
Fixing Software Configurations
based on Self-Adaptive Priorities

Bo Wang1, Leonardo Passos2, Yingfei Xiong1,

Krzysztof Czarnecki2, Haiyan Zhao1

Wei Zhang1, and Hong Mei1

1Peking University
2University of Waterloo

Modern Software Product Lines

Variability ModelsVariability ModelsVariability Models

Configuration

Feature Models,
Linux Kconfig,
eCos CDL,
pure::variants,
…

2

eCos Configurator - Errors

3

Fixing an error is hard! [Hubaux et al., VaMoS’11]

Existing Approaches Generate Fixes
[Xiong et al., ICSE’12]

[PreloadSize <= 8]
[PoolSize >= 10]
[Preload = false]

4
Other fix generating approaches: [White et al., SPLC’08] [eCos Configurator]

Problem: Large Fixes

• The fixes are sometimes large in size and number

• Fixes for eCos [Xiong et al. ICSE’12]:

– Fix lists contain up to nine fixes

– Fixes change up to nine variables

– In total, 17% of all fix lists contain changes over more
than 10 variables

Users have to read through potentially large
lists and decide the most desirable fix

How to guide the users to
identify their desirable fixes?

Our Solution

• Use the idea of priority
– The priority of a variable represents the likelihood

of its current value being desirable to the user.

• Two Basic ideas:
– Generate fixes that only change variables with

lower priorities

– Dynamically adjust the priority of variables
through implicit translation of user feedback

Our Contribution

• A priority-based approach to locating a
desirable fix through user feedbacks

• An algorithm to implement the approach
using any fix generation algorithm

• An empirical evaluation that shows the overall
reduction of choices exposed to the user

Our Contribution

• A priority-based approach to locating a
desirable fix through user feedbacks

• An algorithm to implement the approach
using any fix generation algorithm

• An empirical evaluation that shows the overall
reduction of choices exposed to the user

Our Approach

[PreloadSize <= 8]

Showing only one
fix to the user

Provide feedback for each variable

• Accept the change

• Reject the change

– Fix duration

• I do not want to change the variable to the suggested
value/range for now; perhaps later.

– Error duration

• I do not want to change this variable during this error resolution

– Permanent duration

• I do not want to change this variable in the whole configuration
process

Our Approach

[PreloadSize <= 8]

Reject with Error

Our Approach

[PoolSize >= 10]

Accept with
PoolSize = 12

The user feedbacks are stored as priorities so that later fixes will be smarter.

Our Contribution

• A priority-based approach to locating a
desirable fix through user feedbacks

• An algorithm to implement the approach
using any fix generation algorithm

• An empirical evaluation that shows the overall
reduction of choices exposed to the user

Algorithm Overview

Each variable is assigned a priority, initially zero.

Recommend a fix

• Use a threshold to confine the fix generation
scope

– Variables are changeable only when priority <=
threshold.

– Constraint [variable = current_value] is added for
variables whose priority > threshold

0 ∞Priority

Threshold 5

v1 v2 v3

Recommend a fix

• Initial threshold for an error = 0

• Invoke the fix generator

– Randomly pick one fix from the generated fix list

– Threshold += 1 if no fix is generated, and invoke
again

0 ∞Priority

Threshold 2 3

v1 v2 v3

0 1

Adjust Priorities

• New value is assigned
– priority = 0

• Reject with Fix duration
– priority +=1

• Reject with Error duration
– priority binds to <threshold> +1
– will be updated when threshold increases during the

error resolution

• Reject with Permanent duration
– priority = <max>

Handling No fixes

• Provide users with the variables with error and
permanent durations

• Users should cancel some of the durations

– The priorities of cancelled variables are reset to 0

Our Contribution

• A priority-based approach to locating a
desirable fix through user feedbacks

• An algorithm to implement the approach
using any fix generation algorithm

• An empirical evaluation that shows the overall
reduction of choices exposed to the user

Supporting Tool: Smart Fixer

Smart Fixer: providing feedbacks

Evaluation

• Sources
– Version history from 2 open source projects that

cause large fix lists.

– Initial configuration already contains error.

– The final configuration has all error resolved.

Evaluations
• Steps:

– Resolve each error by simulating the user
feedback

– Count the number of fixes and variables

Situation # Current Value Fix Changes Final Value Operation

1 a = 1 a < 1 a = 2
Reject

Fix duration

2 a = 1 a >1 a = 2
Accept

Assign new value

3 a = 2 a > 2 a = 2
Reject

Error duration

Evaluation Results – virtex4 (1/2)

The number of fixes is decreased in 31% of the errors.
In average, there is a reduction of 22%, with a maximum reduction
of 89% in the number of fixes

Evaluation Results – virtex4 (2/2)

The number of variables is decreased by 23% in average, with
a maximum reduction of 98%

Evaluation Results – xilinx (1/2)

The number of fixes is decreased in 28% of the errors.
In average, there is a reduction of 16%, with a maximum
reduction of 2/3 in the number of fixes

Evaluation Results - xilinx (2/2)

The number of variables is decreased by 18% in average,
with a maximum reduction of 86%

Summary & Future Work

• Adopt self-adaptive priorities to guide users to
the desirable fixes

– Five assignment and adjustment rules

• Can be built on any fix generators

• Produce a good result in eCos configuration

• Future work: Need user-involved evaluation

Thank you for your attention!

Variability Modeling Languages

• Linux KConfig

• eCos CDL

• Feature models

• Usually come with a configurator

– Can detect errors

eCos Configurator - Errors

• A error is a violation of a constraint.

Fix Errors

• How to fix errors?
– Understand the constraints

– Navigate the variables

• Fixing errors is hard.
– Constraints are complex

• Linux (56 variables in one constraint)

– Real world variability models contain thousands of
variables.

Survey

• 97 Linux users and 9 eCos users

• 20% Linux users need "a few dozen minutes"
to fixing an error in average

• 56% eCos users consider fixing to be a
problem

Existing Approaches

Generate Fixes for Errors

Fixes

• Fixes is a set of changes for the variables

• A change is an assignment for a variable

• Executing the fixes will satisfy all the
constraints in the variability model

eCos Configurator - Fixes

Evaluation Results (1/4)

The number of fixes is decreased in 31% of the errors.
In average, there is a reduction of 22%, with a maximum reduction
of 89% in the number of fixes

Evaluation Results (2/4)

The number of variables is decreased by 23% in average, with
a maximum reduction of 98%

Evaluation Results (3/4)

The number of fixes is decreased in 28% of the errors.
In average, there is a reduction of 16%, with a maximum
reduction of 2/3 in the number of fixes

Evaluation Results (4/4)

The number of variables is decreased by 18% in average,
with a maximum reduction of 86%

