X, X̂).

Thus, every time a constant in Dα is derived by this rule, it is merged into
D̂α.

– If Dα derives to its super-domain, or say, there is a variable X of Dα in a
rule body and the same variable of Dβ in the rule head, the concrete values
to merge in Dβ should also be replaced with abstract values by derivation.

It involves no syntactical change, but Dβ should be changed to (D̂β \∆)∪∆̂.
Transitively, all super-domains of Dα are changed. The previously described
transformations are applied to all these super-domains. In the following para-
graphs, we refer to Dα and all its super-domains as merging domains.

However, the change in domains will break some original derivation, when
two domains in the body of a rule joins with each other, i.e.,

R0(. . .)← . . . , Ri(. . . , X, . . .), . . . , Rj(. . . , X, . . .),
If Di and Dj , domains of X in the two relations, are both non-merging domains
or both merging domains, the equivalence of values between the two domains are
unchanged, so original derivation still holds. However, if Di is a merging domain
but Dj is not (the order does not matter here), the derivation would break after
replacing concrete values in Di with abstract values, because the abstract values
cannot matchf the unchanged concrete values in Dj . To restore the derivation,
the rule should be transformed as:

R0(. . .)← . . . , Rk(. . . , X, . . .), . . . , Rl(. . . , X̂, . . .), . . . , Abstract(X, X̂).

When X is substituted with the original concrete constant d and X̂ is substituted
with abstract value π(d), the derivations still holds.

We use an example to demonstrate the effect of the rule transformation.
Figure 3(a) shows a proof tree that is used to derive a points-to instance of
the example in Section 2. Each node is a tuple derived from other tuples by
a rule. Node (3) is derived from (1)(2) by rule I and Node (7) is derived from
(3)(4)(5)(6) by rule II. Note that the second domain of CallGraph(CG) is the
call-site of a function call, and the third domain of CG is context of called
function, represented by its most recent call-site. In (3), it means call-site cs1
under initial context # calls method id with context cs1, and we would like to
replace cs1 in the context of called functions with abstract value ∗1, while keep
the cs1 in call-site domain unchanged.

Figure 3(b) shows a proof tree after our transformation. When the call-site
cs1 in Invoke derives into the context domain of CG in (3), the transformed
rule for CG replace it with abstract value ∗1; meanwhile, the call-site domain in
CG is not super-set of the context domain, so the cs1 in the second dimension
of CG is not replaced. Furthermore, though rule II is not transformed, its first
domain - context of variable - is a super-domain of context of called function in
CG according to rule II, so cs1 in (7) is also changed accordingly.

Soundness. Finally, we show that our transformation is sound: any relation
that can be produced by the original rules is still produced by the transformed
rules.

Accelerating Program Analyses in Datalog by Merging Library Facts 9

(a) (b)
I. CG(CalleeCtx, CallSite, CallSite, Method) ←

Invoke(Callee, CallSite, Method), CG(CallerCtx, Caller, CalleeCtx, Callee).
II. VPT(CalleeCtx, FormalVar, Obj) ←

CallGraph(CallerCtx, CallSite, CalleeCtx, Method), ActualParam(CallSite, ActualVar),
FormalParam(Method, FormalVar), VarPointsTo(CallerCtx, ActualVar, Obj).

Fig. 3: An example of embedding merging rules within proof trees

Theorem 1 (Soundness). For a Datalog program C, given a domain-wise
merging of sensitivity elements π on domain Dπ, the derived tuples of output
relations after applying π , denoted as JC|πKo, contains all of the original de-
rived tuples JCKo, i.e. JCKo ⊆ JC|πKo.

Proof. For any derived tuple of relations in the original Datalog analysis, C,
R(d1, d2, . . .) ∈ JCK, there is a derivation for it. According to the process of
transforming Datalog rules, the derivation still hold after transforming the rules
and replacing merged concrete values with abstract values. So by induction,
Π[R(d1, d2, . . .)] = R(Π(d1), Π(d2), . . .) ∈ JC|πK (Π(d) = π(d) if d is in merging
domains, otherwise Π(d) = d). Since an output relation ro has no super-domain
of Dπ, its tuples are unchanged, so Ro(d1, d2, . . .) ∈ JC|πK. Thus, JCKo ⊆ JC|πKo
is proved.

The above theorem concerns only the standard Datalog. In practice, nega-
tion operator ¬ is frequently used, which supports the negation operation over
relations. Unfortunately, the above soundness property does not hold if nega-
tions is made on the domain to be merged. In such a case, we may still merge
the domains where no negation is applied, or merge the values that are in a
negated domain but would never be involved in a negation calculation during
an execution.

4.2 N-Domain-Wise Merging

Under some circumstances, there are several sensitivity domains in a Datalog
program to which we can apply mergings. We can find mergings in these domains
and apply these mergings one by one, but this approach cannot capture the
correlation among these sensitivity domains. For example, in a context-sensitive
points-to analysis, heap objects and their contexts are usually combined to derive
some relations, such as field points-to relations. So we attempt to extend our
merging function on the Cartesian product of multiple sensitivity domains:

π : D1 × · · · ×DN → D̂1...N

10 Authors Suppressed Due to Excessive Length

Here ̂D1×···×N = (D1 × · · · ×DN \∆1...N)∪ ∆̂1...N , ∆1...N is the set of concrete

value tuples to merge and ∆̂1...N is the set of abstract values.
We can apply the merging by transforming Datalog rules similarly, chang-

ing Abstract(X, X̂) to Abstract(X1, . . . , XN , X̂, . . . , X̂) (X̂ is the abstract value
copied N times to keep the N-D shape). It can be proved similarly that soundness
of N-domain-wise merging still holds.

However, there is a challenge in defining such an N-dimension-wise merging
function. Here we take the 2-dimension case of heap objects (DH) and heap
contexts (DC), for illustration. Basically we can define arbitrary merging func-

tion in the form: πH,C(dH , dC) = (d̂, d̂). However, in an object-sensitive setting,
values of heap contexts are derived from values of heap objects, i.e. DC is DH ’s
super-domain. Replacing values of DH would change the values in DC as well.
How can we define a merging function on the values that depends on the results
of this function? To resolve this recursive dependency, we propose Incremental
Merging. Instead of defining π directly, we define a series of mergings, the first
one merging a single domain and the others each merging a larger set of domains.

Here we introduce the 2-dimension case. Suppose we want to define a merging
π on two domains D1 and D2, and D2 is a super-domain of D1.

We first merge in the D1 independently by defining π1 : D1 → D̂1.
Since D2 is a super-set of D1, it is also changed according to transformation

of rules. But we can know the changes in D2 through the output of π1. Then we
make a second merging in changed domain D̂2, but dependent on the merged
values in D̂1, by a function π2 : D̂1 × D̂2 → D̂1,2.

Thus, (d1, d2) in D1 ×D2 is merged to (d̂, d̂), where d̂ = π2(π1(d1), π1(d2)).

The added argument D̂1 in π2 allows us to make different mergings on D2

dependently on D1, thus still capturing the correlation between the two domains.
Incremental Merging can be extended to general N-dimensional cases as well.

We present it in Appendix A.

4.3 Properties of Mergings

We have introduced how to transform Datalog rules to apply merging, and proved
its soundness. Then we need to choose a good merging.

The number of different mergings over a given domain is equivalent to the
number of different partitions of its value set Bell(n) (where n is the size of
the set), which is prohibitively large4. In general, when more values are merged,
the datalog program may run faster, but meanwhile it is more likely to lose the
original precision. We can formalize that the precision of results is monotone to
the mergings.

First we need to define a partial order over mergings.

Definition 3 (Partial Order of Mergings). Given a set of N sensitivity
domains D1 . . . DN , a merging πa of D1×· · ·×DN is finer than another merging

4 Bell number can be recursively calculated as B(n+ 1) = Σn
k=0C

k
nB(n)

Accelerating Program Analyses in Datalog by Merging Library Facts 11

πb (and πb is coarser than πa) iff any tuple of elements merged into one tuple of
abstract values in πa are also merged into one tuple of abstract values in πb.
πa � πb ⇐⇒ ∀x1, y1 ∈ D1, . . . , xN , yN ∈ DN ,

πa(x1, . . . , xN) = πa(y1, . . . , yN)→ πb(x1, . . . , xN) = πb(y1, . . . , yN).

We can also define the Meet and Join since merging values in a domain is
equivalent to partitioning over its value set.

Thus, mergings of sensitive elements form a lattice. And the (transformed)
Datalog program is a function on this lattice. Then we can prove the monotonic-
ity of analysis results on this lattice (we present the proof in Appendix B).

Theorem 2 (Monotonicity). Given a Datalog program C. If the merging πb
of the domains D1, . . . , DN is a finer merging than πa, then applying πb to C
will deduce no fewer results than πa. It means

πa � πb → JC|πaKo ⊆ JC|πbKo

As is shown in the example in Section 2, the monotonicity is not strict and
there are some mergings that generate just the same results as origin.

Definition 4 (Precision-preserving merging). Given a Datalog program C.
A merging π is a precision-preserving merging on iff JC|πKo = JCKo.

All the precision preserving merging can keep the precision of the original
result. Among these mergings, in order to improve efficiency, we want to find one
that reduces the domain size as much as possible. So we define maximal merging
as our target of finding mergings.

Definition 5 (Maximal Merging). A precision-preserving merging πa is a
maximal merging iff there is no other precision preserving merging is coarser
than πa.

5 Algorithm

We have proved soundness of domain-wise merging and defined maximal merging
as a good merging. Our current goal is approximating the target merging.

5.1 Learn Merging Heuristics of Library Facts from Input Programs

The first challenge is that our defined maximal merging is specific to one given
input program. It would be time-consuming if we use a pre-analysis to generate
a maximal merging every time before analyzing a new program. So a general
merging that can apply to different programs is preferable.

While it is impossible to find a universal merging that suits all kinds of input
programs, the good news is that we can take advantage of the fact that large
part of modern software is shared library code. Library code is usually large
and analyzing it occupies a large portion of the analysis time. Among library
functions, some functions are internal methods that are always called by other

12 Authors Suppressed Due to Excessive Length

library functions; some are called in a fixed pattern due to code paradigms:
therefore, library codes share similar behaviour across different client codes.

Based on this observation, we can assume that if a merging can reduce run-
ning time with precision kept for analysis on a rather large number of input
programs that share a library, it can also accelerate the analysis on other input
programs using the same library. Thus, we can generate a merging heuristic for
this library by learning from these input programs as a training set. Though
there is no guarantee that precision is kept on new programs because they are
not the same as the training programs, we can introduce fewer false positives by
enlarging the training set.

When the user specifies a sensitivity domain to merge, 4DM first finds out
all the values of the specified domain for each input program in the training set.
It can be done either by collecting from input instances or running an original
analysis to dump the sensitivity domain. Then it selects ones that are only related
to the library from the union set of these values, and explores a merging on this
set that reduces execution time and keeps precision for all input programs in the
training set. We take the found merging as a merging heuristic for the library.

With a library heuristic, we can apply a merging to another program using
this library, where only values specified by the heuristic are merged while other
values stay unchanged.

5.2 Finding a Maximal Merging

How can we find a good merging on the set of library-related values? That is the
remaining problem we need to solve in this part.

If we have some insight about the rules and domains we want to merge, we
can use a specifically-designed rule to find a good merging. For example, we can
use the heap equivalent automata from Tan et al. [21] as a guide to generate
merging heuristics of Heap domain in analysis.

And what if we do not have enough insight? We propose a highly general
method GenMax. We use a greedy algorithm to partition these values iteratively.
In each iteration, we find a maximal set of concrete values that can be replaced
by one assigned abstract value while preserving the original precision. In this
situation, no more values in this domain can be added into this set without losing
precision, so they are excluded from the rest of values in following iterations.
When all values are tested, the algorithm terminates.

This resulting merging is maximal, i.e. any two abstract values cannot be
merged without losing precision. According to definition, there can be more
than one maximal merging for the given set of concrete values, but evaluation in
Section 6 shows the maximal merging found by our greedy algorithm is adequate.

To find a maximal merging set in every iteration, we explore two different
approaches, an enumerative one and a randomized one.

Enumeration for Maximal Merging Set. In order to find the maximal
number of mergeable concrete values, a direct method is to enumerate over
every concrete value. As is shown in Algorithm-5.1, given the set of all concrete

Accelerating Program Analyses in Datalog by Merging Library Facts 13

Algorithm 5.1: Enumeration

Input : Set of all concrete values E
Output: Current merging set N
Data: Set of concrete values outside merging set C
Data: Set of unchecked concrete values M

1 begin
2 N ← ∅;
3 C ← ∅;
4 M ← E;
5 for v ∈ E do
6 M ←M − {v};
7 if merge N ∪ {v} preserves precision then
8 N ← N ∪ {v}
9 end

10 C ← C ∪ {v};
11 end

12 end

values E, each time we randomly choose one unchecked value from E, check
whether it can be added into current merging set, until all values are checked.
Note that the analysis is embedded with rules of merging through Section 4. In
this method, number of calls to logic analysis is linear to the size of the set of
abstract values. But the time complexity is worse than O(|E|) because runtime
of each attempt of analysis also gets longer when input program grows larger.
This method would be too time-consuming especially for large programs.

Active Learning for Maximal Merging Set. It would be better if we can try
to add more than one concrete values into current merging set at once. Liang et
al. [16] proposes an active learning algorithm, ActiveCoarsen, to find a minimal
binary abstraction which is estimated to be more efficient. The algorithm is
transformed in our setting and described in Algorithm-5.2.

Each time, ActiveCoarsen picks multiple concrete values by the ratio α, and
tries to add them into current merging set. If failed, put the concrete values back
and re-pick again. If we set α = e−

1
s , where s is the size of the maximal merging

set of concrete values, the expected number of calls to the analysis is O(s log n).
However, we have no knowledge of the size s. Liang et al. [16] also introduce a
mechanism for setting and updating α without knowledge of s, which is detailed
in their article.

Optimization Though ActiveCoarsen tries more concrete values at a time,
when the size of remaining concrete values in M is small, randomly selecting
more than one value to merge at each trial would be less effective than plain
enumeration. We approximately calculate that when the remaining size n is
smaller than about (1 +

√
5)/2 times the size s of minimal critical set, it would

be better to switch to enumeration for minimal critical set.
Another optimization is that since each iteration we expand a merging set

to max, the generated merging sets would get smaller since remaining concrete

14 Authors Suppressed Due to Excessive Length

Algorithm 5.2: ActiveCoarsen

Input : Set of all concrete values E
Input : Probability of random selection α
Output: Set of concrete values outside merging set N
Data: Set of undetermined concrete values M
Data: Set of random-selected concrete values T

1 begin
2 N ← ∅;
3 M ← E;
4 while M is not empty do
5 T ← select(M,α);
6 if merge N ∪ T preserves precision then
7 N ← N ∪ T ;
8 M ←M − T ;

9 end
10 update α;

11 end

12 end

values get fewer. The benefit-cost ratio would decrease a lot. So after finding
several large merging sets, we cut the exploration of merging early.

6 Implementation and Evaluation

To evaluate the effectiveness and generality of our approach 4DM, we imple-
mented 4DM in Python and compared it with existing approaches over two
different Datalog-based analyses: points-to analysis and liveness analysis.

6.1 Points-to analysis

We first carried out an experiment on a context-sensitive points-to analysis over
Java programs. The analysis is from the Doop framework [3]. We use 2-object-
sensitive+heap (2o1h) as the sensitivity configuration in our evaluation because
it is the most precise configuration on which most benchmark projects can be
analysed with reasonable amount of time. We transformed the Soufflé implemen-
tation of Datalog rules as input of 4DM’s merging.

In this experiment, we trained abstractions for all libraries in JDK. The ab-
straction is the Cartesian product of domains Heap and HeapContext. Since in
the setting of object-sensitivity, heap context is a super-domain of heap objects,
we used incremental abstraction on them as described in Section 4.

We selected 15 Java projects as subjects from Dacapo benchmark [2] and
pjbench [18]. We excluded some projects (bloat, batik and jython) from our
subject set because it takes too long time to run 2o1h analysis on them.

To check whether 4DM is stable when using different training sets, we per-
formed a 5-fold cross-validation over the selected projects. In particular, we

Accelerating Program Analyses in Datalog by Merging Library Facts 15

tradebeans antlr h2 tsp lusearch
0

20
40
60
80

100
120
140
160
180
200

ti
m

e
(s

)
2o1h

Mahjong

Mahjong(lib)

4DM

chart eclipse luindex pmd sunflow
0

20
40
60
80

100

ti
m

e
(s

)

fop hsqldb xalan avrora hedc
0

20
40
60
80

100

ti
m

e
(s

)

Fig. 4: Comparison of Execution Time (in sec)

randomly partitioned these projects into 5 groups, each containing 3 projects.
In each fold of cross-validation, every 4 groups form a training set and the re-
maining one group forms a testing set. We apply the learned merging heuristics
from the 12 programs to the rest 3 programs. Each column in Figure 4 and each
segment in Table 1 show the results on one group by training on the other 4
groups (e.g., tradebeans, chart, and fop are a group). Though it takes 2 to 3
days to find a merging heuristic from a training set, the learnt heuristic can be
reused across different programs in the testing set, and thus, the training process
is offline. The execution time and precision measures in the following paragraphs
are the results on the testing set.

In our evaluation, we compare the execution time and precision of 4DM with
3 existing approaches:

– Standard 2o1h analysis (denoted as 2o1h). This is the baseline.
– The 2o1h analysis with Mahjong [21] (denoted as Mahjong). Its execution

consists of two parts: the pre-analysis is a light-weight analysis to learn
merging rules and the post-analysis is the 2o1h analysis based on the merging
rules learned from the pre-analysis.

– The 2o1h analysis with a variant of Mahjong (denoted as Mahjong(lib)). The
process is similar to Mahjong, but the difference is that all values outside
JDK are excluded from the merging sets generated by pre-analysis.

In our evaluation, we try to answer the following three research questions:

RQ1: How effective our technique is on the acceleration of points-to
analysis? To answer this question, we present the execution time of compared
approaches in Figure 4. All the execution time is measured on a machine with 2

16 Authors Suppressed Due to Excessive Length

Intel Xeon Gold 6230 CPUs and 512GB RAM, equipped with Ubuntu 18.04 and
JDK 1.7.0-80. All analyses are executed single-threaded. In the Figure, the exe-
cution time of each project is presented as a cluster of four columns. From left to
right, the columns represent the execution time of 2o1h, Mahjong, Mahjong(lib),
and 4DM respectively. For Mahjong and Mahjong(lib), the lighter-color part of
the column represents the pre-analysis time, and the darker-color part of the
column represents the post-analysis time.

From this figure, we can observe that our technique can significantly acceler-
ate the points-to analysis compared with the standard implementation 2o1h on
all the experimented projects (with an average speedup of 1.6×).

Comparing with the post-analysis of Mahjong, 4DM is faster in 6 of the
15 projects, and slower in 9. The difference in time is modest in most of the
projects. But if we take Mahjong ’s pre-analysis for each project into account,
4DM is significantly faster than Mahjong on all projects. While merging learnt
by 4DM can be applied to different programs sharing the common library once
it is obtained, the pre-analysis in Mahjong must be executed whenever analyzing
a new project.

Since 4DM only merges library elements, we also compare it with a variant of
Mahjong which merges only heap objects in the library, and 4DM is faster than
Mahjong(lib)’s post-analysis in 10 of 15 projects. It implies that 4DM ’s data-
driven method learnt a comparably good merging as the specifically-designed
strategy in Mahjong.

RQ2: How much precision loss 4DM causes? To answer this question, we
use two commonly used metrics for the precision of points-to analysis - polymor-
phic virtual call-sites (abbreviated as poly) and may-failing typecasts (abbrevi-
ated as cast), and compare experimented approaches on the two metrics. The
more call-sites the analysis identified as polymorphic and the more typecasts the
analysis identified as may-failing, the analysis is more imprecise.

The details are in Table 1. Columns poly and cast present the number of
polymorphic virtual call-sites and may-failing typecasts detected by baseline
2o1h, and Columns ∆poly and ∆cast refers to the number of additional false
positives detected by other approaches compared with the baseline 2o1h.

According to analysis results, the precision loss of our technique is mini-
mal. Compared with standard 2o1h, 4DM causes no precision loss in 10 out of
15 projects. In the remaining projects, the highest precision loss happens in the
eclipse project, with 3.0% extra polymorphic virtual call-sites reported. Compar-
ing with Mahjong, though the maximal precision loss of Mahjong (2.0% in cast
of eclipse) is smaller than 4DM, it loses precision in cast in more projects than
4DM. Thus, we can conclude that our approach is also comparable to Mahjong
in precision loss.

RQ3: Is our approach stable when using different training sets? We
need to check that if the training set changes, 4DM’s learnt merging heuristic
still reach a significant acceleration with minimal precision loss. From evaluation
results in RQ1 and RQ2, we can see that all the five sets of heuristics generated
with five different training sets achieve significant acceleration and minimal pre-

Accelerating Program Analyses in Datalog by Merging Library Facts 17

Analysis 2o1h Mahjong Mahjong (lib) 4DM
Program poly cast ∆poly ∆cast ∆poly ∆cast ∆poly ∆cast

tradebeans 850 567 0 1 0 0 0 0
chart 1446 1279 0 1 0 0 3 3
fop 838 519 0 1 0 0 0 0

antlr 1643 640 0 1 0 0 0 0
eclipse 1318 1020 14 20 0 0 40 10
hsqldb 802 515 0 1 0 0 0 0

h2 942 559 0 2 0 0 0 0
luindex 929 549 0 1 0 0 0 0
xalan 808 514 0 1 0 0 0 0
tsp 784 441 0 1 0 0 0 0

pmd 886 911 0 1 0 0 0 0
avrora 936 715 0 1 0 0 2 0

lusearch 1136 596 0 1 0 0 0 0
sunflow 2000 1528 0 1 0 0 25 8

hedc 871 458 0 1 0 0 25 10
Table 1: Comparison of Precision Loss.

cision loss. Thus, we can conclude that our technique is stable across different
training sets.

RQ4: What is the performance of our approach in large applications?
We excluded 3 large projects (bloat, batik and jython) previously, as it takes a
long time to run the training algorithm in Section 5 on them. But we can apply
the learnt heuristics from smaller projects to accelerate the points-to analysis
on large approaches. We apply the 5 heuristics learnt above to the 3 projects,
and find that both bloat and batik are accelerated with a minimal precision loss
(bloat speeds up by 1.0% with 0 precision loss, batik speeds up by 11.0% with
precision loss less than 1%). However, jython still exceeds a 3-hour time limit.
The details are in Appendix C.

Evaluation summary on points-to analysis. From the answers of the above
research questions, we can see that (1) 4DM can significantly accelerate base-
line 2o1h with minimal precision loss; (2) compared with Mahjong, 4DM can
achieve comparable efficiency and precision loss without performing pre-analysis
for each new project; and (3) 4DM’s efficiency and precision are stable when
using different training sets.

6.2 Liveness analysis

In this subsection, we evaluate our method on an inter-procedure liveness anal-
ysis over Java programs to validate the generality of our approach.

To further challenge our approach on generality, we use a different domain,
program points, as the sensitivity domain for liveness analysis. The observation
is that for many program points, their live variable sets are exactly the same,
i.e. there exists much redundant propagation in the analysis. If we view program

18 Authors Suppressed Due to Excessive Length

points as sensitivity elements, and apply domain-wise merging, we could speed
up the analysis by reducing redundant computation from tuning flow-sensitivity.

In particular, in order to find appropriate merging for sensitivity elements,
we use the following heuristic: if two program points are adjacent in the control
flow graph, and the kill sets of them are empty, then the two program points are
mergeable. By considering all adjacent pairs in the control flow graph, we could
obtain our desired abstraction for the program.

Experiment setting. We evaluated our approach on 9 projects from Dacapo
benchmark. They are divided into 3 groups and each group contains 3 projects.
For each group, we learn a unique abstraction of the library code by applying
4DM, and test the library abstraction on the other two groups.

Results. Our approach accelerates the liveness analysis on all of the bench-
marks. The average speed-up is 19.8%, and the average precision loss is 4.9%.
The detailed performance is listed in Appendix D.

We stress that we only use a simple heuristic in a new domain, and the results
show that our method still works remarkably well. It indicates that by carefully
choosing domains, and applying various learning techniques, our method could
speed up many other analyses in a way orthogonal to existing works.

7 Related Work

There have been many approaches proposed to accelerate program analysis.
Among these approaches, three types are relevant to our paper.

Context reduction. Lhoták and Hendren [13] conducts an empirical study
that demonstrates there are very few contexts related to the precision of the
analysis results. Liang et al. [16] propose to finding the minimal set of call sites
that preserve the precision. The result shows that most call sites does not affect
the precision. Both Lhoták and Hendren [13] and Liang et al. [16] do not directly
accelerate context-sensitive analysis, instead they see opportunities to reduce
contexts for acceleration. Actually, the algorithm for finding minimal partitions
in our paper are inspired by Liang et al. [16]

Based on the above observation, researchers [27, 11, 10, 14, 15, 26] propose to
adjust context sensitivities at different program points to accelerate context-
sensitive points-to analysis. There are two main directions. One is refinement,
that is, iteratively increasing sensitivity on some program points on demand to
improve precision. For example, Zhang et al. [27] starts from the most coarse
abstraction and finds suitable program points to increase context length using
an online SAT-solver-based algorithm, to reduce false positives. The other is
coarsening, which analyzes the code beforehand, and performs the full analysis
with coarser sensitivity at specific program points. For example, Li et al. [14]
neglects context sensitivity in some methods which are calculated during pre-
processing phase.

As is already mentioned in the overview, our domain-wise merging could
merge redundant contexts in a fine-grained way that cannot be implemented by
these approaches. On the other hand, our method considers more in a coarsening

Accelerating Program Analyses in Datalog by Merging Library Facts 19

direction as it merges concrete values. As a result, in the future potentially our
approach could develop in another direction, combined with refinement-based
methods. Furthermore, our work deals with not only context-sensitive points-to
analysis but also more general cases.

Equivalence classes. The idea of equivalence classes has already been used
to accelerate analysis. Cycle detection [8, 16, 9] is a common way to detect vari-
able and object equivalence, which can reduce the number of variables or objects
in points-to analysis. Tan et al. [21] uses an idea of equivalent automata to merg-
ing type-consistent heap objects. In addition, Xu and Rountev [25] and Xiao and
Zhang [24] exploit context equivalence and use custom encoding to merge con-
texts, and are also considered as ways for context reduction. Our definition of
domain-wise merging could be viewed as a generalization of the previous ab-
stractions. Our approach can automatically learn the merging from a training
set, in contrast to existing approaches relying on properties of certain analyses.

Library summarization. Library summarization techniques keep only nec-
essary library facts in library summaries so as to accelerate client analysis. Client
analysis can use summaries for reasoning, without inner reasoning for the library.
Tang et al. [23, 22] propose conditional reachability to summarize all potential
reachability between library boundaries. Polymer [12] learns library behavior
from training clients to create conditional summaries for a library. However, a
full summarization of the library is usually too large to store and load. For ex-
ample, the summary produced by Tang et al. [22] needs tens of Gigabytes for
some of the JDK classes over a simple data-dependence analysis. In contrast to
these approaches that try to fully summarize the library, our work tries to learn
a merging that is suitable for analyzing the library. The learnt merging heuristic
of heap objects with heap contexts for the whole JDK library in our evaluation
in Section 6.1 consist of only around 1000 lines of Datalog facts, respective for
different training sets. Such a merging heuristic is easy to store and load.

Abstract Interpretation of Logic Programs. There is classic literature
on extending abstract interpretation to logic programs [4–6, 1, 7]. Previous re-
search on this topic mainly aims to analyze properties of logic programs them-
selves, such as variable binding and predicate type; while in 4DM, the analysis
is expressed in a logic program but it analyzes properties of other programs.
But the way 4DM transforms Datalog programs and merges analysis values can
be viewed as abstracting the Datalog program expressing the analysis. It lifts
the “concrete domain” of the original analysis values to the abstract domain of
merged values. This is a special case of abstract interpretation of logic programs.

8 Conclusion

In this paper we have introduced 4DM, a new framework for tuning abstractions
in a program analysis using domain-wise merging. In particular, it uses a data-
driven method to automatically learn an effective merging heuristic for library
code from a training set of programs. 4DM can be applied to merging different
kinds of sensitivity elements in various analyses that are expressed in Datalog.

20 Authors Suppressed Due to Excessive Length

Our evaluation results show that our approach significantly accelerates a context-
sensitive pointer analysis and a flow-sensitive liveness analysis with minimal
precision loss.

Acknowledgements This work is supported in part by the National Key Re-
search and Development Program of China No. 2019YFE0198100, National Nat-
ural Science Foundation of China under Grant Nos. 61922003, and a grant from
ZTE-PKU Joint Laboratory for Foundation Software.

References

1. Barbuti, R., Giacobazzi, R., Levi, G.: A general framework for semantics-based
bottom-up abstract interpretation of logic programs. ACM Transactions on Pro-
gramming Languages and Systems (TOPLAS) 15(1), 133–181 (1993)

2. Blackburn, S.M., Garner, R., Hoffmann, C., Khang, A.M., McKinley, K.S.,
Bentzur, R., Diwan, A., Feinberg, D., Frampton, D., Guyer, S.Z., Hirzel, M., Hosk-
ing, A., Jump, M., Lee, H., Moss, J.E.B., Phansalkar, A., Stefanović, D., Van-
Drunen, T., von Dincklage, D., Wiedermann, B.: The dacapo benchmarks: Java
benchmarking development and analysis. In: Proceedings of the 21st Annual ACM
SIGPLAN Conference on Object-oriented Programming Systems, Languages, and
Applications. pp. 169–190. OOPSLA ’06, ACM, New York, NY, USA (2006)

3. Bravenboer, M., Smaragdakis, Y.: Strictly declarative specification of sophisticated
points-to analyses. In: Proceedings of the 24th ACM SIGPLAN conference on
Object oriented programming systems languages and applications. pp. 243–262
(2009)

4. Cortesi, A., Filé, G.: Abstract interpretation of logic programs: an abstract domain
for groundness, sharing, freeness and compoundness analysis. In: ACM SIGPLAN
Notices, Volume 26, Issue 9, PEPM ’91. pp. 52–61. ACM (1991)

5. Cousot, P., Cousot, R.: Abstract interpretation and application to logic programs.
The Journal of Logic Programming 13(2), 103–179 (1992)

6. Debray, S.K.: Global optimization of logic programs (analysis, transformation,
compilation). (1987)

7. Delzanno, G., Giacobazzi, R., Ranzato, F.: Static analysis, abstract interpretation
and verification in (constraint logic) programming. In: A 25-Year Perspective on
Logic Programming, pp. 136–158. Springer (2010)

8. Fähndrich, M., Foster, J.S., Su, Z., Aiken, A.: Partial online cycle elimination in
inclusion constraint graphs. In: Proceedings of the ACM SIGPLAN ’98 Confer-
ence on Programming Language Design and Implementation (PLDI), Montreal,
Canada, June 17-19, 1998. pp. 85–96 (1998)

9. Hardekopf, B., Lin, C.: The ant and the grasshopper: fast and accurate pointer
analysis for millions of lines of code. In: Proceedings of the ACM SIGPLAN 2007
Conference on Programming Language Design and Implementation, San Diego,
California, USA, June 10-13, 2007. pp. 290–299 (2007)

10. Jeon, M., Jeong, S., Oh, H.: Precise and scalable points-to analysis via data-driven
context tunneling. PACMPL 2(OOPSLA), 140:1–140:29 (2018)

11. Jeong, S., Jeon, M., Cha, S.D., Oh, H.: Data-driven context-sensitivity for points-to
analysis. PACMPL 1(OOPSLA), 100:1–100:28 (2017)

Accelerating Program Analyses in Datalog by Merging Library Facts 21

12. Kulkarni, S., Mangal, R., Zhang, X., Naik, M.: Accelerating program analyses by
cross-program training. In: Proceedings of the 2016 ACM SIGPLAN International
Conference on Object-Oriented Programming, Systems, Languages, and Applica-
tions, OOPSLA 2016, part of SPLASH 2016, Amsterdam, The Netherlands, Oc-
tober 30 - November 4, 2016. pp. 359–377 (2016)

13. Lhoták, O., Hendren, L.J.: Context-sensitive points-to analysis: Is it worth it? In:
Compiler Construction, 15th International Conference, CC 2006, Held as Part of
the Joint European Conferences on Theory and Practice of Software, ETAPS 2006,
Vienna, Austria, March 30-31, 2006, Proceedings. pp. 47–64 (2006)

14. Li, Y., Tan, T., Møller, A., Smaragdakis, Y.: Precision-guided context sensitivity
for pointer analysis. PACMPL 2(OOPSLA), 141:1–141:29 (2018)

15. Li, Y., Tan, T., Møller, A., Smaragdakis, Y.: Scalability-first pointer analysis with
self-tuning context-sensitivity. In: Proceedings of the 2018 ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering, ESEC/SIGSOFT FSE 2018, Lake Buena Vista, FL, USA,
November 04-09, 2018. pp. 129–140 (2018)

16. Liang, P., Tripp, O., Naik, M.: Learning minimal abstractions. In: Proceedings
of the 38th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2011, Austin, TX, USA, January 26-28, 2011. pp. 31–42 (2011)

17. Nielson, F., Nielson, H.R., Hankin, C.: Principles of program analysis. Springer
(1999)

18. pjBench: Parallel java benchmarks (2014)
19. Shivers, O.: Control-flow analysis of higher-order languages (1991)
20. Smaragdakis, Y., Kastrinis, G., Balatsouras, G.: Introspective analysis: Context-

sensitivity, across the board. In: Proceedings of the 35th ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation. pp. 485–495. PLDI
’14, ACM, New York, NY, USA (2014)

21. Tan, T., Li, Y., Xue, J.: Efficient and precise points-to analysis: Modeling the heap
by merging equivalent automata. In: Proceedings of the 38th ACM SIGPLAN
Conference on Programming Language Design and Implementation. pp. 278–291.
PLDI 2017, ACM, New York, NY, USA (2017)

22. Tang, H., Wang, D., Xiong, Y., Zhang, L., Wang, X., Zhang, L.: Conditional dyck-
cfl reachability analysis for complete and efficient library summarization. In: Pro-
gramming Languages and Systems - 26th European Symposium on Programming,
ESOP 2017, Held as Part of the European Joint Conferences on Theory and Prac-
tice of Software, ETAPS 2017, Uppsala, Sweden, April 22-29, 2017, Proceedings.
pp. 880–908 (2017)

23. Tang, H., Wang, X., Zhang, L., Xie, B., Zhang, L., Mei, H.: Summary-based
context-sensitive data-dependence analysis in presence of callbacks. In: Proceed-
ings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2015, Mumbai, India, January 15-17, 2015. pp.
83–95 (2015)

24. Xiao, X., Zhang, C.: Geometric encoding: forging the high performance context
sensitive points-to analysis for java. In: Proceedings of the 20th International Sym-
posium on Software Testing and Analysis, ISSTA 2011, Toronto, ON, Canada, July
17-21, 2011. pp. 188–198 (2011)

25. Xu, G., Rountev, A.: Merging equivalent contexts for scalable heap-cloning-based
context-sensitive points-to analysis. In: Proceedings of the 2008 International Sym-
posium on Software Testing and Analysis. pp. 225–236. ISSTA ’08, ACM, New
York, NY, USA (2008)

22 Authors Suppressed Due to Excessive Length

26. Yan, H., Sui, Y., Chen, S., Xue, J.: Spatio-temporal context reduction: a pointer-
analysis-based static approach for detecting use-after-free vulnerabilities. In: Pro-
ceedings of the 40th International Conference on Software Engineering, ICSE 2018,
Gothenburg, Sweden, May 27 - June 03, 2018. pp. 327–337. ACM (2018)

27. Zhang, X., Mangal, R., Grigore, R., Naik, M., Yang, H.: On abstraction refinement
for program analyses in datalog. In: ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’14, Edinburgh, United Kingdom -
June 09 - 11, 2014. pp. 239–248. ACM (2014)

A Incremental Merging in N-domain-wise cases

Here we describe how to define an incremental merging function for general cases
of N-domain-wise merging.

Suppose we want to define a merging function on N domains D1, D2, . . . , DN .
Without loss of generality, we suppose Di can only be a super-domain of Dj when
i > j. We define πi (1 ≤ i ≤ N) by induction:
– When i = 1, we can define an arbitrary 1-domain-wise merging function on
D1.

– Suppose we have defined a function πi : D1×· · ·×Di → D̂1...i, we can define

πi+1 : D1 × · · · ×Di ×Di+1 → D̂1...i+1 with a helper function π′i+1:

π′i+1 : D̂1...i × D̂i+1 → D̂1...i+1

Here D̂i+1 represents the changed domain of original Di+1 after applying
the merging πi, and πi+1(d1, . . . , di, di+1) = π′i+1(πi(d1, . . . , di), πi(di+1)).
Note that πi(di+1), which di+1 would become under πi, is determined after
applying πi to the Datalog program.
With π = πN , we get an N-domain-wise merging function on D1×· · ·×DN .

B Proof: the monotonicity of mergings

Theorem 3 (Monotonicity). Given a Datalog program C. If the merging πb
of the domains D1, . . . , DN is a finer merging than πa, then applying πb to C
will deduce no fewer results than πa. It means

πa � πb → JC|πaKo ⊆ JC|πbKo
Proof. Given a Datalog program C, any derivation on the proof tree in JC|πaK
has the form

R0(Πa(d01), Πa(d02), . . .) ::= . . . , Rj(Πa(dj1), Πa(dj2), . . .),

(note that the concrete values {dji} may not originally match with each other,
but get matched after applying Πa).

As is defined, for any domain D, ∀x, y ∈ D,Πa(x) = Πa(y) → Πb(x) =
Πb(y), so in JC|πbK’s proof tree,

R0(Πb(d
0
1), Πb(d

0
2), . . .) ::= . . . , Rj(Πb(d

j
1), Πb(d

j
2), . . .),

also holds as a renaming of the previous instantiation.
Therefore, JC|πaKo ⊆ JC|πbKo.

Accelerating Program Analyses in Datalog by Merging Library Facts 23

C Detailed performance of 4DM in points-to analysis on
large projects

Table 2 presents the performance of 4DM by applying learnt heuristics from small
projects to large projects. Each column of 4DM shows the result of applying a
heuristic learnt from a training set of 12 projects. The partition of training set
is the same as in Section 6.1.

project analysis 2o1h
4DM

1 2 3 4 5

bloat
time (s) 3122.32 3083.92 3093.46 3082.87 3097.3 3100.15

poly 1577 1577 1577 1577 1577 1577
cast 1526 1526 1526 1526 1526 1526

batik
time (s) 1001.57 908.73 894.49 882.18 886.73 879.52

poly 4798 4836 4831 4846 4812 4828
cast 2445 2473 2467 2476 2453 2459

Table 2: Performance of applying heuristics learnt by 4DM from small projects
to large projects.

D Detailed performance of 4DM in liveness analysis

Table 3 shows the detailed results of applying 4DM to liveness analysis.
One practical concern in evaluation is that liveness analysis is usually very

fast, hence random events in the processor could have a big influence on the mea-
sured run time of compiled executable. We tackle this problem by using Soufflé
interpreter to run the analysis and obtain a more reliable record of analysis time.

We use a T-test to check whether the distribution of analysis time changes
significantly after merging. The smaller the p-value, the stronger the evidence
that two distributions are different. We perform 50 independent runs for each
benchmark and analysis. The analysis time is the average of the 50 runs, and
the p-value is calculated base on these data.

We measure the precision by the size of calculated live-variable set at all call
sites. Note that since our approach is sound, this property is non-decreasing; and
the less the size increases, the more precise the analysis is.

24 Authors Suppressed Due to Excessive Length

T
ab

le
3:

P
er

fo
rm

an
ce

fo
r

li
ve

n
es

s
an

al
y
si

s.
li

b
1

=
{l

u
in

d
ex

,
su

n
fl
ow

,
h

sq
ld

b
},

li
b

2
=
{a

v
ro

ra
,

b
a
ti

k
,

b
lo

a
t}

,
li

b
3

=
{c

h
a
rt

,
lu

se
ar

ch
,

p
m

d
}.

av
ro

ra
b

at
ik

b
lo

at
ch

ar
t

lu
se

ar
ch

p
m

d
h

sq
ld

b
lu

in
d

ex
su

n
fl
ow

or
ig

in
al

an
al

y
si

s
ti

m
e

(s
)

#
ca

ll
-s

it
es

li
v
e-

va
r

5.
09

43
73

5
13

.3
7

12
62

30
5.

14
73

21
5

7
.8

1
6
43

32
3.

36
43

49
3

4
.9

5
7
10

99
6
.7

1
6
8
1
2
9

3
.3

3
3
8
3
8
0

6
.3

3
5
0
0
8
5

li
b

1

an
al

y
si

s
ti

m
e

(s
)

sp
ee

d
u

p
(%

)
p

-v
al

u
e

#
ca

ll
-s

it
es

li
v
e-

va
r

p
re

ci
si

on
lo

ss
(%

)

4.
4

13
.6

2.
58

E
-7

4
45

40
1

3.
8

11
.8

4
11

.4
3.

32
E

-6
9

12
88

79
2.

1

4.
45

13
.4

1.
81

E
-8

2
75

06
7

2.
5

6
.4

1
1
7.

9
2
.4

0E
-9

1
6
91

17
7
.4

2.
34

30
.4

7.
31

E
-1

17
45

38
8

4.
4

3
.5

2
9.

3
3
.5

4E
-1

14
7
35

87
3
.5

- - - - -

- - - - -

- - - - -

li
b

2

an
al

y
si

s
ti

m
e

(s
)

sp
ee

d
u

p
(%

)
p

-v
al

u
e

#
ca

ll
-s

it
es

li
v
e-

va
r

p
re

ci
si

on
lo

ss
(%

)

- - - - -

- - - - -

- - - - -

6
.4

7
1
7.

2
4
.1

6E
-8

3
6
67

83
3
.9

2.
35

30
.1

1.
12

E
-1

14
45

79
0

5.
3

3
.4

6
3
0.

1
4
.4

8E
-1

17
7
35

18
3
.4

5
.5

2
1
7
.7

1
.7

3
E

-8
2

7
1
0
0
3

4
.2

2
.3

4
2
9
.7

7
.0

8
E

-1
1
0

4
0
5
9
0

5
.8

5
.5

7
1
2
.0

1
.9

5
E

-7
2

5
2
6
7
5

5
.2

li
b

3

an
al

y
si

s
ti

m
e

(s
)

sp
ee

d
u

p
(%

)
p

-v
al

u
e

#
ca

ll
-s

it
es

li
v
e-

va
r

p
re

ci
si

on
lo

ss
(%

)

4.
39

13
.7

1.
70

E
-8

5
45

88
0

4.
9

11
.7

7
11

.9
6.

31
E

-7
2

12
97

07
2.

8

4.
44

13
.6

6.
78

E
-8

5
75

64
4

3.
3

- - - - -

- - - - -

- - - - -

5
.4

8
1
8
.3

8
.4

9
E

-9
3

7
1
3
3
4

4
.7

2
.3

2
3
0
.3

5
.1

2
E

-1
1
5

4
0
6
9
5

6
.0

5
.3

4
1
5
.6

2
.2

2
E

-8
4

5
7
9
1
0

1
5
.6

