
SCIENCE CHINA
Information Sciences

. RESEARCH PAPER .

A manual inspection of Defects4J bugs and its
implications for automatic program repair

Jiajun JIANG1,2, Yingfei XIONG1,2* & Xin XIA3

1Key Laboratory of High Confidence Software Technologies, MoE Institute of Software;
2Department of Computer Science and Technology, EECS, Peking University, Beijing 100871, China;

3The Faculty of Information Technology, Monash University, Melbourne 3800, Australia

Abstract Automatic program repair techniques, which target to generate correct patches for real-world

defects automatically, have gained a lot of attention in the last decade. Many different techniques and

tools have been proposed and developed. However, even the most sophisticated automatic program repair

techniques can only repair a small portion of defects while producing a large number of incorrect patches.

A possible reason for the low performance is the test suites of real-world programs are usually too weak to

guarantee the behavior of a program. To understand to what extent defects can be fixed with exiting test

suites, we manually analyzed 50 real-world defects from Defects4J, where a large portion (i.e., 82%) of them

were correctly fixed. This result suggests that there is much room for the current automatic program repair

techniques to improve. Furthermore, we summarized seven fault localization and seven patch generation

strategies that are useful in localizing and fixing these defects, and compared those strategies with current

techniques. The results indicate potential directions to improve automatic program repair in the future.
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1 Introduction

Automatic program repair (APR) techniques, which automatically generate patches for defects in pro-

grams and target to software automation [1], have gained a lot of attention in the last decade. A typical

automatic program repair technique [2–5] takes a program and a set of tests as input, where at least one

test is failed by the program, and generates a patch that will fix the defect. Different techniques and

tools have been proposed. These tools generated a patch through techniques such as directed random

search [2, 3], templates [6], component-based program synthesis [5, 7, 8], program transformation from

examples [9–11] and machine learning [12], incorporated fault localization approaches such as spectrum-

based fault localization [13,14], predicate switching [15], and angelic debugging [16], and utilized informa-

tion such as testing results [2, 17], existing patches [6, 9, 12], invariants [18], existing source code [19, 20],

bug report text [21], and comments [4].

Despite these efforts, in practice even the most sophisticated automatic program repair techniques

can only repair a small portion of defects while producing a large number of incorrect patches. For

example, Prophet [12] and Angelix [5], two approaches on the C language, can only fix 14.3% and 12.2%

of the defects on GenProg benchmark [22], while producing incorrect patches for other 22.8% and 22.0%
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defects, respectively. The newest approach on Java, SimFix [20], can only fix 9.5% defects on Defects4J

benchmark [23] while producing incorrect patches to other 6.2% defects.

An often attributed reason for this low performance, especially the large number of incorrect patches,

is that the test suites of real world programs are usually weak. As studied by Le Goues et al. [24],

and Long and Rinard [12], test suites in real world programs are often weak, and in a space of patches

that pass all tests, there will be much more incorrect patches than correct ones. Moreover, Martinez et

al. [25] in a large experiment on Defects4J benchmark found that the test suites even cannot guarantee

the functionality completeness of the program under testing, i.e., when some functional code was deleted,

the programs can still correctly pass the test suites. That is also why, by enhancing Defects4J’s test

suites, many incorrect patches can be successfully ruled out [26]. As a matter of fact, existing automatic

program repair techniques usually rely on existing test suites, which serves as incomplete specifications of

programs under repair. Therefore, it is very difficult for them to distinguish incorrect and correct patches.

Since the performance of current repair techniques are still limited, it naturally raises a question: is it

possible to repair a large portion of defects with existing test suites? This question is important because,

if most of the defects cannot be fixed, we may change the problem settings of automatic program repair,

e.g., asking the user to provide formal specifications of the programs. On the contrary, if most defects

can be fixed, we can focus on improving the current techniques.

To answer this question, we manually analyzed 50 defects randomly selected from Defects4J [23], a

widely-used benchmark of real-world defects in Java programs, to see how much possible these defects

can be fixed. In our analysis, a defect was considered as repairable within a given time frame if and only

if (1) we could identify a possible root cause1) of the defect, (2) we could generate a patch that tackles the

root cause and passes all the tests, and (3) the patch is semantically equivalent to the developer patch.

This study could help us to understand the potential of automatic program repair and to improve

current techniques. If a defect is considered as repairable in our analysis, there exists at least a manual

process to obtain the patch for the defect. By decomposing and automating the manual process, we can

potentially obtain an automatic method to repair the defect. Furthermore, if we found many more defects

can be fixed than current state-of-the-art approaches, it indicates that current automatic program repair

techniques have big potential to be improved.

During the analysis of those defects, we focus on four research questions, and obtained the correspond-

ing results as listed below:

• RQ1: How many of those defects can be fixed under existing test suite? In our analysis,

41 (82.0%) of the 50 defects were correctly fixed, while 6 (12.0%) defects were incorrectly fixed because

the test suite failed to provide sufficient specifications. Moreover, we failed to generate valid patches for

3 (6%) defects, which required domain-knowledge that was difficult to be obtained from the program

and the tests. Though these numbers of fixed defects in the paper comes from one manual analysis and

may be not generalizable, they provide insights that current APR techniques potentially have rooms for

improvement.

• RQ2: How those defects were located and what are the implications to future studies?

After decomposing the manual analysis process, we summarized seven fault localization strategies that

were applied in our manual analysis, along which we compared the most related fault localization tech-

niques with each strategy and identified the concrete points that current techniques could be improved.

• RQ3: How those patches were generated and what are the implications to future stud-

ies? Similarly, we summarized seven patch generation strategies from the manual analysis and compared

them with related program repair techniques, and proposed implications for future study.

• RQ4: What are the inspirations from the manual analysis? According to the analysis, we

found that though many strategies have already been explored by current techniques, they still have a

lot of room to improve. Moreover, some strategies may inform new techniques.

To conclude, the main contributions of this paper are a set of fault localization and patch generation

strategies learned from the manual analysis, which provide concrete directions for future research.

1) Please note that the root cause of a defect may not be the location of code to be changed, but explains the reason of

a program failure.
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2 Background and Related Work

2.1 Automatic Program Defect Repair

As mentioned in the introduction, in a typical defect repair setting the repair technique takes as input

a program and a set of tests, where the program fails at least one test, and produces as output a patch

that is expected to repair the defect when applied to the program. Since tests are used as primary tool

to guarantee the correctness of the patches, we call this setting as test-based program repair.

A key issue to evaluate the performance of repair tools is how to determine the correctness of the

generated patches. In the early studies [2, 6] of automatic repair, a patch is usually considered correct

if the patched program passes all the tests. In recent studies [3–5, 12, 19, 20, 27, 28], a patch is usually

considered as correct if it is semantically identical to the patch produced by human. Note that neither

approach can produce an ideal measurement of correctness: the former may overstate the number of

correct patches (because the test suites may be too weak to guarantee correctness) while the latter may

understate the number of correct patches (because a defect may be repaired in different ways). However,

as studied by Qi et al. [24], the former approach is very imprecise for real world programs because the test

suites are usually weak. Similarly, Smith et al. [29] studied that inadequate test suite would lead to over

fitting patches and suggested that repair techniques must go beyond testing to characterize functional

correctness of patches. As a result, in this paper we take the latter approach, determining the correctness

by the equivalence with human patches previously generated by the developers of the programs.

Many defect repair approaches follow a “generate-and-validate” approach, i.e., these approaches first

try to locate a likely patch in a large patch space, and then validate the patch using all the tests. There

are two main challenges in the repair process. The first is to ensure the correctness of the generated

patches. As mentioned above, the tests in the real world programs are often not enough to guarantee

the correctness of the generated patches. The second is on the generation of correct patches to a large

number of defects. Since the patches need to be validated against all tests, the number of generated

patches cannot be large. In order to locate a small number of likely patches from the patch space, current

approaches cannot support a large patch space. As studied by Long and Rinard [30] and Zhong and

Su [31], most defects cannot be fixed by the patch space considered in current approaches.

For example, to reduce the search space, some techniques are proposed to follow predefined templates

for patch generation, which are similar to the strategies proposed in this paper. Kim et al. [6] and Tan et

al. [32] defined a set of repair patterns or anti-patterns respectively to guide patch generation. Similarly,

Long et al. [3] and Saha et al. [28] proposed a set of program transformation schemas to constrain the

search space of patch generation. However, compared with the strategies derived from our analysis, the

templates used in these approaches are mainly syntactic templates derived from the changes, while our

strategies try to reason why the program failed from a developer point of view and connect more on the

process of how the patches can be deduced.

There are also defect repair approaches that use a different problem setting. For example, some

approaches assume that there exists a full specification of the program [33, 34], and some approaches

consider a concrete class of defects such as memory leaks [35], deadlocks [36] and build failures [37].

These different problem settings are not the focus of our paper.

2.2 Empirical Studies on Defect Repair

There exist several empirical studies on defect repair. Zhong and Su [31] studied real bug fixes through

analyzing commits of five open source projects. They analyzed distributions of fault locations and mod-

ified files. To investigate the complexity of fixing bugs, they analyzed data dependence among faulty

lines. More concretely, they analyzed operations of bug fixes and frequency of them related to APIs. As

another study, Martinez and Monperrus [38] studied the distribution of real bug fixes by analyzing a large

number of bug fix transactions in software repositories. To better understand the nature of bug fixes, they

classified those bug fixes with different classification models. Besides, Soto et al. [39] analyzed a great

deal of bug-fixing commits in Java projects aiming to provide a guidance for future APR approaches. In
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contrast to our study, their studies focus on the distribution of characteristics about defects and patches

but not how these defects were fixed, it is difficult to derive conclusions on the repairability of the defects.

In addition, Yang et al. [40] proposed to filter out overfitting patches by enhancing existing test cases,

which cannot tell how much is the possibility to repair existing bugs under given test cases. On the

contrary, in our empirical study, we not only analyze the possibility of defects to be repaired, but also

identify several concrete directions to improve existing techniques, which are orthogonal to their work.

Similarly, several previous studies [41, 42] also revealed that better test suite is helpful to more accurate

fault localization results. Yang et al. [43] studied the difference of repair results under two statement

selecting strategies for statement modification, i.e., suspiciousness-first algorithm (SFA) based on the

suspiciousness of statements and rank-first algorithm (RFA) relying on the rank of statements. Their

study is similar to ours that proposes implications to guide future studies but from different perspectives.

There exist other human involved studies. Tao et al. [44] conducted a study that repair real defects

manually under the help of APR techniques. It is different from ours because they focus on how the

generated patches help the developers rather than how patches can be derived. Several researchers studied

the debugging process of human developers. Lawrance et al. [45] studied how human developers navigate

through the debugging process and created a model for predicting the navigation process. LaToza and

Mayers [46] studied the questions developers asked during the debugging. Murphy-Hill et al. [47] studied

the factors developers considered during the debugging. Different from these studies, our study focus on

analyzing the repairability of defects rather than understanding how human developers behave.

3 Dataset and Environment

We conducted our case study on Defects4J [23] (v1.0), which consists of 357 defects from five open source

projects, JFreeChart, Closure compiler, Apache commons-Lang, Apache commons-Math and Joda-

Time. Since the whole Defects4J is too large for manual analysis, we randomly selected ten defects from

each project, and thus have a dataset of 50 defects.

To understand how many defects can be repaired, we analyzed each defect in the dataset to determine

whether we can locate a correct patch for the defect. Our manual analysis is performed under the following

three environment settings like many existing automatic program repair techniques [2, 4, 5, 8, 20,48].

• We do not have prior knowledge of the programs under analysis. In other words, we do not know

the complete specifications of the programs except the test suites.

• We only rely on the source code of the program to generate the patch, including both implementation

code, and testing code. In particular, we have no access to the patch of the defect provided by the

developer in the benchmark.

• During the analysis, we can access the Javadoc and comments in the source code but no extra

documents were provided. Besides, we can access the Internet, but cannot search the bug directly.

In this way, we put ourselves into the same environment setting as most test-based program repair

techniques, which mainly depend on the source code and test suite. If we obtain the correct patch for

a defect under this setting, it indicates potential to fix the defect automatically by decomposing and

automating the manual repair process.

More concretely, our analysis would classify the defects into repairable and difficult to repair, and the

classification is based on the following steps for each defect. The first author of the paper, who is a Ph.D.

student with four-year’s experience in Java programming, performed the manual analysis.

• Under the above manual analysis settings, we try to locate a possible root cause of the defect.

• We generate a candidate patch for the defect, and run all tests to validate the patch. If the patch

does not pass all the tests, we restart from the first step.

• If the patch passes all tests, we further compare it with the developer’s patch. If the two patches

are semantically equivalent, we regard the patch as correct and the defect as repairable, otherwise we

regard the patch as incorrect and the defect as difficult to repair. More concretely, We determine semantic

equivalence by considering all possible system states when entering the patched method and checking if
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the system state is equivalent when the method returns. For all possible system states we mean the states

that can be reached through any public method with any input allowed by the method signature.

• If we cannot obtain a patch that passes all tests within 5 hours, we stop and consider the defect

difficult to repair.

During the analysis, the details are recorded and summarized as strategies. Then, the other two authors

further check the validity of the strategies and refine them based on the analysis records until reaching

an agreement. The detailed analysis is available at https://sites.google.com/site/d4jinpection.

4 Methodology for Manual Analysis

Following the usual design of automatic repair, we view a repair process as two phases: fault localization

and patch generation. The former is to identify the root cause of the failure, based on which the latter is

to generate a patch that can fix the failure. We will decompose the repair process from the two phases.

In an abstract view, both the phases can be seen as locating a solution in a (possibly finite or infinite)

space of solutions. In fault localization, the space is the power set of all statements and we try to locate

one statement or a few statements that is the root cause of the defect. In patch generation, the space is

all possible patches and we try to generate a patch that can fix the current defect.

To understand how the defects can be repaired, we need to decompose the fault localization and the

patch generation process used in our analysis. To provide useful guidance for automatic repair techniques,

we assume a model with strategies and try to derive strategies from our analysis. Concretely, both the

fault localization and patch generation processes can be viewed as search and rank procedures. In a

more fine-grained level, the analyzing process is a series of attempts to apply different strategies to the

current problem. A strategy, when applied, either adds (filters out) or increases (decreases) the rank of

some solutions in the search space. A strategy is usually associated with a precondition, which must be

satisfied before applying the solution. During the analysis, we always need to simultaneously consider a

large set of strategies and determine which of them can be applied. For example, a simple strategy of

fault localization is to exclude all statements that are not executed during the failed test execution. This

is equivalent to filter out solutions containing these statements. This strategy can be applied only when

there is an executable test that is failed by the program (this precondition is always satisfied under the

setting of automatic defect repair). As another example strategy, if we observe a rare statement that

breaks usual programming practice, such as if(a=1) rather than if(a==1), we can increase the ranking

of this statement among all candidate statements during fault localization.

Under this view, to understand how defects could be fixed under the given test suite, we try to

decompose the repair processes into a set of strategies. Totally, we identified seven strategies for fault

localization and seven strategies for patch generation. A further observation on the strategies is that the

distinction between fault localization and patch generation is not always clear. A strategy can contribute

to both two phases. For example, the aforementioned strategy on programming practice not only provide

guidance on fault localization, but also gives us a solution in patch generation, i.e., change a=1 to a==1.

Therefore, if a strategy contributes to both sub-processes, we classify it based on its main contribution.

5 Results

In this section, we first will present the overall result of the analysis and compare it with existing

automatic program repair techniques. Then, we will introduce those strategies used in the analysis

for fault localization and patch generation, respectively, along which we will compare the most related

techniques with each strategy in our study and identify concrete points to improve current techniques.

5.1 RQ1: Manual Analysis Result of Defects

Among the 50 defects we analyzed, we correctly repaired 41 (82%) defects, which are regarded as re-

pairable, while failed to repair the other 9 (18%) defects that are regarded as difficult to repair. Table 1

https://sites.google.com/site/d4jinpection
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shows the detailed data per project as well as the comparison with a set of existing program repair ap-

proaches. As we can see from the table, the performance of existing program repair approaches can only

repair a very small portion of repairable defects, indicating a large room for improvement.

Table 1 Compare our analysis result with existing automatic repair techniques on our dataset.

jGenProg jKali Nopol ACS HDR ssFix ELIXIR JAID CapGen SimFix Munal

Chart 0/4 0/2 1/1 0/0 2/- 1/3 3/1 0/2 2/0 3/0 7/3

Closure -/- -/- -/- -/- 1/- 0/1 -/- 0/1 -/- 0/0 8/1

Lang 0/0 0/0 0/0 1/0 2/- 1/1 1/0 0/0 1/0 0/1 10/0

Math 2/1 1/1 0/0 3/0 1/- 0/4 1/1 1/0 1/0 1/3 7/2

Time 0/1 0/1 0/0 0/0 0/- 0/1 1/0 0/0 0/0 1/0 9/0

Total 2/6 1/4 1/1 4/0 6/- 2/10 6/2 1/3 4/0 5/4 41/6

The results of the first three approaches come from [25] and the results of others come from the corresponding research

papers: ACS [4], HDR [49], ssFix [50], ELIXIR [28], JAID [27], CapGen [19], SimFix [20]. In the table, X/Y denotes

that X defects are correctly repaired while Y defects are wrongly repaired. “-” denotes the missing data.

Finding 1. A large portion of (i.e., 82%) defects were correctly fixed in our manual analysis,

indicating that most of the defects have a great potential to be fixed under existing test suite.

Among the 9 defects regarded as difficult to repair, we generated incorrect patches for 6 defects while

failed to generate valid patches that can pass all the tests for 3 defects. We further investigated the 6

incorrect patches, and found out that in all those cases, the tests in the program do not provide enough

information to reveal the full scope of the defect. Without knowing the precise specifications of the

programs, we would generate incomplete patches based on only the test suite. For example, a defect from

Chart-10 is related to String transformation. According to the failing test, character “\”” in the input

should be replaced with “&quot;”. We generated a patch to handle this and it successfully passed all the

tests. However, in fact there are many other characters should be replaced, which are not covered by

existing test suite. As a result, we generated an overfitting patch to this defect.

We further investigated why we could not generate a patch for the three defects in our manual analysis.

The reason is similar: these defects require domain knowledge either specific to the project or specific

to a particular domain, where a developer may not be familiar with. Among the three defects, Math-2

is a defect about floating-point precision, where the standard patch changes an inaccurate expression

into a mathematically equivalent but more accurate expression. Fixing the defect requires the knowledge

of accurate arithmetic. Closure-4 and Time-6 are related to the uses of the methods and classes in

the project, where the buggy code does not correctly interpret the semantics of called methods or the

preconditions of called methods are not properly satisfied. Fixing the defect requires the knowledge of

the project, especially the preconditions and semantics of each method. Lacking the domain knowledge,

it is difficult for an average developer to locate the root cause of the three defects.

5.2 RQ2: Fault Localization Strategies and Implications

In this section, we present the strategies used for fault localization in the manual analysis process, along

which we compare the related existing techniques with each strategy and propose implications to inform

future studies. The details of the strategies are listed in Table 2. The first column lists the strategy names,

the second column briefly describes how these strategies work, and the last column lists the defects to

which each strategy was applied in our manual analysis.

Strategy 1: Excluding unexecuted statements. This strategy is very simple: when a statement is not

executed in the failed execution, it cannot be the root cause. This strategy is implicitly applied when we

try to find the root cause of a defect. Actually, this strategy can be applied to almost all defects.

Related: This strategy is almost adopted in any fault localization approaches. Some approaches [51,52]

can further exclude statements not related to the failure even executed in failed executions.

Strategy 2: Excluding unlikely candidates. Given a list of possible candidates of root causes, we could
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Table 2 Strategies applied to locate faulty method in our analysis.

Strategy Description Defects>

Excluding unexe-

cuted statements
Exclude those statements not executed by failing test. All defects.

Excluding unlikely

candidates

Filter all non-related candidates based on their functionalities and

complexities.

L-1,2,4,7,9; M-5,10; Ch-2; Cl-

9; T-1,4,10

Stack trace analysis
Locate faulty locations based on the stack trace information

thrown by failing test cases.

L-1,5,6; M-3,4,8; Ch-4,9; Cl-2;

T-2,5,7,8,10

Locating undesir-

able value changes

Locate those statements that change the input values to the final

faulty values of failing test cases.
L-8; Cl-1,3,5,7,8,10; T-3,9

Checking program-

ming practice

Identify those code that obviously violate some programming prin-

ciples based on previous programming experience.
L-6,8; Ch-1,7,8

Predicate switching
Inverse condition statements to get expected output, the inversed

condition statement is the error location.
L-3; Ch-1,9; Cl-10

Program under-

standing

Understand the logic of faulty program and the functionalities of

relevant objects and methods.
L-10; M-6,9; Ch-3; Cl-9; T-3,9

>L, M, Ch, Cl and T denote Lang, Math, Chart, Closure and Time project, respectively.

examine them one by one, and exclude those that are unlikely to contain defects. Though technically

this strategy can be applied to different granularities, applying it on the method level was effective in our

analysis. That is, given a list of methods invoked during the failed test execution, we will examine them

one by one and exclude unlikely ones. We found that the following two criteria are effective.

• When a method is a library function or the test itself, it is unlikely to contain defect.

• In Java, because the lack of default parameter or the use of polymorphism, it is often the case that

a method is just a wrapper of another, and the purpose is only to pass a default argument or to adapt

to an interface. When a method is a simple wrapper method, this method is unlikely to contain defect.

Figure 1 The call graph of Chart-2

Note that technically the methods excluded by this

strategy still have the possibility to contain defects, but

their probability is significantly smaller than others.

This was a very effective strategy in our analysis, as

we could locate the faulty method using only this strat-

egy and strategy 1. For example, Figure 1 shows the

call graph of defect Chart-2. After excluding those library

methods (e.g., Double.isNaN) and simple wrapper methods

(e.g., iterateDomainBounds(XYDataset)), the only remain-

ing method is iterateDomainBounds(XYDataset,boolean),

which turns out to be the faulty method. Apparently, this process need not know the specifications

about the program and even need not understand the full functionality of the relevant methods.

Related: The most related approach is fault prediction [53, 54], which predicts the probabilities of

different software components to contain defects based on features of the software components.

Improve: Incorporate richer dynamic information of test failure. Current fault prediction techniques

judge whether a given method is correct or not mostly based on the characteristics of the program itself

but do not consider the features of failing test cases. Take Chart-2 as an example, there are only several

methods in the execution of failing test case, which greatly helps to eliminate some candidate locations.

Strategy 3: Stack trace analysis. When an uncaught exception is triggered, the program crashes and

the stack trace information is printed. A stack trace lists a sequence of locations in the program where a

method is called but is not returned before the point of crash. Usually the root cause of the fault is close

to the locations listed in the stack trace. That is, the ranks of statements near the locations in the stack

trace will be increased. In our manual analysis, 15 defects were located with the contribution of this

strategy. By further combining with other strategies, we can often locate the root cause of the defect.

For example, Figure 2 is a stack trace screenshot of Lang-1, which throws a NumberFormatException. The

stack trace lists seven candidate faulty locations. Then we can filter the locations based on strategy 2.

Among them, all the first five locations (APIs and wrapper) and the last location (test method) are

filtered out. The only possible location is the sixth.
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Figure 2 Stack trace of defect Lang-1. Lines

469 and 472 are real faulty conditions.

Related: It has been adopted by many fault localization

approaches. For example, Wu et al. [55] propose a fault

localization approach mainly based on stack trace infor-

mation. Wong et al. [56] propose to combine stack trace

analysis with bug reports to enhance the accuracy of fault

localization, while Zhong and Mei [57] proposed MiMo

that mines exception-related fix patterns from open-source

projects to repair new defects, which improved the perfor-

mance of program repair.

Strategy 4: Locating undesirable value changes. A

failed test execution produces an output that is different

from the desired output. However, sometimes the desired

output has already been constructed during the test exe-

cution, but the execution of some statements, S, turn it

into an undesirable one. In such cases, S or the statements that S control dependent on are likely to be

faulty. Note that the latter should be included because they are the reason why S is executed.

In our analysis, those cases frequently occur when testing the optimization component in the Closure

project. In a typical such defect, the optimizer changes the input program string into another one that

is not semantically-equivalent to the original program. In such cases, the statements that make such an

undesirable change will be considered with a high ranking. For an instance, the method call removeChild

in Closure-1 wrongly deleted the argument a in window.f=function(a){}, so either this method or the

statements leading to the call of this method might be faulty.

Related: Within our knowledge, this strategy is not directly adopted by existing fault localization

approaches. A loosely related approach, delta debugging proposed by Cleve and Zeller [58], locates the

transitions that cause the fault. However, delta debugging requires (1) a mechanism to determine the

test result and (2) a comparable passed test, which do not apply to the bugs solved by this strategy in

our analysis. Another related approach mines program invariants to assist fault localization [59]. This is

different with ours as it depends on multiple successful executions while we do not.

Improve: Correctly identify undesirable value changes. To overcome the problem, we need to introduce

a new technique that could identify undesirable changes in a test execution. A possible way is to define

a partial order between states to measure how close to the desirable state a state is, where a standard

test execution should only make the state more close to the desirable state rather than make it further.

Strategy 5: Checking programming practice. Though in principle the language construct can be

combined in any way to form a program, in practice people would only use a small subset of combinations.

Basically, a programming practice defines a constraint on the combination, and a piece of code violating

the constraint is likely to be faulty. A typical practice, as mentioned before, is that assignment is unlikely

to be used in an “if” condition, and thus statement like if(a=0) is likely to be faulty2).

1 for(int pt=0;pt<consumed;pt++){

2 pos+= Character.charCount(

3 Character.codePointAt(input ,pos));

4 }

As another example, the right piece of code comes from

Lang-6. In this piece of code, the for loop iteratively ac-

cesses the elements in the sequence with an unbounded

variable pos. This piece of code violates common program-

ming practice and is likely to be faulty. We found that the

violation of programming practice is usually an indication of fault and is useful in fault localization.

Related: Static bug detection, such as FindBugs [60], checks bad programming practice in the code to

decide potential bugs. However, the templates defined in FindBugs mostly do not depend on runtime

information. For example, it is hard to determine the faulty code of Lang-6 based on the static features

of the program, the exception caused by variable pos also helps greatly.

Improve: Incorporate dynamic information of test failure. A typical static bug detection approach

2) Please note that this code convention is useful for C but not on Java, as if(a=0) will cause type error in Java. We

cite this example just for illustration, and this is not a convention we discovered.
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simply considers the static information, which is not sufficient. For instance, as explained above, without

the IndexOutOfBoundException caused by variable pos, it is hard to determine the faulty code. On the

contrary, since pt is restricted by the length of the input string, if we replace variable pos with pt, the

exception can be avoided. Therefore, correctly checking such programming practice not only needs to

know the common practice patterns but also needs to combine the failure information.

Strategy 6: Predicate switching. This strategy is very similar to the automatic fault localization

1 try{

2 Float f=createFloat(str);

3 if(...) return f;

4 }catch(NumberFormatException e) {}

5 try {

6 Double d = createDouble(str);

7 if(...) return d;

8 }catch(NumberFormatException e) {}

technique with the same name [15]. In some cases, if we

inverse the result of an “if” condition and force the exe-

cution to switch to the other branch, the failed test could

pass, where we may consider the “if” condition may be

faulty and increase its rank in candidate locations.

For example, the failed test in Lang-3 expects a Double

number when the input is 3.40282354e+38, whereas a Float

number was returned. Assuming the value of the condition at line 3 to be false, the desired Double number

will be possibly returned at line 7. Therefore, we can rank the first if condition higher.

Related: As discussed before, this strategy is very similar to the predicate switching approach proposed

by Zhang et al. [15]. In fact, automatic predicate switching is even more powerful than that used in our

analysis because of computer’s superb computation ability, and has been employed by many automatic

program repair techniques [3–5,17].

Strategy 7: Program understanding. The strategies we have seen so far can be applied without a full

understanding and specifications of the program, and many faults can be located by only using these

strategies. However, not all faults can be found only relying on them and a certain amount of program

understanding is required.

Program understanding is a complex process and here we try to describe it in terms of the general logic

reasoning process. Given a faulty program, we try to infer likely constraints on program behavior from

different sources, and check consistency between them. If constraints inferred from different sources are

inconsistent, the related source code is likely to be faulty. Otherwise, the related source code is unlikely

to be faulty. Typical sources include the following.

• Implementation Code. By interpreting the semantics of the source code, we can infer constraints on

how the source transforms one state into another state.

• Test Executions. Basically, each test gives a constraint on the desired output for each test input.

• Identifier Names. We often try to infer likely constraint from the names of the identifiers. For

example, a method named “remove” should reduce the number of items in some container. A variable

named “max” should contain the maximum element in some container.

• Comments. Sometimes the comments describe the intended behavior of a piece of code, and con-

straints could be inferred from the comments.

To understand how this strategy works, let us consider the defect Closure-1 which we have been

introduced in strategy 4. Using strategy 4, we can isolate the defect to method removeChild and its callers,

and we know the removal is undesired. However, from the name of removeChild, we can infer a constraint

that this method should remove an item. Since this semantics is consistent with its implementation code,

we know the removal within this method is desired. Therefore, the fault should be in the methods calling

removeChild. In other words, removeChild should not be called.

5.3 RQ3 : Patch Generation Strategies and Implications

In this section, we present the strategies used for patch generation in the manual analysis. Table 3 shows

the seven strategies we summarized on patch generation. Similarly to Table 2, the first column is the

identification for each strategy, the second column briefly describes the strategy, and the last column lists

the defects to which the strategy was applied.

Strategy 8: Add NullPointer checker. This strategy was usually used in our manual analysis when

a test failed because of NullPointerException. A typical way to fix such a defect is to surround the
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Table 3 Strategies used to generate patches in our analysis.

Strategy Description Defects

Add NullPointer checker
Add null pointer checker before using the object to avoid

NullPointerException
M-4; Ch-4; Cl-2

Return expected output Return the expected value according to the assertions. L-2,7,9; M-3,5,10; T-1,3

Replace an identifier with

a similar one

Replace an identifier with another one that has the similar name

and same type in the scope.
L-6,8; Ch-7,8

Compare test executions.
Generate patches by comparing the failed tests with those passed

tests with similar test inputs.
L-2,5

Interpret comments
Generate patches by directly interpreting comments written in

natural language.
M-9; Cl-1,5,7,9; T-8,9

Imitate similar code ele-

ment

Imitate the code that is near the error location and has similar

structures.

L-4,5; M-6,8; Ch-1,2,7,9;

Cl-3,8,10; T-5,7,10

Fix by program under-

standing
Generate patches by understanding the functionality of program.

L-1,3,9,10; M-6,9; Ch-2,3;

Cl-3,8; T-1,2,4,10

statement and all following dependent statements with a guarded condition x!=null, where x is the

variable causing this exception.

1 r=getRendererForDataset(d);

2 if(isDomainAxis){

3 if(r!=null){...} ... }

4 + if(r!=null){

5 Collection c=r.getAnnotations ();

6 Iterator i=c.iterator (); ...

7 + }

The code on the right side is the patch for Chart-4. In

this patch, an exception is thrown at line 5. The patch

adds an “if” statement to surround line 5 and all following

statements that depend on it. Though null pointer checker

is often added to avoid NullPointerException, the strategy

alone usually cannot decide a patch. In this case, we may

also change the method getRendererForDataset so as not to return null. We come to this patch by

further considering two facts: (1) applying this patch to make all tests pass, (2) there is also a checker

for variable r at line 3, indicating that returning null is a valid behavior of getRendererForDataset. We

use strategy 14 to summarize these consideration, which will be explained later.

Related: This strategy is similar to a template used in the repair approach PAR [44] and ELIXIR [28],

which apply a set of templates to the located statement to generate patches.

Improve: Correctly identify the location of the null pointer checker. As discussed before, there are often

more than one place to add the null pointer checker, and identifying the correct location is the key for

avoiding incorrect patches. In our manual analysis process, different strategies are combined together to

decide the correct location. Similarly, ELIXIR depends on a machine-learned model to determine which

template to use while PAR simply try different templates one-by-one. However, neither of them consider

the runtime information of failing test cases, such as in the example of Chart-4, the exception thrown by

the failed test case almost decides the desired template.

Strategy 9: Return expected output. When programming, we often encounter boundary cases that

should be considered separately from the main programming logic, and such boundary cases are easily

neglected by developers. A boundary case is typically handled by a statement if(c) return v;, where v

is the expected result and c is a condition to capture the boundary case.

As a result, if the failed test execution is a boundary case, we may consider patches using the above

form. For example, the following code snippet is a failing test from Math-3. If we can identify that an

array of length one is a boundary case, we can come to the fix as inserting statement if(len==1){return
a[0]*b[0];} into the method linearCombination. Here variable len represents the length of input arrays,

while a[0]*b[0] is just the expected result. However, this strategy heavily depends on the developer’s

1 void testLinearCombination (){

2 double [] a={1.23456789};

3 double [] b={98765432.1};

4 Assert.assertEquals(a[0]*b[0],

5 MathArrays.linearCombination(a,b),0d);

6 }

experience to decide boundary cases. Otherwise the gen-

erated patch may overfit to the current test suite.

Related: This is similar to a template in ACS [4].

Improve: Correctly identify boundary cases. ACS can

only tackle simple boundary cases, such as comparing

with constants. Since this strategy is usually used along

with boundary identification, therefore, when complex boundaries cannot be correctly identified by the

approach, the repair will fail as well, such as the boundary case that will be introduced in Strategy 11
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(Lang-2), which is hard for ACS. As a result, to better utilize this strategy, a powerful boundary identi-

fication mechanism is needed.

Strategy 10: Replace an identifier with a similar one. When the names of two identifiers are similar,

developers may confuse the two identifiers. As a result, a possible patch is to replace an identifier with

another one whose name is similar. Of course, this strategy alone can hardly decide a patch, but this

strategy can be used together with other strategies for patch ranking.

For example, in defect Lang-6 introduced in strategy 5, we can observe that two variables, pos and pt,

have very similar names. In fact, if we replace the last occurrence of pos with pt, the piece of code no

longer violates the programming practice. Furthermore, rerunning all tests could reveal that this patch

passes all the tests. Putting all together, the correct patch will be preferably selected.

Related: Some existing approaches consider replacing variables [3] or methods [3, 6]. Most recent

automatic repair techniques further identify the similarity between variables [19, 20, 50] with respect to

variable names, types, and the like, which improved the state-of-art.

Strategy 11: Compare test executions. It is common that more than one test case exists to test a

specific method, and only one of them fails. By comparing the passed tests and the failed tests, we can

often obtain useful information on patch generation.

For defect Lang-2, the test inputs of all passed tests do not contain the character “#”, whereas both the

two failed test cases contain it, which suggests that containing “#” is probably a boundary case. Therefore,

together with its expected output, IllegalArgumentException, the desired patch can be generated.

Related: The related approaches are mining invariants from executions as patch ingredients [18,27,34].

Improve: Generalize boundary cases from executions. In our analysis, we usually compare one or

several successful executions with the failing one to identify the boundary cases that are related to the

current failure. Therefore, they usually can be used directly to generate patches. On the contrary, existing

approaches depend on a large set of successful executions to mine a set of invariants as fix ingredients,

most of which are non-related. Furthermore, to mine complex boundary cases, such as the example

introduced in this strategy, is also hard for existing techniques. Therefore, learning boundary cases from

a small set of examples can potentially improve the precision of existing techniques.

Strategy 12: Interpret comments. Program source code may contain comments explaining properties

of the program, such as functionality, precondition, and the like. In particular, Java programs often come

with Javadoc annotations explaining the method, the parameters, the return value, and exceptions that

might be thrown. These comments often provide important information to guide patch generation.

For example, the following method was used to create a DateTimeZone object based on the given hours

and minutes (Time-9 ). The failed test expects an IllegalArgumentException to be thrown at the input of

24 and 0. Again, this is a boundary case where strategy 9 can be applied. However, we still do not know

what condition should be used to capture this boundary case. By reading the Javadoc, we can know that

hours should be in the range of −23 ∼ 23, and the following patch is straightforward.

1 // the offset in hours from UTC , from -23 to +23

2 public DateTimeZone forOffsetHM(int hours ,int minutes) throws IllegalArgumentException{

3 + if(hours <-23||hours >23) throw new IllegalArgumentException ();

Related: Some approaches have adopted natural language processing techniques to analyze comments

and other documents in a natural language. For example, ACS [4] analyzes the Javadoc to exclude

unlikely variables in an “if” condition, and R2Fix [21] generates patches by analyzing the bug reports in

a natural language.

Improve: Incorporate dynamic information of test failure. The depth of automatic analysis still cannot

match that in our analysis. For example, the following patch is generated to fix Closure-9 based on the

comments. For current automatic techniques, it is impossible to interpret this comment to the corre-

sponding source code. Even though they can parse the natural language, it may be confused about which

character should be replaced. Therefore, we need to associate the comments with the runtime informa-

tion. In this example, only the failed test cases contain character “\”, which is the very character to be

replaced. As a result, more robust natural language understanding is imperative. Besides, incorporating

the dynamic information with the natural language understanding is needed as well.



Jiang, et al. Sci China Inf Sci 12

//The DOS command shell will normalize "/" to "\", so we have to wrestle it back.

+ filename = filename.replace("\\", "/");

Strategy 13: Imitate similar code element. In general, programs with similar functions often have

similar structures. When similar code pieces exist near the buggy code, we can generate patch by imitating

the similar code. This strategy is often useful when we found the program fails to handle some cases, but

we do not know how to handle these cases without the full specification. However, if we can find code

pieces handling similar cases, we can imitate these code pieces.

1 if(endIndex <0) emptyRange=true;

2 + if(startIndex >endIndex)

3 + emptyRange=true;

4 if(emptyRange) { ... }

For example, the patch on the right side comes from Chart-

9. According to the failing test, when the startIndex is greater

than endIndex, no exception should be thrown, which can lead us

to generate the condition statement if(startIndex>endIndex).

However, we still do not know the if body. By reading the code nearby, we find that the if at line 1 is

used to handle a similar case, so we can generate the desired patch by imitating the first if condition.

Related: A related strategy adopted by several automatic program repair approaches is to mine fix

ingredients from existing source code for patch generation [2, 4, 19,20,50,61].

Improve: More flexible code adaptation. Related approaches either do not perform any code adapta-

tion [2, 4, 61] or only perform elementary variable replacing [19, 20, 50], which is not sufficient to tackle

complicated cases. For example, to fix Chart-2, a method call of intervalXYData.getXValue(series,item)

should be inserted, which does not exist in the similar code. However, another, icd.getValue(row,column),

was referred to generate the patch in our manual analysis. We can see that besides the variables, we need

to further transform the method call and sometimes the cases can be even more complicated. Therefore,

to improve current techniques, more powerful code adaptation should be developed.

Strategy 14: Fix by program understanding. Similar to fault localization, this strategy is placed to

capture the case where we generate the patch by understanding the functionality of the program. The

process is similar to the fault localization case, but the potential patches become another source for

generating constraints. If we found the constraints generated from a patch are consistent with all other

constraints, we would rank the corresponding patch higher.

Similar to fault localization, we still lack a full understanding of the program understanding process,

and future work is needed to further understand this process.

5.4 RQ4: Inspiration from Analysis

Based on the previous analysis and comparison, we can find that although many of the strategies have

already been considered in existing techniques, still some of them (e.g. Locating undesirable value changes)

have not been considered by any approaches, and some of them (e.g. Imitate similar code element) are

not applied in the same way or in the same depth as we do, especially the combination of static and

dynamic information. The result indicates that existing techniques still have room for improvement.

Finding 2. While existing techniques have already explored strategies similar to some of the

strategies we identified, they have potential to be further improved based on the identified strategies.

By further observation, we can find that many strategies are simple heuristic rules that do not require

deep semantic analysis or full understanding of the program, indicating a high possibility to automate

them. Many strategies perform only mechanical operations and can be easily automated. For example,

Stack trace analysis and Locating undesirable value changes performs only mechanical operations as in-

troduced previously. Some strategies require human experience, but such experience has a high potential

to be summarized as heuristic rules. For example, Excluding unlikely candidates relies on a few heuristics

rules to determine whether a method may be faulty. Some simple strategies, such as excluding library

functions, used in our analysis have been listed in strategy 2, which can be easily expanded by devel-

opers. In fact, only the last strategy in each category, strategy 7 and strategy 14, require full program

understanding.

Additionally, as our results show, no single strategy can be effective on a large portion of the defects.

Furthermore, most of the defects require multiple strategies to locate and to repair. For instance, to
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correctly locate the faulty code of Lang-1, we not only use the Stack trace analysis but also Excluding

unlikely candidates strategy. Furthermore, we can notice that both of the defects explained in strategies 11

and 12 applied strategy Return expected output besides the strategy explained for each. This observation

calls for the studies on combining different fault localization and patch generation approaches.

Finding 3. Many strategies are simple heuristic rules, such as Excluding unlikely candidates,

Locating undesirable value changes, Add NullPointer checker, Compare test execution , and Imitate

similar code element, etc., that do not require deep analysis nor full understanding of the defects,

indicating possibility of automating these strategies to improve current automatic repair techniques

Finding 4. No strategy can handle all defects. Combinations of strategies are needed to repair a

large portion of defects.

6 Threats to Validity

First, we discuss the generalizability of our results. Since the case study only involves 50 defects and 5

projects, they may not be representative for a wide range of defects in different types of projects. As

a result, our results on the effectiveness of the strategies may not be generalizable to a wider range of

projects. However, Defects4J [23] is a widely-used defect benchmark, and so far no generalizability issue

on it is reported. Furthermore, we evenly sampled the defects among the 5 projects and the effectiveness

of those strategies has been evaluated on them. These facts give us a reasonable degree of confidence on

the generalizability of our results.

Second, even though we have no prior knowledge about those defects to be analyzed, some basic insights

about those projects can be implicitly obtained along with the analysis going on, which may cause training

effects to the subsequent analysis. As a result, when summarizing the defects requiring the two program

understanding strategies, we may accidentally miss some defects as the program understanding happened

unintentionally. To avoid this problem, we have carefully reviewed the analysis record to ensure that the

rest of the defects can be fixed without program understanding. Please also note that the validity of

the main findings, including the strategies and improvements suggested to existing techniques, are not

affected by the threat.

Third, as also mentioned in the introduction, our results should not be interpreted as an upper bound of

the performance of automatic program repair techniques since they may be superior to human developers

on some aspects as well, e.g., by utilizing its computation power. In other words, our results show what

automatic techniques can potentially do, but not what they cannot do.

Fourth, our study should not be interpreted as an understanding of how human debugs. Our manual

analysis settings is different from general human debugging and a single analysis session is not enough to

answer such a question. In Section 2, we have summarized some related work on that problem. Besides,

though a bug can get repaired with different ways and we only depend on the standard patches in

Defects4J to determine patches correctness, the final result are not affected since those correct patches are

proved correct while those overfitting patches are obvious and definitely incorrect ones after examination.

7 Conclusion and Future Work

In this paper, we analyzed 50 real world defects to identify to what extent they can be fixed under existing

test suites, based on which we summarized the fault localization and patch generation strategies used in

our analysis, and discussed the potential of them to be automated to improve existing techniques. Our

findings suggest that most of these defects can be fixed in our analysis even though without complete

specifications and there is potentially a lot of room for current techniques to improve, and the strategies

we identified could potentially be automated and combined to improve the performance of automatic

program repair, which calls future work on the automation of those strategies and their combinations.
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