
SCIENCE CHINA
Information Sciences

. PERSPECTIVE .

Toward Actionable Testing of Deep Learning Models

Yingfei Xiong1,2*, Yongqiang Tian3,4*, Yepang Liu5,6* & Shing-Chi Cheung3*

1Key Laboratory of High Confidence Software Technologies (Peking University), MoE, Beijing 100871, China;
2School of Computer Science, Peking University, Beijing 100871, China;

3Department of Computer Science and Engineering, The Hong Kong University of Science and Technology, Hong Kong, China;
4David R. Cheriton School of Computer Science, University of Waterloo, Waterloo N2L 3G1, ON, Canada;

5Research Institute of Trustworthy Autonomous Systems, Southern University of Science and Technology, Shenzhen 518055, China;
6Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China

Citation Yingfei Xiong, Yongqiang Tian, Yepang Liu, Shing-Chi Cheung. Toward Actionable Testing of Deep

Learning Models. Sci China Inf Sci, for review

1 Introduction

Deep learning has become an important computational

paradigm in our daily lives with a wide range of applications,

from authentication using facial recognition to autonomous

driving in smart vehicles. The quality of the deep learning

models, i.e., neural architectures with parameters trained

over a dataset, is crucial to our daily living and economy.

To ensure the quality of deep learning models, many test-

ing approaches have been proposed to assess various prop-

erties of the models [4, 11], such as correctness, safety, and

robustness. Here, we use the term “testing” in a broad sense

to refer to any approach that can detect violations of the

desirable properties (called bugs), regardless of whether the

bugs are detected through static analysis, dynamic analysis,

or comparing the output with an oracle. Most existing ap-

proaches treat the trained deep learning models as programs

and aim to find inputs that trigger incorrect outputs, also

known as adversarial samples. Success in detecting thou-

sands of adversarial inputs on widely used deep learning

models [5, 6] has been reported.

However, these approaches have received limited indus-

trial adoption, unlike their counterparts for conventional

software. A possible explanation is that they are not ac-

tionable. For conventional software, a failing test typically

depicts a buggy control flow and the set of variables that may

have received inappropriate value assignment. In contrast,

existing deep learning testing approaches do not provide

similar information that helps diagnose and fix the glitches.

Although many adversarial samples can be found, they pro-

vide no clue for the developers to make a modification that

eliminates the incorrect predictions on certain inputs while

preserving the correctness of other inputs. A straightfor-

ward approach is to add these discovered adversarial samples

to augment the training set, known as adversarial training,

but adding these samples will change the distribution of the

training set, which may negatively affect the performance of

the model [7]. Thus, most existing testing approaches may

only be used to assess the quality of a model. For exam-

ple, a deep learning model may be considered not robust

if many adversarial samples are found. However, this as-

sessment has limited usefulness. One cannot even compare

the quality of two models based on the number of adversar-

ial samples found because some adversarial samples may be

rare or unreal in practice, and finding more such samples

does not necessarily indicate less robustness.

To address this limitation, in this paper, we argue that we

should also consider actionable testing of deep learning mod-

els. A testing approach is actionable if it provides (action-

able) clues together with the bugs detected. An (actionable)

clue is a hint such that, based on the current body of human

knowledge and the clue, an average developer can modify the

source of the deep learning model, such as the implementa-

tion code and the training set, to remove or mitigate the

impact of the bug. A clue can be a concrete modification to

be conducted on the deep learning model or an explanation

of the bug hinting at the changes that are needed.

Providing actionable testing of deep learning models is

challenging. A major obstacle is the lack of understanding of

deep learning. Given an input that leads to an incorrect out-

put, neither the deep learning developers nor the testing re-

searchers know how to fix the bug. Because a breakthrough

in deep learning theory is unlikely in the short term, in this

paper, we propose a pragmatic strategy toward actionable

deep learning testing: instead of trying to find a generic

actionable testing approach for any deep learning defect,

we characterize and classify the defects and design specific

testing approaches for the popular defect types whose fixing

solutions we know of. For example, when a “divided-by-

zero” error occurs during neural network computation, the

computed values become INF, and the model will probably

produce an incorrect output. Similar to the situations in

conventional programs, divided-by-zero errors in deep learn-

ing programs are usually repairable. If the testing system

could indicate which divisor becomes zero during the com-

putation, the developers could probably repair the bug by

*Corresponding author (email: xiongyf@pku.edu.cn, ytianas@connect.ust.hk, liuyp1@sustech.edu.cn, scc@cse.ust.hk)



Xiong, Tian, Liu, Cheung, et al. Sci China Inf Sci 2

changing the implementation code of the neural model.

Note that the idea of actionable testing is to comple-

ment non-actionable testing with guidance to improve the

system. By relaxing the requirement of being actionable,

non-actionable testing could possibly cover more bug types

and could be useful in, for example, quality assessment and

acceptance testing.

In the following sections, we describe a high-level concep-

tual framework of actionable deep learning model testing,

highlight a few testing approaches that can provide action-

able results, and discuss a roadmap for future research on

actionable deep learning testing.

2 Framework

Let s and e denote a deep learning model under test and

a bug detected in the model, respectively. For example,

a “divided-by-zero” bug can be represented by e = (i, o),

where divided-by-zero occurs at division operation o given

the test input i.

Based on these notations, an actionable deep learning

testing approach comprises three components:

• Buggy Condition. A predicate P (s, e) that evaluates

to true when e is a bug in the deep learning model s.

• Bug Detector. A function d : S → 2E , where S is

the set of deep learning models supported by the testing ap-

proach, and 2E is the power set of all possible bugs that can

be detected. This component detects a set of bugs from the

deep learning model. It is sound if all detected bugs are true

positives, i.e., ∀e ∈ d(s), P (s, e). In practice, depending on

the detection algorithm, false positives may occur.

• Clue Generator. A function g : S×E → 2A, where S

is the set of deep learning models, E is the set of all possible

bugs, and 2A is the power set of all possible clues. This

component generates clues for a bug to guide the developers

in fixing the bug in the source of the model.

Take a testing approach for divided-by-zero as an exam-

ple. The buggy condition is a predicate P (s, (i, o)) that

evaluates to true when input i triggers a division with a

zero divisor at the operation o. The bug detector detects as

many pairs of problematic input and division operators as

possible. The clue generator directly reports the bugs ((i, o)

pairs) to the user. This clue is actionable because the bug is

divided-by-zero, and the developers can analyze the network

to understand why the bug occurs and derive modifications

to the network architecture to repair the bugs.

3 Example Approaches

We notice that some existing deep learning testing ap-

proaches are already actionable. Here, we highlight a few

examples to demonstrate what clues are actionable.

3.1 DEBAR

The first example detects bugs that are similar to tradi-

tional programs. Similar to the above divided-by-zero ex-

ample, these bugs are directly understandable by the de-

velopers and can be directly used as clues. DEBAR [12]

is an approach for detecting numeric bugs in neural mod-

els. Similar to their counterparts in traditional programs,

numeric bugs cause invalid numeric computations, such as

divided-by-zero, resulting in crashes or meaningless results

(e.g., INF or NaN) during neural network computation. The

three components of DEBAR are described as follows.

• Buggy Condition. In DEBAR, a numeric bug is defined

by a numeric operator in the implementation code and the

possible ranges of its operands such that the ranges contain

values that would cause numeric errors through this opera-

tor. To formulate the buggy condition, DEBAR predefines

the conditions where the various types of numeric operators

would produce an error. For example, a division operator

produces an error when the divisor is zero, and a logarithmic

operator produces an error when the argument is not posi-

tive. The buggy condition holds when there exists an input

such that an operator may produce a numeric error accord-

ing to the predefined conditions. Because invalid numeric

computation may occur at the training stage, DEBAR can

also be used to test the model before training by treating

the parameters as input.

• Bug Detector. DEBAR employs a static analysis algo-

rithm that includes two novel abstract domains to precisely

analyze the range of values that may appear during execu-

tion for each variable.

• Clue Generator. DEBAR directly returns the detected

bugs as clues. Similar to numeric bugs in traditional pro-

grams, developers can debug the implementation code of the

neural network based on the clues.

3.2 Object Relevancy

The second example demonstrates that repair actions can

be derived from the properties of the application domain.

Image classification identifies the object contained in an im-

age and is a key application of deep learning techniques.

Image classification has been widely used in video surveil-

lance, search engines, criminal investigations, etc., and thus

the quality of image classification systems must be ensured.

However, developing actionable testing for image classifica-

tion is not easy, as we still lack an understanding of the

intrinsic inference logic of neural image classifiers.

Tian et al. [10] proposed a desirable property of image

classifiers, object relevancy, and a testing approach to de-

tect bugs violating object relevancy. Object relevancy refers

to whether the inferences are based on the target objects of

image classifiers. For example, if in a dataset cats are al-

ways in a house while tigers are always in a forest, an image

classifier may learn to distinguish cats and tigers based on

their backgrounds and thus violate object relevancy, as the

inference is based on the background and not the target ob-

ject. Such bugs can be repaired by adding more images with

diverse backgrounds to the training set. The three compo-

nents of the testing approach are as follows.

• Buggy Condition. Based on intuition, Tian et al. pro-

posed two metamorphic relations (MRs) that an image clas-

sifier should satisfy. The first MR expects that modifying

the target object in an image will cause the model to pro-

duce a different classification result or the same result with

less certainty. The second MR expects that modifying the

background will not affect the classification result. Then,

a bug is defined as an image and its modified version that

violate any of the MRs.

• Bug Detector. The system generates random modifica-

tions to the images and checks if a violation of the MRs can

be found.

• Clue Generator. A detected bug implies insufficient

background diversity for the target object in the training

set, which provides a clue leading to repair actions: The

developer can add more images of the target object with a

more diverse background to the training set. In contrast to



Xiong, Tian, Liu, Cheung, et al. Sci China Inf Sci 3

adversarial training, this clue reveals an understandable rea-

son for the bug, and the developer can add standard images

without distorting the distribution.

3.3 TransRepair and CAT

The third example demonstrates that repair actions can be

derived by wrapping the model with external runtime facili-

ties. Modern machine translation systems, powered by deep

learning models, are used by millions of users daily. The

quality of such systems is critical to avoid misunderstand-

ing.

Multiple testing approaches [1–3, 13] for machine trans-

lation systems have been proposed. Their basic idea is that

replacing a word in a sentence with a similar word should not

induce substantial changes in the structure of the sentence’s

translation. For example, replacing “Lily went to school”

with “Lucy went to school” should only cause a change

from “Lily” to “Lucy” in the translated sentence. If the

translated sentence undergoes a large structural change, it

is probably a mistranslation. However, similar to most test-

ing approaches, although this approach helps detect bugs,

it provides little information for bug fixing.

TransRepair [8] and CAT [9] employ a novel method for

“repairing” such bugs in machine translation systems au-

tomatically. The basic assumption is that a well-trained

neural network is usually correct, and thus ensemble learn-

ing can be used to avoid mistranslations (i.e., bugs). The

repair method first replaces words from the original sentence

to generate a set of mutated sentences, translates all these

sentences, and then chooses one translation that has the

smallest difference from all other translations. Finally, the

replaced word in the chosen translation is put back to cre-

ate the final result. In this way, the bug is repaired without

actually modifying the neural model, and the testing result

becomes actionable with an automatic repair solution.

Under our framework, the three components of TransRe-

pair and CAT are as follows.

• Buggy Condition. A bug is represented by two sen-

tences that differ only in one word, and the difference should

not affect the structure of the translated sentence, e.g., the

two words have the same part-of-speech role and are emo-

tionally similar in the concerned context. The buggy con-

dition is that the two sentences are translated into two sen-

tences with significantly different structures.

• Bug Detector. The bug detector randomly generates

such pairs of sentences and checks whether the buggy con-

dition is satisfied.

• Clue Generator. The clue is a direct repair of the im-

plementation code: The inference of the model is wrapped

with an online repair component that automatically gener-

ates mutants for each input to detect and repair bugs.

4 Roadmap

We foresee a roadmap for studying actionable deep learning

testing that consists of two steps: (1) designing techniques

for specific types of bugs and (2) generalizing these special

cases into general actionable testing approaches. In the pre-

vious section, we saw deep learning testing approaches that

are already actionable. However, the bugs covered by these

approaches comprise only a small portion of all the bugs

that may occur in deep learning models. In fact, all the

discussed approaches cover one type of bug, and for some of

them, the covered bug occurs only in a particular applica-

tion of deep learning (e.g., machine translation). Therefore,

the next immediate step is to identify more types of deep

learning bugs where clues could be provided and develop

actionable testing approaches for them. In this way, the de-

velopers can use these testing approaches together to detect

a large class of bugs. One possible approach is to empirically

study how practitioners develop and maintain deep learning

models and summarize their bug-fixing strategies.

The second step is to generalize the special techniques

to general cases. In the above-discussed actionable test-

ing approaches, the clues provided are diverse: from bug

explanations for developer reference to fully automatic bug-

fixing actions and from augmenting the training set to wrap-

ping the models with external facilities. At this stage, the

commonality of the existing actionable testing approaches

is difficult to summarize. This difficulty is due to the stud-

ied types of bugs thus far being still limited. With an in-

creasing number of bugs studied, we will be able to answer

broader research questions, such as what diagnosis informa-

tion is needed to help debug deep learning models and form

repair actions, and develop more general actionable testing

approaches that are applicable to a wide range of deep learn-

ing bugs.

Acknowledgements This work was sponsored by the Na-

tional Key Research and Development Program of China under

Grant No. 2019YFE0198100 and the Innovation and Technol-

ogy Commission of HKSAR under Grant No. MHP/055/19.

References

1 S. Gupta, P. He, C. Meister, and Z. Su. Machine trans-

lation testing via pathological invariance. In ESEC/FSE,

page 863–875, 2020.

2 P. He, C. Meister, and Z. Su. Structure-invariant testing

for machine translation. In ICSE, page 961–973, 2020.

3 P. He, C. Meister, and Z. Su. Testing machine transla-

tion via referential transparency. In ICSE, pages 410–422,

2021.

4 X. Huang, D. Kroening, W. Ruan, J. Sharp, Y. Sun,

E. Thamo, M. Wu, and X. Yi. A survey of safety and

trustworthiness of deep neural networks: Verification, test-

ing, adversarial attack and defence, and interpretability.

Computer Science Review, 37:100270, 2020.

5 L. Ma, F. Juefei-Xu, F. Zhang, J. Sun, M. Xue, B. Li,

C. Chen, T. Su, L. Li, Y. Liu, J. Zhao, and Y. Wang. Deep-

gauge: multi-granularity testing criteria for deep learning

systems. In ASE, pages 120–131, 2018.

6 K. Pei, Y. Cao, J. Yang, and S. Jana. Deepxplore: Au-

tomated whitebox testing of deep learning systems. In

SOSP, pages 1–18, 2017.

7 A. Raghunathan, S. M. Xie, F. Yang, J. C. Duchi, and

P. Liang. Adversarial training can hurt generalization. In

ICML Deep Phenomena, 2019.

8 Z. Sun, J. M. Zhang, M. Harman, M. Papadakis, and

L. Zhang. Automatic testing and improvement of machine

translation. In G. Rothermel and D. Bae, editors, ICSE,

pages 974–985, 2020.

9 Z. Sun, J. M. Zhang, Y. Xiong, M. Harman, M. Papadakis,

and L. Zhang. Improving machine translation systems via

isotopic replacement. In ICSE, 2020.

10 Y. Tian, S. Ma, M. Wen, Y. Liu, S.-C. Cheung, and

X. Zhang. To what extent do dnn-based image classifi-

cation models make unreliable inferences? Empirical Soft-

ware Engineering, 26(5):84, 2021.

11 Z. Wang, M. Yan, S. Liu, J.-J. Chen, D.-D. Zhang, Z. Wu,

and X. Chen. Survey on testing deep learning neural net-

works. Journal of Software, 31:1255–1275, 2020.

12 Y. Zhang, L. Ren, L. Chen, Y. Xiong, S. Cheung, and

T. Xie. Detecting numerical bugs in neural network ar-

chitectures. In ESEC/FSE, pages 826–837, 2020.

13 Z. Q. Zhou and L. Sun. Metamorphic testing for machine

translations: MT4MT. In ASWEC, pages 96–100, 2018.


	Introduction
	Framework
	Example Approaches
	DEBAR
	Object Relevancy
	TransRepair and CAT

	Roadmap

