
Beanbag: A Language for Automatic Model Inconsistency Fixing

Yingfei Xiong† Zhenjiang Hu†† Haiyan Zhao†††

Hui Song ††† Masato Takeichi† Hong Mei†††

In this poster we present Beanbag, a language for automatic model inconsistency fixing. A Beanbag pro-
gram defines and checks a consistency relation over a model similarly to OCL, but the program can also be
executed in a fixing mode, taking user updates on the model and producing new updates to make the model
satisfy the consistency relation.

1. Motivation

Modern software development environments often in-

volve models with complex consistency relations. For ex-

ample, Figure 1 shows a UML object diagram. One con-

sistency relation for this diagram is that every persistent

entity should belong to a container while a non-persistent

entity should not belong to any container.

Figure 1 A UML Object

When users modify parts of the model, the consistency

relation may be violated, and we need to propagate the

user update to other places to fix the inconsistency. For

example, when a user deletes a container, we need to

either 1) change thepersistent property of all en-

tities in container tofalse , or 2) delete these entities

directly. Manually implementing such fixing behavior is

time-consuming and error-prone.

2. Approach

This poster presents the Beanbag language2) to solve

this problem. A program in Beanbag mainly defines a

consistency relation, but also has a fixing semantics defin-

ing how to propagate updates to fix an inconsistency.

† Department of Mathematical Informatics, University of Tokyo.

{Yingfei Xiong,takeichi }@mist.i.u-tokyo.ac.jp

†† GRACE center, National Institute of Informatics.hu@nii.ac.jp

††† Key Laboratory of High Confidence Software Technologies (Peking

University), Ministry of Education, China.

{zhhy,songhui06,meih }@sei.pku.edu.cn

In this way the development of inconsistency fixing is

greatly eased. For example, a Beanbag program for the

model in Figure 1 is shown below.
def relation(entity) :=

entity.persistent=true and entity.container<>null or

entity.persistent=false and entity.container=null or

entity=null

We can see that the program is mainly an OCL1)-like

expression describing the consistency relation. This pro-

gram says an entity 1) is persistent and has a container, 2)

is not persistent and has no container, or 3) does not exist.

When a container is deleted, this program can be in-

voked in the fixing mode for every entity. It will first

try to establish the first branch of theor expression over

the model. This attempt will fail because the container is

deleted, and the program will try to establish the second

and make the entity non-persistent.

If we want to instead delete the entity, we can swap the

last two lines of the program. The new program will try

entity=null first and delete the entity.

3. Evaluation

We define three basic properties for correct fixing and

prove that Beanbag satisfies the three properties. In ad-

dition, we have used Beanbag to develop programs for

a set of MOF and UML consistency relations. The result

shows that Beanbag supports many useful fixing behavior

in practice.

Reference

1) Object Management Group. Object constraint
language specification 2.0.http://www.omg.
org/spec/OCL/2.0 , 2006.

2) Y.Xiong, Z.Hu, H.Zhao, H.Song, M.Takeichi, and
H. Mei. Supporting automatic model inconsistency
fixing. In Proc. of 7th ESEC/FSE (to appear), 2009.


