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Algorithmic paradigms such as divide-and-conquer (D&C) are proposed to guide developers in designing

efficient algorithms, but it can still be difficult to apply algorithmic paradigms to practical tasks. To ease the

usage of paradigms, many research efforts have been devoted to the automatic application of algorithmic

paradigms. However, most existing approaches to this problem rely on syntax-based program transformations

and thus put significant restrictions on the original program.

In this paper, we study the automatic application of D&C and several similar paradigms, denoted as D&C-

like algorithmic paradigms, and aim to remove the restrictions from syntax-based transformations. To achieve

this goal, we propose an efficient synthesizer, named AutoLifter , which does not depend on syntax-based

transformations. Specifically, themain challenge of applying algorithmic paradigms is from the large scale of the

synthesized programs, and AutoLifter addresses this challenge by applying two novel decomposition methods

that do not depend on the syntax of the input program, component elimination and variable elimination, to
soundly divide the whole problem into simpler subtasks, each synthesizing a sub-program of the final program

and being tractable with existing synthesizers.

We evaluate AutoLifter on 96 programming tasks related to 6 different algorithmic paradigms. AutoLifter
solves 82/96 tasks with an average time cost of 20.17 seconds, significantly outperforming existing approaches.

CCS Concepts: • Software and its engineering→ Programming by example; • Theory of computation
→ Design and analysis of algorithms.

Additional KeyWords and Phrases: Inductive Program Synthesis, Algorithm Synthesis, DecompositionMethods

for Program Synthesis Tasks

1 INTRODUCTION
Efficiency is a major pursuit in practical software development, and designing suitable algorithms

is a fundamental way to achieve efficiency. To reduce the difficulty of algorithm design, researchers

have proposed many algorithmic paradigms [Mehlhorn 1984] to summarize patterns of efficient
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algorithms. For example, the paradigm of divide-and-conquer (D&C) [Cole 1995] suggests recur-

sively dividing a possibly complex problem into sub-problems and then combining the solutions

for the sub-problems into the solution for the original problem.

This paper focuses on a specific class of algorithmic paradigms that share a similar idea with

D&C, denoted as D&C-like algorithmic paradigms. These paradigms prescribe a recursive structure

of transforming the original problem into sub-problems and aim to build up the final results step-

by-step through the given recursive structure. Besides D&C, such paradigms also include (but not

limited to) incrementalization [Acar et al. 2005], single-pass [Schweikardt 2018], segment trees [Lau

and Ritossa 2021], and three greedy paradigms for longest segment problems [Zantema 1992].

Applying D&C-like paradigms in practice is difficult. Although these paradigms prescribe the

recursive structure to build up results, how to efficiently calculate the results in each step can be

significantly different among different tasks. For example, although the paradigm of D&C suggests

combining the solutions for the sub-problems, how to combine these solutions in a concrete task is

totally unknown and up to the developer to discover.

To reduce the burden on the user, many research efforts were devoted to automatically applying

individual D&C-like paradigms, such as applying D&C [Farzan and Nicolet 2021b; Morita et al. 2007;

Raychev et al. 2015], applying single-pass [Pu et al. 2011], and applying incrementalization [Acar

et al. 2005]. The approaches proposed by these studies take a possibly inefficient program as

input. Then, they apply their respective paradigm to the original program and aim to generate a

semantically equivalent program with guaranteed efficiency.

However, the existing approaches put non-trivial restrictions on the input program, which are

not easy to satisfy. Automatically applying algorithmic paradigms is difficult because optimized

programs are usually complex. To cope with this challenge, most existing approaches use syntax-

based program transformations. Specifically, they access the source code of the original program,

transform the source code into certain forms using pre-defined program transformations, and thus

simplify or even directly solve the task. However, to ensure a successful application of program

transformations, these approaches put strict restrictions on the original program, leading to a

significant limitation on usage. For example, approaches for D&C [Farzan and Nicolet 2017, 2021b;

Morita et al. 2007; Raychev et al. 2015] require the original program to be implemented in another

paradigm, namely single-pass [Schweikardt 2018]. An approach for incrementalization [Acar et al.

2005] requires the execution of the original program to be affected little by possible changes in the

input, otherwise, the resulting program may not speed up, or even slow down the computation.

Satisfying these requirements is typically difficult in practice. For example, in our dataset, applying

single-pass already requires implementing 40.54%-58.62% of the code needed for applying D&C

(Section 8.3).

In this paper, we aim to overcome the limitation of existing approaches and propose amore general

approach for applying D&C-like paradigms that does not depend on syntax-based transformations.

To achieve this goal, we explore another direction for addressing the scalability challenge: by

decomposition. Specifically, we aim to decompose the application task into a sequence of subtasks,

each corresponding to a sub-program of the original synthesis target, and solve these subtasks one

by one using existing synthesizers that rely little on the source code, e.g., inductive synthesizers.

Such a procedure will put little restriction on the original program if the decomposition can be

accomplished without accessing the source code.

However, decomposing a synthesis task is in general difficult. In most cases, there exist mutual

dependencies among different sub-programs of the synthesis target, making it impossible to derive

precise specifications for independently synthesizing individual sub-programs. Our idea is to use

approximate specifications in some subtasks when the precise specifications are intractable. The key

point here is that, although there may be a difference between an approximation and its respective
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precise specification, the whole approach will still be sound if we use the original specification in

the last step, and be effective when the difference is small enough.

Following the above decomposition-based idea, we propose a novel synthesizer named AutoLifter
for applying D&C-like paradigms. To support applying different D&C-like paradigms, we design

AutoLifter on a novel class of synthesis problems, named lifting problems, which we propose to

capture the core task of applying D&C-like paradigms. We reduce the applications of various

D&C-like paradigms to lifting problems, and AutoLifter can be instantiated as synthesizers for

applying these paradigms.

AutoLifter decomposes lifting problems using two novel decomposition methods, namely com-
ponent elimination and variable elimination, which decompose through a tuple-output structure

and a function-composition structure in the specification of lifting problems, respectively. Both

methods break dependency among sub-programs by producing approximate specifications in some

subtasks. Consequently, during the decomposition, these methods may generate problematic sub-

tasks without any valid solution, affecting the performance of AutoLifter . We investigate the effect

of these approximations and provide both empirical and theoretical results showing that these

approximations are precise enough to ensure the effectiveness of AutoLifter .
We conduct a thorough evaluation to verify the effectiveness of AutoLifter in applying D&C-like

paradigms. Specifically, we instantiate AutoLifter as 6 inductive synthesizers, each for applying a

D&C-like paradigm, including D&C, single-pass, segment trees, and the three greedy paradigms

for the longest segment problem. We construct a dataset of 96 tasks for applying these paradigms,

collected from existing datasets [Farzan and Nicolet 2017, 2021b; Pu et al. 2011], existing publica-

tions on formalizing algorithms [Bird 1989a; Zantema 1992], and an online contest platform for

competitive programming (codeforces.com). We compare AutoLifter with existing approaches on

these tasks, and our evaluation results demonstrate the effectiveness of AutoLifter .

• AutoLifter solves 82 out of 96 tasks with an average time cost of 20.01 seconds, significantly

outperforming existing synthesizers that can be applied to lifting problems. Among solved

tasks, the largest result includes 157 AST nodes and is found by AutoLifter in 100.0 seconds.

• AutoLifter outperforms a specialized synthesizer for applying single-pass, andwhen compared

with an existing synthesizer for applying D&C programs, AutoLifter can offer competitive or

even better performance while putting less restriction on the original program.

To sum up, this paper makes the following main contributions.

• We introduce a novel class of synthesis problems, named lifting problems, for capturing the

key task of applying D&C-like paradigms (Section 3), and reduce the application tasks of

various D&C-like algorithmic paradigms to lifting problems (Section 6).

• We propose an efficient approach named AutoLifter for solving lifting problems (Section 4),

which decomposes lifting problems into subtasks tractable by existing inductive synthesizers

with two novel decomposition methods, component elimination and variable elimination.
• We implement AutoLifter (Section 7) and evaluate it on a dataset of 96 related tasks (Section

8). The results demonstrate the advantage of AutoLifter compared with existing approaches.

2 OVERVIEW
In this section, we give an overview of our approach. Starting from an example task for calculating

the second minimum of lists (Section 2.1), we discuss the synthesis task (Section 2.2), the limitation

of existing approaches (Section 2.3), and the synthesis procedure of AutoLifter (Section 2.4).

For simplicity, we focus on applying the D&C paradigm in this section. The full definition of

lifting problems can be found in Section 3.
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if len(xs) <= 1: return INF;
return sorted(xs)[1];

Fig. 1. Second minimum. Fig. 2. An example of calculating sndmin.

aux xs = min xs

comb ((smin𝐿, aux𝐿), (smin𝑅, aux𝑅)) =
let csmin = min(smin𝐿, smin𝑅,max(aux𝐿, aux𝑅)) in

let caux = min(aux𝐿, aux𝑅) in
(csmin, caux)

Fig. 3. aux and comb for sndmin.

def dac(xs, l, r):
if r - l <= 1:
return (orig([xs[l]]), aux([xs[l]]))

mid = (l + r) // 2
lres = dac(xs, l, mid)
rres = dac(xs, mid, r)
return comb(lres, rres)

return dac(xs, 0, len(xs))[0]

Fig. 4. A divide-and-conquer template on lists.

2.1 Example: Divide-and-Conquer for Second Minimum
Let sndmin be a function returning the second-smallest value in an integer list. A natural

implementation of sndmin (Figure 1, in Python-like syntax) first sorts the input list ascendingly

and then returns the second element of the sorted list. Given a list of length 𝑛, this program takes

𝑂 (𝑛 log𝑛) time to calculate the second minimum, being inefficient.

To optimize this natural implementation, let us consider manually applying D&C, a paradigm

widely used for optimization. In general, D&C decomposes a task into simpler subtasks of the same

type and calculates by combining the results of subtasks. For the sndmin task, a standard procedure

of D&C is to divide the input list xs into two halves xs𝐿 and xs𝑅 , recursively calculates sndmin xs𝐿
and sndmin xs𝑅 , and then combines them into sndmin xs. In this procedure, a combinator comb
satisfying the formula below is required, where xs𝐿 ++ xs𝑅 represents the concatenation of two lists.

sndmin (xs𝐿 ++ xs𝑅) = comb (sndmin xs𝐿, sndmin xs𝑅)
However, such a combinator does not exist because the second minimum of the whole list may

not be the second minimum of any of the two sub-list. In the example in Figure 2, the second

minimums of the sub-lists are 3 and 4, respectively, but the second minimum of the whole list is 2.

To solve this problem, a standard way is to extend the original program sndmin with a program aux
(denoted as an auxiliary program) specifying necessary auxiliary values to make a valid combinator

comb exist, as shown below.

sndmin′ (xs𝐿 ++ xs𝑅) = comb (sndmin′ xs𝐿, sndmin′ xs𝑅)
where sndmin′ xs ≜ (sndmin xs, aux xs) (1)

In this example, a valid auxiliary value is the first minimum of each sub-list. The corresponding

(aux, comb) is shown in Figure 3, written in a syntax related to our synthesizer (Section 2.2). A

D&C program can be obtained by filling these two programs into a template (Figure 4), where orig
stands for the original program sndmin (Figure 1). In this template, function dac deals with the

sub-list in range [𝑙, 𝑟 ) of the input array xs and calculates the expected result (second minimum

here) and the auxiliary value of this sub-list. When the sub-list contains only one element, the

original program and the aux are applied directly. Otherwise, dac is recursively invoked on the two

halves of the sub-list, and the results are combined by comb. Note that although aux is applied only
to singleton lists in this template, it is defined for all lists to guide the design of the comb.
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Start symbol 𝑆 → 𝑁Z | (𝑆, 𝑆)
Integer expr 𝑁Z → 𝑁Z + 𝑁Z | min 𝑁L

| max 𝑁L | sum 𝑁L
List expr 𝑁L → Input

(a) The program space Lex
aux of aux.

Start symbol 𝑆 → 𝑁Z | (𝑆, 𝑆)
Integer expr 𝑁Z → Inputs | min(𝑁Z, 𝑁Z)

| 𝑁Z + 𝑁Z | max(𝑁Z, 𝑁Z)

(b) The program space Lex
comb of comb.

Fig. 5. A solution space for synthesizing a D&C program of sndmin, where the output of aux can be a tuple
of integers, representing the usage of multiple auxiliary values (Figure 5a), and the output of comb can also
be a tuple since comb usually needs to calculate multiple values (Figure 5b).

The time complexity of the resulting D&C program is𝑂 (𝑛) on a list of length 𝑛 when comb runs
in 𝑂 (1) time, and both orig and aux run in 𝑂 (1) time on singleton lists. This complexity can be

further reduced to 𝑂 (𝑛/𝑝) on 𝑝 ≤ 𝑛/log𝑛 processors with proper parallelization.

As demonstrated in the above procedure, applying D&C is non-trivial. Although the template

in Figure 4 is standard for D&C programs on lists, we still need to find an auxiliary program aux
specifying proper auxiliary values and a corresponding combinator comb. These programs are

observably more complex than the original program in Figure 1.

2.2 Problem and Challenge
Motivated by the difficulty in manual optimization, we study the automatic application of D&C.

Concretely, given the original program sndmin (Figure 1) as the input, we aim to automatically

synthesize proper aux and comb to fill the D&C template (Figure 4), and meanwhile ensures both

the correctness and the efficiency of the resulting D&C program.

• (Correctness) The resulting D&C program should be semantically equivalent to the original

program, that is, it should correctly calculate the second minimum of the input list. To ensure

this point, we use Formula 1 as the specification for synthesizing aux and comb. At this time,

by filling the synthesized aux and comb to the D&C template (Figure 4), the resulting program

must be correct.

• (Efficiency) To ensure an efficient D&C program that runs in 𝑂 (𝑛/𝑝)-time in parallel, we

apply the SyGuS framework [Alur et al. 2013] and constrain the space of solutions to include

only comb that runs in 𝑂 (1) time and aux that runs in 𝑂 (1) time on singleton lists.

In this section, we use a toy solution space (Figure 5), which is simplified from the one in

our implementation (Section 7), to illustrate the main idea of our approach. This solution

space satisfies the constraint above, that is, every comb in Lex
comb runs in 𝑂 (1) time and every

aux in Lex
aux runs in 𝑂 (1) time on singleton lists. One can verify that any possible solution

(aux, comb) in this toy space can lead to an efficient D&C program.

The synthesis task here is challenging because we need to synthesize two interrelated programs

from a relational specification, and meanwhile the total size of these two programs can be large in

real-world algorithmic problems (up to 157 AST nodes in our dataset). General program synthesis

approaches that handle relational specifications such as enumerative synthesis [Alur et al. 2013]

and relational synthesis [Wang et al. 2018] do not scale up to solve most of the problems in our

dataset. On the other hand, most other scalable synthesis approaches [Balog et al. 2017; Feser et al.

2015; Ji et al. 2021; Miltner et al. 2022; Osera and Zdancewic 2015; Rolim et al. 2017] work only for

synthesizing a single program and require obtaining input-output examples. They cannot work for

synthesizing two programs from a relational specification.
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2.3 An Existing Approach and Its Limitation
Parsynt [Farzan and Nicolet 2017, 2021b] is a state-of-the-art synthesizer for D&C. It solves the

scalability challenge using a syntax-based program transformation system specifically designed

for D&C. Specifically, Parsynt applies its transformation system to the source code of the original

program to directly derive aux. After aux is derived, only comb is unknown and can be synthesized

using existing synthesizers. In this procedure, Parsynt will derive the full definition of aux to help

synthesize comb, though aux is invoked only on singleton lists in the D&C template (Figure 4).

fstmin, sndmin = INF, INF
for v in xs:
sndmin = min(sndmin, max(fstmin, v))
fstmin = min(fstmin, v)

return sndmin

Fig. 6. A single-pass program for sndmin.

The syntax-based transformation system in Parsynt
puts a strict restriction on the original program, that is,

the original program must be implemented as a single-

pass program that enumerates each element in the input

list only once. Figure 6 shows a single-pass implementa-

tion of sndmin, which is formed by a loop visiting each

element in the input list xs only once. This program takes

the first minimum as an auxiliary value and updates the second minimum using the property that,

each time a new element is visited, the new second minimum must be the medium value among

the previous first minimum, the previous second minimum, and the new element.

Although any functions that can be implemented as D&C can also be implemented as single-

pass after introducing enough auxiliary values
1
, the single-pass restriction of Parsynt still leads to

significant burdens on the user from two aspects.

• Similar to D&C, implementing single-pass programs is difficult because many functions

cannot be implemented as single-pass unless auxiliary values are introduced. In the above

example of sndmin in Figure 6, the user has to introduce the first minimum as an auxiliary

value, which is already the auxiliary value required by D&C. In the dataset we used for

evaluation, the auxiliary values required by single-pass already account for 40.54%-58.62% of

the auxiliary values required by D&C (Section 8.3).

• Implementing single-pass programs is error-prone. The dataset used by Farzan and Nicolet

[2021b] contains two bugs introduced when the authors manually implemented the original

programs into single-pass. These bugs have been confirmed by the authors.

2.4 AutoLifter on the Second Minimum Example
To remove the requirement on single-pass original programs, we aim to solve the synthesis task

without using syntax-based program transformations. Instead, we explore a decomposition-based

approach to cope with the scalability challenge by answering the following question.

Is it possible to derive a specification that involves only a sub-program
of the synthesis target (aux, comb), such as aux only?

Our answer is positive. We propose two decomposition methods, named component elimination
and variable elimination, to derive specifications for sub-programs of the synthesis target. By

applying these methods, we can first synthesize a sub-program of the synthesis target using

the derived specification and then synthesize the remainder with the help of the obtained sub-

program. In this way, we greatly reduce the scale of the program to be synthesized in each step.

Given the difficulty of deriving a precise specification for a sub-program, we derive approximate

specifications. At the end of this section we would discuss why approximate specifications do not

affect the soundness of our approach.

1
By the second list-homomorphism theorem [Gibbons 1996], any function that can be implemented as D&C with a set of

auxiliary values can also be implemented as single-pass with the same set of auxiliary values.
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Fig. 7. The workflow of AutoLifter .

Figure 7 shows the workflow of AutoLifter , which synthesizes through an interaction between a

decomposition system and two inductive synthesizers. Given a synthesis task, the decomposition

methods are iteratively applied to decompose the task and in this process, we would obtain a series

of leaf subtasks (i.e., subtasks that cannot be further decomposed), each with a smaller scale and a

simpler form. AutoLifter solves these subtasks one by one using inductive synthesizers and collects

the results for generating subsequent subtasks and constructing the final result.

Component elimination. In the original specification (Formula 1), the output of comb is a pair of
two components, corresponding to the expected output of sndmin and the auxiliary values defined

by aux, respectively. Accordingly, we can synthesize two sub-programs, denoted as comb1 and
comb2, each for calculating an output component, and then constructs comb as follows.

comb in ≜ (comb1 in, comb2 in)
A natural idea here is to synthesize the two sub-programs individually [Osera and Zdancewic

2015]. However, this method does not work here because the two sub-programs are both dependent

on aux. Specifically, we could have the specifications below for the two sub-programs, where

for clarity, we use blue to denote the original program, red to denote unknown programs to be

synthesized, and green to denote universally quantified variables that range over all integer lists.

sndmin (xs𝐿 ++ xs𝑅) = comb1 (sndmin′ xs𝐿, sndmin′ xs𝑅),where sndmin′ xs ≜ (sndmin xs, aux xs)
(2)

aux (xs𝐿 ++ xs𝑅) = comb2 (sndmin′ xs𝐿, sndmin′ xs𝑅),where sndmin′ xs ≜ (sndmin xs, aux xs)
(3)

Both specifications involve the same unknown program aux. If we synthesize from these specifica-

tions individually, we may get two incompatible results that use different aux.
To solve this problem, we analyze the requirement on aux put by each specification.

• In Formula 2, aux needs to provide enough information for calculating the second minimum.

• In Formula 3, aux needs to ensure that the auxiliary values provide enough information for

calculating themselves.
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Our observation here is that, for the first requirement, it does not matter if aux provides more

information than necessary. Consequently, these two requirements can be satisfied in order. We

can first find aux to satisfy the first requirement and then if necessary, add more auxiliary values

to satisfy the second requirement. At this time, the first requirement will still be satisfied because

more information is provided.

Following this idea, we design our first decomposition method component elimination. The
decomposition procedure is shown below.

• The first subtask is the same as Formula 2. It targets finding those auxiliary values necessary

for the second minimum and the corresponding combinator. Here, one possible result is to

take aux as min and take comb1 as the csmin expression in Figure 3.

• Then, the second subtask is shown below. It aims to expand the found auxiliary value to

satisfy the second requirement. In this specification, the new auxiliary program aux′ denotes
the new auxiliary values needed to calculate auxiliary values themselves.

aux (xs𝐿 ++ xs𝑅) = comb2 (sndmin′ xs𝐿, sndmin′ xs𝑅)
where sndmin′ xs ≜ (sndmin xs, aux xs)

aux xs ≜ (min xs, aux′ xs)
(4)

In the sndmin example, no other information is needed for calculating the auxiliary value of

the first minimum. One possible result here is to take aux′ as an empty program (i.e., returns

an empty tuple) and take comb2 as the caux expression in Figure 3.

We shall discuss another example where new auxiliary values are needed in Section 4.

• By merging the above results of subtasks, we can obtain the intended solution in Figure 3.

AutoLifter will further decompose both subtasks to achieve efficient synthesis.

• The first subtask (Formula 2) will be decomposed by another decomposition method, variable
elimination, which will be introduced later.

• The second subtask (Formula 4) will be recursively decomposed by component elimination.

Specifically, this subtask is similar to the original task (Formula 1) in form. Both tasks are

about finding new auxiliary values to calculate the output of a known function (together with

the auxiliary values themselves). Therefore, this subtask can still be decomposed similarly.

Variable elimination. The first task generated by component elimination is still challenging

because it involves two unknown programs, comb1 and aux. Our second decomposition method

variable elimination decomposes this task by deriving a subtask involving only aux. In other words,

this method eliminates a program variable (i.e., comb1) from the specification.

To derive a specification only for aux, we first revisit the fundamental reason why aux is needed.
Let us consider two pairs of lists, (xs𝐿, xs𝑅) in Figure 2 and another pair (xs′

𝐿
, xs′

𝑅
).

xs𝐿 [1, 3, 5], [2, 4, 6] xs𝑅 xs′𝐿 [1, 3, 5], [1, 4, 6] xs′𝑅 (5)

Although the second minimums of xs𝐿 and xs𝑅 (3 and 4) are the same as their counterparts of

(xs′
𝐿
, xs′

𝑅
), the second minimum of the combined list xs𝐿 ++xs𝑅 (which is 2) differs from that of

xs′
𝐿
++ xs′

𝑅
(which is 1). Consequently, if aux is not involved, a conflict will emerge after substituting

these two list pairs into the specification of comb1 (Formula 2). Specifically, (xs𝐿, xs𝑅) requires
comb1 to output 1 from input (3, 4) but (xs′

𝐿
, xs′

𝑅
) requires comb1 to output 2 from the same input.

Such a comb1 does not exist because it must produce the same output from the same input.

The above analysis indicates that a necessary condition on aux is to ensure that a function exists

for comb1 to implement. When the expected outputs of comb1 (i.e., the second minimums of the

combined lists) are different, the inputs (i.e., the second minimums or the auxiliary values on the

two halves) must also be different. Our method variable elimination takes this necessary condition
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as the specification for synthesizing aux and thus separates the synthesis of aux and comb1. This
method decomposes the first task of component elimination (Formula 2) as follows.

• The first subtask is shown below. It targets finding auxiliary values such that two inputs of

comb1 must be different when their respective outputs differ.

sndmin (𝑥𝑠𝐿 ++𝑥𝑠𝑅) ≠ sndmin (𝑥𝑠′𝐿 ++𝑥𝑠′𝑅)
→ (sndmin′ 𝑥𝑠𝐿, sndmin′ 𝑥𝑠𝑅) ≠ (sndmin′ 𝑥𝑠′𝐿, sndmin′ 𝑥𝑠′𝑅)

where sndmin′xs ≜ (sndmin xs, aux xs)
For clarity, we transform this specification into the following equivalent form to make the

constraint on aux clear. One possible result here takes aux as min.

(sndmin 𝑥𝑠𝐿, sndmin 𝑥𝑠𝑅) = (sndmin 𝑥𝑠′𝐿, sndmin 𝑥𝑠′𝑅)
∧ sndmin (𝑥𝑠𝐿 ++𝑥𝑠𝑅) ≠ sndmin (𝑥𝑠′𝐿 ++𝑥𝑠′𝑅)

→ (aux 𝑥𝑠𝐿, aux 𝑥𝑠𝑅) ≠ (aux 𝑥𝑠′𝐿, aux 𝑥𝑠′𝑅)
(6)

This subtask will be used for synthesis without further decomposition; in other words, it is a

leaf subtask of the decomposition. In this section, we include leaf subtasks in framed boxes

to distinguish them from the other tasks.

• Then, the second subtask is shown below. It aims to synthesize a corresponding comb1 that
calculates the second minimum using the auxiliary value found in the first subtask.

sndmin (xs𝐿 ++ xs𝑅) = comb1
(
(sndmin xs𝐿,min xs𝐿), (sndmin xs𝑅,min xs𝑅)

)
(7)

One possible result here takes comb1 as the csmin expression in Figure 3.

• By merging the results of the above subtasks, we can obtain a valid solution to the original

task (Formula 2).

Synthesis from leaf tasks. After applying the above two decomposition methods, the original

synthesis task (Formula 1) is decomposed into two series of leaf tasks, one for sub-programs of aux
(represented by Formula 6) and the other for sub-programs of comb (represented by Formula 7).

We solve these leaf tasks following the framework of counter-example guided inductive synthesis

(CEGIS) [Solar-Lezama 2013]. In CEGIS, the synthesizers focus on satisfying a set of examples (i.e.,

instances of the quantified variables xs𝐿 , xs𝑅 , xs′𝐿 , and xs′
𝑅
) instead of the full specification, and

a verifier verifies the correctness of the program synthesized from examples and provides new

counter-examples when it is incorrect.

Among the leaf tasks, the task for sub-programs of comb (e.g., Formula 7) is already in the input-

output form, where input-output examples are available. For example, under example (xs𝐿, xs𝑅) ≜
( [1, 3, 5], [2, 4, 6]), Formula 7 requires sub-program comb1 to output 2 from input ((3, 1), (4, 2)). As
a result, these tasks can be solved by existing inductive synthesizers that rely on input-output

examples. We use a state-of-the-art synthesizer PolyGen [Ji et al. 2021] in our implementation.

In contrast, the task for sub-programs of aux (e.g., Formula 6) is still relational. It involves

the outputs of aux on four different inputs (xs𝐿 , xs𝑅 , xs′𝐿, xs′𝑅), making input-output examples

unavailable. Fortunately, a domain property here is that the size of aux is usually much smaller than

comb. Specifically, since aux will only be invoked on singleton lists in the resulting program (Figure

4), it does not need to be efficient and thus can be synthesized compactly using high-level list

operators. Using this property, we solve the leaf tasks for aux using observational equivalence [Alur
et al. 2013], a general enumeration-based synthesizer, and also proposes a specialized pruning
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method, named observational covering, to speed up the synthesis for the cases requiring multiple

auxiliary values. The details on this synthesizer can be found in Section 4.3.

Notes. There are two points worth noting in the synthesis procedure.

• Although the full definition of aux is not used in the resulting D&C program, it reduces the

difficulty of synthesizing comb. As we can see, after the full aux is synthesized, the subsequent
subtasks for comb are no longer relational and can be solved easily.

• Neither PolyGen nor OE can be directly applied to the original problem (Formula 1) without

the decomposition. For PolyGen, neither input-output examples of aux nor those of comb
can be extracted from Formula 1; and for OE, the target comb is too large to be efficiently

synthesized by enumeration.

Properties of AutoLifter. The decomposition of AutoLifter is sound in the sense that any solution

constructed from valid sub-programs for the leaf subtasks must satisfy the full specification. This

is because, in each decomposition, the second subtask is always obtained by putting the result of

the first subtask into the original specification before the decomposition. Therefore, the original

specification must be satisfied when the second subtask is solved successfully.

However, both decomposition methods in AutoLifter are approximate, possibly decomposing a

realizable task (i.e., a task whose valid solution exists) into unrealizable subtasks. This is because,

both decomposition methods use approximate specifications in their first subtask, and thus it is

possible to synthesize a sub-program from the first subtask that can never form a valid solution,

making the corresponding second subtask unrealizable. For example, the subtask for aux (Formula

6) only ensures that a function exists for comb1 to implement but does not ensure that such a

program exists in the program space (Lex
comb, Figure 5b). One can verify that (min xs) + (min xs) is

also valid for this subtask, but a corresponding combinator does not exist in Lex
comb.

There are two possible strategies for using such approximate decomposition methods in practice.

• (Greedy strategy) In each decomposition, consider only the first sub-program synthesized

from the first subtask and then focus only on the corresponding second subtask.

• (Backtracking strategy) Each time an unrealizable subtask is met, backtrack to the previous

decomposition step and try other valid sub-programs to the first subtask.

Both strategies are effective only when the approximation is precise enough to ensure that unreal-

izable subtasks are seldom generated. Otherwise, the greedy strategy will be frequently stuck into

an unrealizable subtask, significantly harming the effectiveness; and the backtracking strategy will

frequently roll back and switch to other search branches, significantly harming the efficiency.

Fortunately, our evaluation results suggest that our decomposition methods are precise enough:

they never generate any unrealizable subtask from realizable tasks in our dataset. In the remainder

of this section, we shall intuitively discuss why this happens on the sndmin example.

To ensure that no unrealizable subtask is generated when solving the sndmin task, the key is to

ensure that aux is exactly synthesized as min xs from the first subtask (Formula 6), given that the

subsequent two subtasks (Formulas 7 and 4) are both determined by this result. AutoLifter achieves
this through a combined effect between the enumeration-based synthesizer (mainly OE) and the

program space (Lex
aux, Figure 5a).

Programs in Lex
aux can be divided into two categories. The first includes programs derived by the

intended solution min xs, for example, by including more auxiliary values (e.g., (min xs,max xs))
or performing some arithmetic operations (e.g.,(min xs) + (min xs)). Although many programs in

this category satisfy the specification (Formula 6) as well, the pinciple of Occam’s razor [Blumer

et al. 1987; Ji et al. 2021] applies here: the intended solution min xs is the smallest in this category.
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Table 1. Counter-examples of sum xs and max xs for Formula 6.

Program (xs𝐿, xs𝑅) (xs′
𝐿
, xs′

𝑅
) Simplified Specification

sum xs ( [0, 2], [0, 1, 2]) ( [0, 2], [1, 1, 1]) (2, 1) = (2, 1) ∧ 0 ≠ 1→ (2, 3) ≠ (2, 3)
max xs ( [0, 2], [0, 2]) ( [0, 2], [1, 2]) (2, 2) = (2, 2) ∧ 0 ≠ 1→ (2, 2) ≠ (2, 2)

Since AutoLifter synthesizes aux by enumerating programs from small to large, it prefers smaller

programs and thus can successfully find min xs from those unnecessarily complex programs.

The second category includes the remaining programs not related tomin xs. The specification for

aux (Formula 6) is strong enough to exclude all programs in this category because of a property of

these functions, which we name as the compressing property. As a side effect of ensuring an efficient

D&C program, program spaceLex
aux includes only programsmapping a list (whose size is unbounded)

to a constant-sized tuple of integers. Such programs compress a large input space to a much smaller

output space
2
and thus frequently output the same on different inputs. Consequently, an incorrect

program in Lex
aux can hardly satisfy the specification (Formula 6) because this specification requires

aux to generate different outputs on a series of input pairs. For example, sum xs and max xs are
two candidates in Lex

aux that are not related to min xs. Both of them are rejected by Formula 6, and

the corresponding counter-examples are listed in Table 1.

Note that the specification for aux (Formula 6) may be weak without the compressing property

because it only requires aux to output differently on some pairs of inputs. It accepts all programs

that seldom output the same, such as the identity program id xs ≜ xs.

The above two factors will be revisited formally in Section 5.

• First, we prove that the probability for AutoLifter to generate an unrealizable subtask con-

verges to 0 under a probabilistic model where the semantics of programs are modeled as

independent random functions with the compressing property (Theorem 5.6).

• Second, we prove that AutoLifter can always find a minimal auxiliary program (i.e., no strict

sub-program of the synthesized auxiliary program is valid), helping avoid unnecessarily

complex solutions when the dependency among semantics is considered (Theorem 5.8).

3 LIFTING PROBLEM
Section 2 shows how AutoLifter works for applying the D&C paradigm. In this section, we show

how to capture the application tasks of D&C-like paradigms uniformly as lifting problems, a novel
class of synthesis tasks considered by AutoLifter .

3.1 Example: Incrementalization for Second Minimum
We use the paradigm of incrementalization as an example. Suppose now a series of changes are

going to be applied to a list, each time a new integer will be appended, and the task is to determine

the second minimum of the new list after each change. The incrementalization paradigm suggests

computing some auxiliary values such that the new result after each change can be incrementally

calculated from the previous one. In other words, we need to find a program aux for specifying
auxiliary values and a combinator comb for quickly updating the result, as shown below.

sndmin′ (append xs 𝑣) = comb (𝑣, sndmin′ xs),where sndmin′ xs ≜ (sndmin xs, aux xs) (8)

2
Here we assume the integer range is fixed for simplicity. The effect of the integer range on the compressing property will

be discussed in Section 9.
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aux xs = min xs

comb (𝑣, (sminpre, auxpre)) =
let csmin = min(sminpre,max(auxpre, 𝑣)) in

let caux = min(auxpre, 𝑣) in
(csmin, caux)

Fig. 8. aux and comb for incrementalization

A valid solution to this specification is shown

in Figure 8. Similar to the D&C case, the auxiliary

value is still the minimum element of the list, and the

combinator updates both the second minimum and

the first minimum with the newly appended integer

𝑣 . This program takes𝑂 (1) time for each update, but

it is not easy to write since a proper auxiliary value

is required.

We can see that the above example task of applying incrementalization has many commonalities

compared with the previous example task of applying D&C to sndmin (Section 2.1).

• In both tasks, a list is created from existing lists via an operator (xs𝐿 ++xs𝑅 and append xs 𝑣)
and the output of an original program (sndmin) on the created list is calculated.

• Both tasks aim at finding (1) a program aux (denoted as an auxiliary program) for specifying

auxiliary values, and (2) a corresponding combinator comb for calculating the outputs on the

created list from those on the existing lists.

We denote such a problem as a lifting problem. As we shall demonstrate later, the auxiliary program

and the original program form a homomorphism that preserves a given operation; in other words,

the auxiliary program lifts the original program to be a homomorphism.

3.2 Lifting Problem
Notations. In this paper, we regard a type as a set of values of the type and use the two terms

interchangeably. To distinguish between types and values, we use uppercase letters such as 𝐴, 𝐵 to

denote types, and lowercase letters (or words) such as 𝑎, xs, func to denote values and functions.

Particularly, we use overline letters such as 𝑎 to denote values in the form of tuples.

To operate types and functions, we use 𝑇𝑛
to denote the 𝑛-arity product 𝑇 × · · · ×𝑇 of type 𝑇 ,

func
1

△ func
2
to apply two functions to the same value, func

1
× func

2
to apply two functions to the

two components in a pair, and func𝑛 to apply a function to each component in an 𝑛-tuple.

(func
1

△ func
2
) 𝑥 ≜ (func

1
𝑥, func

2
𝑥) (func

1
× func

2
) (𝑥1, 𝑥2) ≜ (func1 𝑥1, func2 𝑥2)

func𝑛 (𝑥1, . . . , 𝑥𝑛) ≜ (func 𝑥1, . . . , func 𝑥𝑛)

Problem definition. Given an original program orig over some data-structure type and an operator

that creates an instance 𝑎 from some other instances 𝑎1, . . . , 𝑎𝑛 of the data structure, a lifting
problem is to find an auxiliary program and a combinator such that orig 𝑎 can be calculated from

orig 𝑎1, . . . , orig 𝑎𝑛 . Formally, a lifting problem is defined as follows.

Definition 3.1 (Lifting Problem). A lifting problem is specified by the following components.

• An original program orig, whose input type is denoted as 𝐴.

• An operator op with input type 𝐶 × 𝐴𝑛
and output type 𝐴 for some type 𝐶 and arity 𝑛. It

constructs an 𝐴-element from 𝑛 existing 𝐴-elements and a complementary input in 𝐶 .

• Two domain-specific languages Laux and Lcomb, each specified by a grammar and the corre-

sponding interpretations (i.e., semantics), defining the spaces of candidate programs.

The task of a lifting problem is to find an auxiliary program aux ∈ Laux and a combinator comb ∈
Lcomb such that the formula below is satisfied for any 𝑐 ∈ 𝐶 and 𝑎 ∈ 𝐴𝑛

:

(orig △ aux) (op (𝑐, 𝑎)) = comb (𝑐, (orig △ aux)𝑛 𝑎) (9)

Following the notations in Section 2, we mark the known programs given in the synthesis task

(e.g., original program orig and operator op) as blue, the unknown programs to be synthesized as
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Table 2. The correspondence between the lifting problem and previous synthesis tasks.

Paradigm Specification orig 𝐴 op 𝑛 𝐶

D&C Formula 1

sndmin List

op ((), (xs𝐿, xs𝑅)) ≜ xs𝐿 ++ xs𝑅 2 Unit

incrementalization

(list append)

Formula 8 op (𝑐, (xs)) ≜ append xs 𝑐 1 Int

red, and those universally quantified values as green. Furthermore, we shall also omit the range of

a universally quantified value (such as ∀𝑎 ∈ 𝐴𝑛
and ∀𝑐 ∈ 𝐶 here) if it is clear from the context.

Example 3.2. The specification of a lifting problem can be transformed into the following equiva-

lent form to better correspond to the previous synthesis tasks (Formulas 1 and 8).

orig′
(
op (𝑐, (𝑎1, . . . , 𝑎𝑛))

)
= 𝑐𝑜𝑚𝑏 (𝑐, (orig′ 𝑎1, . . . , orig′ 𝑎𝑛)),where orig′ 𝑥 ≜ (orig 𝑥, 𝑎𝑢𝑥 𝑥)

Table 2 associates the concepts in a lifting problem with the two previous tasks, where Unit is a
singleton type, and () is the only element in Unit that provides no information.

A lifting problem is defined as a syntax-guided synthesis (SyGuS) problem [Alur et al. 2013],

where the two languages Laux and Lcomb can be used to control the complexity of the generated

program. We have seen the case of D&C in Section 2.2, and the incremental program generated

by solving the respective lifting problem (Formula 8) must run in 𝑂 (1) time per change if Lcomb
includes only programs running in constant time.

In this paper, we assume that Laux and Lcomb are implicitly given and denote a lifting problem as

LP(orig, op). Besides, we assume that Laux contains a constant function null mapping anything to

the unit constant (), corresponding to the case where no auxiliary value is required.

Meaning. A lifting problem has a clear algebraic meaning about

synthesizing a homomorphism. For clarity, we draw the commu-

tative diagram of its specification on the right, where each arrow

represents a function application and the two paths from the lower-

left to the upper-right result in the same function, id is the identity
function, and 𝐵 denotes the output type of orig △ aux. This diagram
shows that orig △ aux is a homomorphism mapping from 𝐴 to 𝐵,

where the operator op (related to 𝐴) is preserved as the combinator comb (related to 𝐵).

In the sense of program optimization, the lifting problem is about eliminating the construction of

𝐴-elements. In its specification (Formula 9), the left-hand side explicitly constructs an𝐴-element via

op and immediately consumes it via orig; in contrast, the right-hand side avoids this construction

by directly calculating from existing results, via the synthesized combinator comb. This intuition
matches a general optimization strategy, named fusion [Pettorossi and Proietti 1996], which suggests
that a program is efficient if there is no unnecessary intermediate data structure produced and

consumed during the computation.

Applying to D&C-like algorithmic paradigms. Besides D&C and incrementalization, there are

many other algorithmic paradigms sharing the idea of building up the final results step-by-step

through a prescribed recursive structure. We denote these paradigms as D&C-like paradigms, and

other such paradigms include single-pass [Schweikardt 2018], segment trees [Lau and Ritossa 2021],

and three greedy paradigms for longest segment problems [Zantema 1992]. The application of

these paradigms can also be reduced to lifting problems, as shall be discussed in Section 6.

Given a reduction from the application of a certain D&C-like paradigm to lifting problems, any

synthesizer for lifting problems can be instantiated as a synthesizer for applying the respective
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mss = -INF
for i in range(len(x)):
for j in range(i, len(x)):
mss = max(mss, sum(x[i: j+1]))

return mss

Fig. 9. Maximum segment sum

Fig. 10. An example of calculating mss.

Fig. 11. An example of calculating mps.

paradigm. In practice, to obtain an efficient algorithm for a specific task, the user needs only to select

an available D&C-like algorithmic paradigm, pick up the corresponding instantiated synthesizer,

and provide the original program. Then, the instantiated synthesizer will automatically generate a

semantically equivalent program in the target paradigm.

We shall discuss how to select an algorithmic paradigm in Section 9.

4 APPROACH
In this section, we shall illustrate AutoLifter in detail with a more complex example related to a

classic problem, maximum segment sum (mss) [Bird 1989b]. This section is organized as follows.

Section 4.1 introduces the mss example, Section 4.2 discusses the decomposition methods, Section

4.3 shows how to solve the leaf subtasks via inductive synthesis, and Section 5 summarizes the

theoretical properties of AutoLifter .

4.1 Example: Divide-and-Conquer for Maximum Segment Sum
Given a list of integers, we can create many contiguous subsequences, called segments. For each

segment, we can add up integers within the segment to get the segment sum. Themss problem is to

find, for a given list, the greatest sum we can get among all segments. A natural implementation of

mss (Figure 9) enumerates all segments, calculates their segment sums, and returns the maximum.

This program runs in 𝑂 (𝑛3) time on a list of length 𝑛 and thus is quite inefficient.

D&C can be applied to optimize this natural implementation. However, similar to the second

minimum example, if we divide the input list into two halves, the mss of the whole list cannot
be calculated from those of the two halves. In the case shown in Figure 10, the segment with the

maximum sum of the left half is the prefix list [3], that of the right half is the prefix list [1, 2],
but the segment with the maximum sum of the whole list (i.e.,[1, 1, 1, 2]) is a concatenation of a

tail-segment of the left half and a prefix of the right half.

To resolve the issue exposed by Figure 10, we can take the maximum prefix sum (mps) and the

maximum tail-segment sum (mts) as auxiliary values so that the mss of the whole list in Figure 10

can be produced by adding up the mts of the left half and the mps of the right half. However, the
problem is not completely solved yet. These auxiliary values should also be calculated during D&C,

and the same issue shall occur again: no corresponding combinator exists unless new auxiliary

values are introduced. Figure 11 demonstrates such a case, where the mps of the whole list covers
the full left half, and its sum cannot be produced using only mps, mts, and mss of the two halves.

Here, we can introduce the sum of integers in the list as a supplementary auxiliary value to enable

the calculation of mps and mts. In this way, the mps of the whole list in Figure 11 can be produced

by adding up the sum of the left half and the mps of the right half.
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Start symbol 𝑆 → 𝑁Z | (𝑆, 𝑆)
Integer expr 𝑁Z → 𝑁Z + 𝑁Z | min 𝑁L

| max 𝑁L | sum 𝑁L
| mps 𝑁L | mts 𝑁L

List expr 𝑁L → Input

mps xs = max([sum(xs[:i+1])

for i in range(lens(xs))])

mts xs = max([sum(xs[i:])

for i in range(lens(xs))])

Fig. 12. The extended program Lmss
aux of aux for

the mss example, where semantics of mps and
mts are explained using a Python-like syntax. Fig. 13. The expected aux and comb for mss.

The task of applying D&C to mss can be regarded as a lifting problem LP(mss, op) for operator
op ((), (xs𝐿, xs𝑅)) ≜ xs𝐿 ++ xs𝑅 . The raw specification of this lifting problem is as follows.

(mss △ aux) (xs𝐿 ++ xs𝑅) = 𝑐𝑜𝑚𝑏 ((), (mss △ aux)2 (xs𝐿, xs𝑅))

which can be transformed into a more readable form as shown below.

mss′ (xs𝐿 ++ xs𝑅) = 𝑐𝑜𝑚𝑏
(
(), (mss′ xs𝐿,mss′ 𝑥𝑠𝑅)

)
,where mss′ ≜ mss △ aux (10)

For simplicity, in this example, we continue using Lex
comb (Figure 5b) and extend Lex

aux (Figure 5a)

by directly introducing mps and mts as language constructs (Lmss
aux, Figure 12). Note that the full

languages used in our implementation are formed by more primitive constructs where, for example,

mps is implemented as max (scanl (+) xs) (Example 7.1, Section 7).

Figure 13 shows the expected solution synthesized from Lmss
aux and Lex

comb, where aux returns a 3-
tuple and comb returns a 4-tuple. This solution is formed by expressions for producing components

in the output tuples. We label these expressions in Figure 13 for later reference.

4.2 Decomposition System
AutoLifter decomposes lifting problems using two decomposition methods, component elimination
and variable elimination. For clarity, for each method, we shall first discuss its general idea on a

compact specification and then show how to apply it to decompose lifting problems.

4.2.1 Component Elimination. In lifting problems, the output of comb is a pair of two components,

corresponding to the expected output of the original program and the auxiliary values defined

by aux. Our first decomposition method, component elimination, is proposed for decomposing a

lifting problem into two subtasks, each involving only one component in the output pair.

General idea. The task considered by component elimination is to calculate the output of a program

from the output of another program. The general specification of this task is shown below.

∀(𝑥,𝑦) ∈ 𝑆, (out 𝑥,𝑔 𝑥) = 𝑓 (𝑖𝑛 𝑦, 𝑔 𝑦) (11)

In this specification, out and in are known functions with the same input type, 𝑆 is a set of input

pairs, each comprising an input of out and an input of in, and 𝑓 and 𝑔 are two unknown programs

to be synthesized. Intuitively, 𝑔 specifies some auxiliary values, and 𝑓 calculates the output of out
and the new auxiliary values from the output of in and the corresponding auxiliary values.
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Component elimination decomposes this task into two subtasks, each involving sub-programs of

𝑓 and 𝑔. Specifically, since 𝑓 is required to output a pair of two values, we can assume the target

program of 𝑓 is formed by two sub-programs 𝑓1 and 𝑓2 such that 𝑓 ≜ 𝑓1 △ 𝑓2, each for calculating

one value in the output pair. Furthermore, if the program space of 𝑓 includes operators for accessing

tuples, without loss of generality, we can assume 𝑔 is formed by two sub-programs 𝑔1 and 𝑔2 such

that 𝑔 ≜ 𝑔1 △ 𝑔2, where 𝑔1 provides the auxiliary values for 𝑓1, and 𝑔2 provides the extra auxiliary

values needed by 𝑓2. Then, the specification is decomposed into two subtasks.

(1) The first subtask synthesizes 𝑓1 and 𝑔1 from the specification below, where 𝑓1 returns the

output of out, and 𝑔1 provides necessary auxiliary values for 𝑓1.

∀(𝑥,𝑦) ∈ 𝑆, out 𝑥 = 𝑓1 (𝑖𝑛 𝑦, 𝑔1 𝑦) (12)

(2) If 𝑔1 is null, i.e., no auxiliary value is needed, a solution for the full specification (Formula 11)

is 𝑓 ≜ 𝑓1 △ null and 𝑔 ≜ null. At this time, the second subtask is not needed.

(3) Otherwise, the second subtask synthesizes 𝑓2 and 𝑔2 from the specification below, where 𝑓2
returns the new auxiliary values and 𝑔2 extends the resulting 𝑔1 of the first subtask with

extra auxiliary values.

∀(𝑥,𝑦) ∈ 𝑆, (𝑔1 𝑥,𝑔2 𝑥) = 𝑓2 ((in △ 𝑔1) 𝑦,𝑔2 𝑦) (13)

The second subtask has the same form as the full specification. Therefore, it can be recursively

decomposed by component elimination.

(4) Using the results of subtasks, a solution for the full specification can be constructed as follows.

𝑓 (𝑣in, (𝑣1, 𝑣2)) ≜
(
𝑓1 (𝑣in, 𝑣1), 𝑓2 ((𝑣in, 𝑣1), 𝑣2)

)
𝑔 𝑦 ≜ (𝑔1 𝑦,𝑔2 𝑦)

Please note that the above decomposition is approximate. There is no guarantee that the auxiliary

values found in the first subtask (i.e., the output of 𝑔1) can be calculated using programs in the

program spaces of 𝑓2 and 𝑔2. Consequently, the second subtask may be unrealizable.

Usage in AutoLifter . Let us first rewrite the specification of the lifting problem (Formula 9) into

the following equivalent form.

(orig (op (𝑐, 𝑎)), aux (op (𝑐, 𝑎))) = (comb (𝑐 (orig𝑛 𝑎, aux𝑛 𝑎)) (14)

We can see that the above formula has mostly the same form as the general form in Formula 11

(repeated below), where the correspondence is shown in the following table.

General form: (out 𝑥,𝑔 𝑥) = 𝑓 (𝑖𝑛 𝑦, 𝑔 𝑦)
General Form Lifting Problem General From Current Task

𝑓 comb in orig𝑛

𝑔 aux out orig
𝑥 op (𝑐, 𝑎)
𝑦 𝑎

The two differences here are that (1) comb has an extra parameter 𝑐 and (2) aux is applied to every

element of a tuple. Such differences do not affect the core idea of component elimination, and our

general discussion can be trivially extended to cover this form.

Following the decomposition procedure of component elimination, we can assume the form of

comb as a pair of two sub-programs comb1 and comb2, assume the form of aux as a pair of two

sub-programs aux1 and aux2, and then decompose the lifting problems as follows.

(1) The first subtask synthesizes comb1 and aux1 from the specification below.

orig (op (𝑐, 𝑎)) = comb1
(
𝑐, (orig𝑛 𝑎, aux1𝑛 𝑎)

)
(15)
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(2) If the synthesis result of aux1 is null, which means, no auxiliary value is needed to calculate

the expected output of orig, a solution for the lifting problem is comb ≜ comb1 △ null and
aux ≜ null. At this time, the second subtask is not needed.

(3) Otherwise, the second subtask synthesizes comb2 and aux2 from the specification below,

where comb1 and aux1 denote the result of the first subtask. This task can be recursively

solved in the same way.

(aux1 △ aux2) (op (𝑐, 𝑎)) = comb2
(
𝑐, ((orig △ aux1)𝑛 𝑎, aux2𝑛 𝑎)

)
(16)

(4) Given the results of the two subtasks, a solution for the lifting problem can be obtained

by taking aux as aux1 △ aux2 and constructing comb by pairing up comb1 and comb2 with
properly adjusting the structure of their inputs.

Example 4.1. After applying component elimination to themss task (Formula 10), the specification

of the first subtask is as follows.

mss (xs𝐿 ++ xs𝑅) = comb1
(
(),

(
(mss xs𝐿,mss xs𝑅), (aux1 xs𝐿, aux1 xs𝑅)

) )
(17)

One can verify that components 𝑎@mps, 𝑎@mts and 𝑐@mss in Figure 13 form a valid solution for

this subtask. Given this solution, the specification of the second subtask is as follows.

(aux1 △ aux2) (xs𝐿 ++ xs𝑅) = comb2
(
(),

(
(known xs𝐿, known xs𝑅), (aux2 xs𝐿, aux2 xs𝑅)

) )
where aux1 ≜ (mps △ mts) and known ≜ mss △ aux1

This subtask can be recursively decomposed by component elimination. The first subtask of this

recursive decomposition (denoted as subtask 2.1) is as follows.

aux1 (xs𝐿 ++ xs𝑅) = comb2.1
(
(),

(
(known xs𝐿, known xs𝑅), (aux2.1 xs𝐿, aux2.1 xs𝑅)

) )
where aux1 ≜ (mps △ mts) and known ≜ mss △ aux1

One can verify that components 𝑎@sum, 𝑐@mps, and 𝑐@mts in Figure 13 form a valid solution

for subtask 2.1, which leads to the following subtask 2.2.

(aux2.1 △ aux2.2) (xs𝐿 ++ xs𝑅) = comb2.2
(
(),

(
(known xs𝐿, known xs𝑅), (aux2.2 xs𝐿, aux2.2 xs𝑅)

) )
where aux2.1 ≜ sum and known ≜

(
mss △ (mps △ mts)

)
△ aux2.1

This subtask can still be recursively decomposed by component elimination. At this time, we shall

get null for the first sub-program of aux2.2, representing that no extra auxiliary value is needed,

and thus the synthesis finishes.

4.2.2 Variable Elimination. The first task of component elimination involves two unknown pro-

grams aux1 and comb1 that occur in the form of a composition. Our second decomposition method,

variable elimination, is proposed for decomposing this task into two subtasks, each involving only

one unknown program.

General idea. Variable elimination aims to eliminate an unknown program from an input-output

specification. Specifically, it considers specifications in the following form, where 𝑓 and 𝑔 are two

unknown programs to be synthesized.

∀(𝑥,𝑦) ∈ 𝑆, 𝑥 = 𝑓 (in 𝑔 𝑦) (18)

This is an input-output specification for program 𝑓 , where 𝑆 is a set of value pairs, each comprising

an output of 𝑓 and a parameter for generating the input, and in is a second-order program that

generates an input of 𝑓 using the other unknown program 𝑔 and a parameter 𝑦.

Variable elimination decomposes this specification using the fact that 𝑓 acts as a function. To

ensure such a function exists, 𝑔 must ensure that for any two pairs in 𝑆 , the inputs of 𝑓 must be

different when the expected outputs differ. Using this property, variable elimination decomposes
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the full specification (Formula 18) into the two sequential subtasks below, where the 𝑔 synthesized

from the first subtask (Formula 19) is put into the second one (Formula 20), making the input and

the output of 𝑓 no longer symbolic in the second subtask.

∀(𝑥,𝑦), (𝑥 ′, 𝑦′) ∈ 𝑆, 𝑥 ≠ 𝑥 ′ → in 𝑔 𝑦 ≠ in 𝑔 𝑦′ (19)

∀(𝑥,𝑦) ∈ 𝑆, 𝑥 = 𝑓 (in 𝑔 𝑦) (20)

Note that the above decomposition is approximate. The resulting 𝑔 synthesized from the first

subtask only ensures that a function exists for 𝑓 to implement, but there is no guarantee that this

function can be implemented within the program space of 𝑓 .

Usage in AutoLifter . The first task generated by component elimination (Formula 15, repeated be-

low) has the same form as the general form (Formula 18, repeated below).We list the correspondence

in the table below.

General form : 𝑥 = 𝑓 (in 𝑔 𝑦)
Current task : orig (op (𝑐, 𝑎)) = comb1

(
𝑐, (orig𝑛 𝑎, aux1𝑛 𝑎)

)
General Form Current Task

𝑓 comb1
𝑔 aux1
𝑥 orig (op (𝑐, 𝑎))
𝑦 (𝑐, 𝑎)
in 𝜆aux1. 𝜆(𝑐, 𝑎).

(
𝑐, (orig𝑛 𝑎, aux1𝑛 𝑎)

)
Following the decomposition procedure of variable elimination, we can further decompose the

first task of component elimination into the following two subtasks.

(1) The first subtask targets synthesizing aux1 from the specification below.

orig (op (𝑐, 𝑎)) ≠ orig (op (𝑐′, 𝑎′)) →
(
𝑐, (orig𝑛 𝑎, aux1𝑛 𝑎)

)
≠
(
𝑐′, (orig𝑛 𝑎′, aux1𝑛 𝑎′)

)
We transform this specification into the following equivalent form to clarify the constraint on

aux1. Following the notation in Section 2, we include leaf subtasks of decomposition within

framed boxes to distinguish them from the other intermediate subtasks.(
orig𝑛 𝑎 = orig𝑛 𝑎′ ∧ orig (op (𝑐, 𝑎)) ≠ orig (op (𝑐, 𝑎′))

)
→ aux1𝑛 𝑎′ ≠ aux1𝑛 𝑎′ (21)

(2) The second subtask targets synthesizing comb2 from the specification below, where aux1
here is the program obtained by solving the first subtask.

orig (op (𝑐, 𝑎)) = comb1
(
𝑐, (orig𝑛 𝑎, aux1𝑛 𝑎)

)
(22)

Example 4.2. After applying variable elimination to the first subtask generated in the previous

example (Formula 17), the specification of the first subtask is shown below.

(mss 𝑥𝑠𝐿,mss 𝑥𝑠𝑅) = (mss 𝑥𝑠′𝐿,mss 𝑥𝑠′𝑅) ∧mss (𝑥𝑠𝐿 ++𝑥𝑠𝑅) ≠ mss (𝑥𝑠′𝐿 ++𝑥𝑠′𝑅)
→ (aux1 𝑥𝑠𝐿, aux1 𝑥𝑠𝑅) ≠ (aux1 𝑥𝑠′𝐿, aux1 𝑥𝑠′𝑅)

One can verify that components 𝑎@mps and 𝑎@mts form a valid solution to this subtask.
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Algorithm 1: A greedy implementation of the decomposition system.

Input: A lifting problem LP(orig, op).
Output: A solution (aux, comb) to lifting problem LP(orig, op).

1 Function VariableElimination(a subtask in the form of Formula 15):
2 subtask1 ← the first subtask generated by variable elimination (Formula 21);

3 aux1 ← InductiveSynthesisForAux(subtask1);
4 subtask2 ← the second subtask corresponding to aux1 (Formula 22);

5 return (aux1, InductiveSynthesisForComb(subtask2));
6 Function ComponentElimination(a lifting problem in the form of Formula 14):
7 subtask1 ← the first subtask generated by component elimination (Formula 15);

8 (aux1, comb1) ← VariableElimination(subtask1);
9 if 𝑎𝑢𝑥1 = null then return (null, comb1 △ null);

10 subtask2 ← the second subtask corresponding to (aux1, comb1) (Formula 16);

11 (aux2, comb2) ← ComponentElimination(subtask2);
12 return (aux, comb) constructed from (aux1, comb1) and (aux2, comb2);
13 return ComponentElimination (the original lifting problem);

4.2.3 Decomposition System. As mentioned before, two strategies exist for applying the decom-

position methods, greedy and backtracking. Here we focus on the greedy strategy, the one used

in our implementation. Algorithm 1 shows the pseudocode of a decomposition system using the

greedy strategy.

(1) Algorithm 1 starts the decomposition by applying component elimination to the original

lifting problem (Line 13). The first subtask is further decomposed by variable elimination

(Lines 7-8), and the second one is solved by recursively applying component elimination

(Lines 10-11). The recursion terminates when no new auxiliary value is found (Line 9).

(2) Algorithm 1 applies variable elimination to the first subtask generated by component elimi-

nation (Lines 1-5) and solves the two subtasks via inductive synthesis (Lines 3 and 5), which

shall be discussed later (Section 4.3).

Example 4.3. Figure 14 illustrates how Algorithm 1 decomposes the mss task, where nodes are
subtasks (#1 denotes the original problem), arrows indicate task decomposition, tags within nodes

indicate the sub-program synthesized from each subtask, and different line styles indicate different

decomposition/subtask types. As we can see, the scale of the leaf subtasks (#3, #4, #7, #8, #11, and #12,

each including at most 2 components) is greatly reduced compared to the original lifting problem

(#1, including 7 components). There are four types of subtasks: (1) lifting problems, including the

original lifting problem (#1) and the second subtasks of component elimination (#5, #9), (2) the first

subtasks of component elimination (#2, #6, #10), (3) the first subtasks of variable elimination (#3,

#7, #11), which involve only sub-programs aux, and (4) the second subtasks of variable elimination

(#4, #8, #12), which involve only sub-programs of comb.
Besides, the following points are worth noting about Figure 14.

• The tags in each node represent the synthesis result of the subtask. They are unavailable

when the subtask is generated or further decomposed.

• For both decomposition methods, the second subtask relies on the synthesis result of the first

one so that it will not be generated until the first subtask is solved. The indices of nodes in

Figure 14 reflect the generation order of subtasks.

• The decomposition terminates after solving subtask #10 (a first subtask of component elimi-

nation) because the synthesis result shows that no new auxiliary value is required.
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Fig. 14. The decomposition performed by the decomposition system to synthesize programs in Figure 13.

4.3 Inductive Synthesis for Leaf Tasks
The decomposition system generates two types of leaf tasks, corresponding to the two subtasks of

variable elimination (Formulas 21 and 22), respectively. We apply the CEGIS framework [Solar-

Lezama et al. 2006] to convert both types of tasks into example-based synthesis tasks.

CEGIS (Algorithm 2) synthesizes by iteratively invoking an example-based synthesizer and a

verifier. It records an example set that is initially empty (Line 1). In each iteration, the example-based

synthesizer generates a candidate program prog from existing examples (Line 3) and the verifier

generates a counter-example 𝑒 under which prog is incorrect, i.e., ¬𝜙 (prog, 𝑒) is satisfied (Line 4).

The candidate program will be returned if it is verified to be correct (i.e., no counter-example exists)

(Line 5). Otherwise, the counter-example will be recorded for further synthesis (Line 6).

In this paper, we assume the existence of the verifier for both types of leaf tasks and focus on the

example-based synthesis tasks. In practice, the verifier can be selected among off-the-shelf ones on

demand. In our implementation, we use a combination of bounded model checking [Biere et al.

2003] and random testing by default.

Example-based synthesizer for comb. We begin with the leaf subtask of comb (Formula 22), the

simpler case. An example of this task is an assignment to (𝑐, 𝑎) and is in the input-output form,

requiring comb1 to output orig (op (𝑐, 𝑎)) from input (𝑐, (orig △ aux1)𝑛 𝑎). This task can be solved

by those existing synthesis algorithms relying on input-output examples. As shown in Algorithm 3,

the example-based synthesizer for comb just converts the given examples into the input-output

form (Lines 2-6) and then passes them to existing synthesizers.

Example-based synthesizer of aux. For the leaf subtask of aux (Formula 21), an example is an

assignment to (𝑐, 𝑎, 𝑎′), with a constraint of aux1𝑛 𝑎 ≠ aux1𝑛 𝑎′. Note that the premise of this

specification can be ignored in the example-based task because any example generated by CEGIS

must be a counter-example of some candidate program, which is only possible when the premise

of the specification is true.
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Algorithm 2: CEGIS framework

Input: A specification Φ = ∀𝑥, 𝜙 (prog, 𝑥).
Output: A valid program.

1 examples← ∅;
2 while true do
3 prog←

Synthesis(∀𝑥 ∈ examples, 𝜙 (prog, 𝑥));
4 𝑒 ← CounterExample(prog,Φ);
5 if 𝑒 = ⊥ then return prog;
6 examples← examples ∪ {𝑒};
7 end

Algorithm 3: Example-based solver of

comb.
Input: An example set examples and programs

(orig, op, aux1) specifying the task.

Output: A valid combinator comb∗
1
.

1 ioexamples← ∅;
2 foreach (𝑐, 𝑎) ∈ examples do
3 input← (𝑐, (orig △ aux1)𝑛 𝑎);
4 output← orig (op (𝑐, 𝑎));
5 ioexamples←

ioexamples ∪ {(input, output)};
6 end
7 return

SynthesisFromIOExamples(ioexamples);

Table 3. Two possible examples generated from the subtask in Example 4.2.

Id (xs𝐿, xs𝑅) (xs′
𝐿
, xs′

𝑅
) premise requirement

xs1 ( [1], [1]) ( [1], [−1, 1]) (1, 1) = (1, 1) ∧ 2 ≠ 1 (aux1 [1], aux1 [1]) ≠ (aux1 [1], aux1 [−1, 1])
xs2 ( [1], [1]) ( [1,−1], [1]) (1, 1) = (1, 1) ∧ 2 ≠ 1 (aux1 [1], aux1 [1]) ≠ (aux1 [1,−1], aux1 [1])

Example 4.4. Table 3 shows two examples possibly generated from the subtask in Example 4.2.

The maximum prefix sum mps satisfies example xs1 because mps generates two different outputs

(1, 1) and (1, 0) on ( [1], [1]) and ( [1], [−1, 1]). Similarly, the maximum tail-segment sum mts
satisfies example xs2, and their pair mts △ mps satisfies both examples.

The example-based synthesizer for aux (Algorithm 4) is built upon an existing enumerative

synthesizer, namely observational equivalence (OE) [Udupa et al. 2013] (Line 10). OE enumerates

programs from small to large following a bottom-up manner. It constructs larger programs by

combining those existing smaller programs via language constructs. OE uses an effective pruning

strategy to avoid duplicated programs with the same input-output behaviors. This strategy is

parameterized by an input set and will prune off those programs producing duplicated outputs on

this input set (compared to existing programs).

Example 4.5. Consider a synthesis task with a single input 𝑥 . When the input set is {1}, OE will

skip program 𝑥 × 2 if 𝑥 + 1 has been visited before because both programs output 2 from the input.

Furthermore, those programs constructed from 𝑥 × 2, such as (𝑥 × 2) + 1 and (𝑥 × 2) × 𝑥 , will be
implicitly skipped as well because 𝑥 × 2 will no longer be used to construct larger programs.

In the example-based synthesis task of aux, whether a program satisfies an example (𝑐, 𝑎, 𝑎′) is
determined by its outputs on those components inside 𝑎 and 𝑎′. Therefore, OE can be applied by

including all inputs involved in examples into the input set (Lines 1-2, Algorithm 4).

Example 4.6. When the example set is {𝑥𝑠1, 𝑥𝑠2} (examples in Example 4.4), OE can be invoked

with input set {[1], [−1, 1], [1,−1]}. Any two programs outputting the same from these inputs

must satisfy the same subset of examples.

Optimization: observational covering. The example-based synthesizer for aux also includes a

specialized optimization for better handling the case where multiple auxiliary values are required.

Specifically, we observe that many practical tasks require multiple auxiliary values, for example,
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Algorithm 4: Example-based solver of aux.
Input: An example set examples and an integer lim𝑐 specifying the

number of components considered by observational covering.

Output: A valid auxiliary program aux1.
1 involvedInputs← {𝑎 | (𝑐, 𝑎, 𝑎′) ∈ examples ∧ (𝑎 ∈ 𝑎 ∨ 𝑎 ∈ 𝑎′)};
2 oe← ObservationalEquivalenceSolver(involvedInputs);
3 ∀size ≥ 0, programs[size] ← []; result← ⊥;
4 Function IsCovered(prog, size):
5 return ∃size’ ≤ size, ∃prog′ ∈ programs[size′], prog′ satisfies all

examples that are satisfied by prog;
6 Function Insert(prog, size):
7 if prog satisfies all examples ∧result = ⊥ then result← prog;
8 if ¬IsCovered(prog, size) then programs[size] .Append(prog);
9 Function Extend():
10 component← oe.Next(); Insert(component, 1)
11 prePrograms← programs;
12 foreach size ∈ [1, . . . , lim𝑐 − 1] and prog ∈ prePrograms[size] do
13 Insert(prog △ component, size + 1);
14 end
15 Insert(null, 0);
16 while result = ⊥ do Extend();

17 return result;

mps and mts are both required for calculating mss in D&C. In these cases, the form of aux1 can
be assumed as a tuple of components (i.e., comp

1

△ . . . △ comp𝑘 ), each in a smaller scale. To better

synthesize such programs, we optimize the enumeration by invoking OE to generate only basic

components and combining these components explicitly on the top level (Lines 6-14).

To implement the optimized enumeration, our example-based synthesizer for aux maintains a

program storage programs during the enumeration, where programs[size] stores existing programs

formed by size components (Line 3). In each iteration, our synthesizer invokes OE to generate

the next component (Line 10) and then combines it with existing programs to form larger tuples

(Lines 11-14). To limit the combination space, our synthesizer is configured by an integer lim𝑐 and

considers only combining at most lim𝑐 components at the top level (Line 12). Note that such a

limitation would not affect the effectiveness: our synthesizer is still complete (i.e., never fails on a

realizable task) even when lim𝑐 is set to 1. A valid program of a realizable task will ultimately be

found as a single component because OE directly enumerates the whole program space.

To further speed up the combination, we propose an optimization method named observational
covering. This method follows the key idea of OE, that is, to prune off programs whose effect is

covered by some other programs on a set of given examples. Recall that an example (𝑐, 𝑎, 𝑎′) here
requires the auxiliary program to return different results on 𝑎 and 𝑎′, which means, an example

is satisfied by an auxiliary program when and only when it is satisfied by some components in

the auxiliary program. Therefore, when the goal is to satisfy a set of given examples using at most

lim𝑐 components, the effect of a program prog is covered by another program prog′ if (1) prog′ uses
fewer components than prog and (2) prog′ satisfies all examples satisfied by prog. At this time, the

covered program prog can be safely skipped from the top-level combination.

Example 4.7. When the example set is {xs1, xs2} (Example 4.4), the effect of max is covered by

null (the empty auxiliary program) because both programs satisfy no example and max uses one
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more component. Therefore, max can be safely skipped from the combination: whenever there is a

program combined from max (assumed as prog △ max) satisfying both examples, there must exist

another valid program prog △ null (i.e., prog) using fewer components.

Using this property, our synthesizer skips all covered programs. Only programs that are not

covered by existing ones will be inserted into the storage for further combination (Lines 4-5 and 8).

Example 4.8. Algorithm 4 runs as below when the example set is {xs1, xs2} (Example 4.4), the

limit lim𝑐 is 2, and the first three components returned by OE are max,mps, and mts in order.

• Before the first invocation of Extend, null is inserted and the storage is programs[0] = [null].
• In the first invocation, OE generates max and no other program is constructed. max will not
be inserted into the storage as it is covered by null. So the storage will remain unchanged.

• In the second invocation, OE generates mps and no other program is constructed. mps is not
covered by null as it satisfies xs1, an example violated by null. So mps will be inserted, and
the storage will become programs[0] = [null], programs[1] = [mps].
• In the third invocation, OE generatesmts and programmps △mts is generated by combination.

Both programs are not covered and will be inserted, and the storage will become as follows.

programs[0] = [null] programs[1] = [mps,mts] programs[2] = [mps △mts]
Then mps △ mts will be returned as the result as it already satisfies all given examples.

5 PROPERTIES
5.1 Soundness
AutoLifter is sound when the verifiers of leaf subtasks are sound (Theorem 5.1). Specifically, when

these verifiers are sound, the synthesis results of the leaf subtasks must satisfy their respective

specifications. Recall that in every decomposition made by AutoLifter , the second subtask is always

for completing the synthesis result of the first subtask into a valid solution for the original task.

Therefore, the final results built up from correct results of leaf subtasks must also be correct,

implying the soundness of AutoLifter .

Theorem 5.1 (Soundness). The result of AutoLifter (Algorithm 1) is valid for the original lifting
problem if the verifiers of leaf subtasks accept only valid programs for respective subtasks.

Proof. Proofs of the lemmas and theorems in this paper are available in Appendix A.1. □

5.2 Cost of Approximation
Recall that AutoLifter uses approximate specifications when decomposing lifting problems. Such a

treatment, in theory, will have negative effects on performance. The form of such effects depends

on the specific strategy used to implement the decomposition system.

• For the greedy strategy, every unrealizable subtask will make AutoLifter fail in solving lifting

problems, affecting the effectiveness.

• For the backtracking strategy, every unrealizable subtask will make AutoLifter roll back and

search for other solutions, affecting the efficiency.

Fortunately, we have empirical results showing that the negative effects of our approximations

are negligible. In our evaluation, AutoLifter never decomposes realizable tasks into unrealizable

and can solve almost all realizable tasks within a short time (Section 8.2).

The direct reason for this phenomenon is the excellent practical performance of our example-

based synthesizer for aux (Algorithm 4). Specifically, each subtask generated by AutoLifter depends
only on the original lifting problem and the sub-programs of aux synthesized previously, making
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the decomposition procedure of AutoLifter fully determined by the result of the aux synthesizer.
Our aux synthesizer works well on this aspect. In our evaluation, it can always find the intended

auxiliary program and thus avoid AutoLifter from generating unrealizable subtasks.

As discussed in the sndmin example (Section 2.4), we ascribe the effectiveness of our aux synthe-
sizer to two reasons: (1) the compressing property of a practical lifting problem (i.e., both orig and
programs in Laux map a large input space to a small output space) makes the specification of aux
(Formula 21) strong enough to exclude most candidates, and (2) the preference to simpler auxiliary
programs helps avoid those unnecessarily complex solutions. In the remainder of this section, we

shall provide formal results corresponding to these two factors.

• First, in Section 5.2.1, we analyze the probability for AutoLifter to generate unrealizable

subtasks under a probabilistic model, where the semantics of Laux and Lcomb are modeled as

random. Then in Section 5.2.2, we prove that this probability is almost surely small under the

compressing property (Theorem 5.6).

• Second, in Section 5.2.3, we consider the concrete semantics of Laux and Lcomb and prove

that our aux synthesizer (Algorithm 4) can always find a minimal solution (Theorem 5.8).

5.2.1 Probability to generate unrealizable subtasks . To study the effectiveness of AutoLifter , we aim
to analyze the probability for AutoLifter to generate unrealizable subtasks. However, calculating
this probability precisely is extremely difficult because the languages of candidate programs (Laux
and Lcomb) are usually complex. Both of these languages may include infinitely many candidate

programs, each assigned with possibly complex semantics. Consequently, it is almost impossible to

precisely predict the performance of AutoLifter in synthesis.

We overcome this challenge by introducing a probabilistic model and conducting an approximate

analysis instead. Specifically, we assume the semantics of programs in Laux and Lcomb as random

functions and then analyze the probability for AutoLifter to generate unrealizable subtasks.

The following are the details of our probabilistic analysis.

Given lifting problem LP(orig, op), we construct a corresponding probabilistic modelM[orig, op]
by modeling the semantics of programs in Laux and Lcomb as uniformly random functions. The

detailed construction of M[orig, op] is shown below.

• M[orig, op] is constructed on a set of given parameters, including (1) the types and semantics

of orig and op, and (2) the syntax and the type of every program in Laux and Lcomb. The only

thing this model does is to assign random semantics to programs in Laux and Lcomb.

• For simplicity, we make the following assumptions when constructing M[orig, op].
(1) Programs in Laux are formed as tuples of components (i.e., comp

1

△ . . . △ comp𝑘 ), where
each component comp𝑖 outputs only a single auxiliary value.

(2) There is a universal value type𝑉 capturing the types of the output of orig, every auxiliary
value, and the complementary input required by op.

(3) The numbers of different values in the input type 𝐴 (the input type of orig) and the value

type 𝑉 are both finite
3
, denoted as 𝑠𝐴 and 𝑠𝑉 , respectively. At this time, the compressing

property can be modeled as a domain property that 𝑠𝐴 ≫ 𝑠𝑉 .

• M[orig, op] generates a lifting problem by independently and uniformly sampling the se-

mantics for every candidate program in Laux and Lcomb. For example, suppose that there is a

program in Laux with type 𝐴→ 𝑉 . The semantics of this program will be uniformly drawn

from functions mapping from 𝐴 to 𝑉 (𝑠
𝑠𝐴
𝑉

possibilities in total).

3
Although there exist types including infinitely many values (e.g., lists), they can be approximated in our model by taking a

large enough finite subset (e.g., setting a large enough length limit for lists).
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The main result of our analysis is to bound the size-limited unrealizable rate of AutoLifter under
the probabilistic model using the mismatch factor of the given lifting problem. Before going into the

details of this result, we shall first introduce the two concepts used in the analysis, starting from

the size-limited unrealizable rate (Definition 5.2).

Definition 5.2 (Size-Limited Unrealizable Rate). Given a lifting problem LP(orig, op) and an integer
lim𝑠 , the size-limited unrealizable rate of AutoLifter , denoted as unreal(orig, op, lim𝑠 ), is defined as

the probability for AutoLifter to decompose a random lifting problem (sampled fromM[orig, op])
into unrealizable subtasks, under the condition that the random problem has a valid solution whose

size is no larger than lim𝑠 , i.e.,

Pr

𝜑∼M[orig,op]

[
AutoLifter generates an unrealizable subtask from 𝜑

��
∃(aux, comb),

(
size(aux, comb) ≤ lim𝑠 ∧ (aux, comb) is valid for 𝜑

) ]
,

where 𝜑 ∼M[orig, op] represents that 𝜑 is a random lifting problem sampled fromM[orig, op] and
size(aux, comb) represents the total size of programs aux and comb.

In this definition, we take the size of the smallest valid program of lifting problems into consid-

eration by introducing the size limit lim𝑠 . Such a treatment enables a more refined analysis that

relies on the size of the smallest valid program.

The second concept is the mismatch factor of a lifting problem LP(orig, op) (Definition 5.3). This

factor counts the number of independent examples that auxmust satisfy to ensure a function exists

for calculating the output of orig.

Definition 5.3 (Mismatch Factor). Given lifting problem LP(orig, op) and integer 𝑡 , the mismatch
factor of this lifting problem is at least 𝑡 if there exists 𝑡 pairs of values (𝑎𝑖 , 𝑎′𝑖 ) ∈ 𝐴𝑛 ×𝐴𝑛

satisfying

the following two conditions.

• For each pair (𝑎𝑖 , 𝑎′𝑖 ), the inputs of comb when no auxiliary value is used (i.e., the output of

orig𝑛) are the same but the outputs of comb (i.e., the output of orig ◦ op) are different. In other

words, every pair (𝑎𝑖 , 𝑎′𝑖 ) must satisfy the formula below.

∃𝑐 ∈ 𝐶,
(
orig𝑛 𝑎𝑖 = orig𝑛 𝑎′

𝑖
∧ orig (op (𝑐, 𝑎𝑖 )) ≠ orig (op (𝑐, 𝑎′

𝑖
))
)

(23)

• All components involved in these pairs (2𝑛𝑡 in total) are different.

Recall that 𝐴 denotes the input type of orig, 𝑛 denotes the arity of op, and𝐶 denotes the type of the

complementary input required by op.

The mismatch factor reflects the strength of the specification that AutoLifter uses to synthesize

aux. To see this point, let us consider the first leaf subtask of aux (Formula 21) generated when

solving lifting problem LP(orig, op), as shown below.(
orig𝑛 𝑎 = orig𝑛 𝑎′ ∧ orig (op (𝑐, 𝑎)) ≠ orig (op (𝑐, 𝑎′))

)
→ aux1𝑛 𝑎 ≠ aux1𝑛 𝑎′

The premise of this specification is exactly the first condition in Definition 5.3. Through this

connection, a mismatch factor of at least 𝑡 implies that, in the approximate specification derived

by AutoLifter , aux1 (a sub-program of aux) needs to output differently on 𝑡 independent pairs of

inputs. Intuitively, with a larger mismatch factor, an incorrect aux1 will be less likely to satisfy this

specification, and thus AutoLifter will be more likely to solve the lifting problem successfully.

With the above two concepts, Theorem 5.4 shows the main result of our probabilistic analysis.

We prove that for any lifting problem, the size-limited unrealizable rate of AutoLifter is bounded by
the mismatch factor, the size limit, and the size of the output domain (i.e., 𝑠𝑉 ).
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Theorem 5.4 (Upper Bound on the Unrealizable Rate). Given a lifting problem LP(orig, op)
of which the mismatch factor is at least 𝑡 , the size-limited unrealizable rate of AutoLifter is bounded,
as shown below.

unreal(orig, op, lim𝑠 ) ≤ 2
𝑤
exp(−𝑡/𝑠𝑛 ·𝑤𝑉 ),where𝑤 ≜ lim𝑐 · lim𝑠

5.2.2 Effectiveness under the compressing property . Theorem 5.4 shows that the unrealizable rate

of AutoLifter is small when the mismatch factor is far larger than the size of the output domain.

Fortunately, this is the usual case when solving lifting problems. One important domain property

here is the compressing property of lifting problems, that is, the input domain of orig and auxiliary

programs in Laux are usually far larger than their output domains. In the following, we shall first

introduce the reason why the compressing property generally exists in lifting problems and then

discuss how the compressing property implies a large mismatch factor.

To see why the compressing property exists, let us recall the meaning of lifting problems discussed

in Section 3.2. In the sense of optimization, the inputs of orig and aux correspond to the intermediate

data structures constructed in an inefficient program, and their outputs correspond to the values

calculated after eliminating these intermediate data structures. To achieve optimization, these

programs must summarize a small result (e.g., a scalar value) from a large data structure (e.g., an

inductive data structure that can be arbitrarily large), leading to the compressing property.

Example 5.5. In the two lifting problems discussed in Sections 2.1 and 3.1 (Formulas 1 and 8),

both the original program sndmin and the auxiliary program aux take an integer list as the input

and output a single integer. The ratio between the number of integer lists to the number of integers

tends to∞ when the length of lists tends to∞ and every integer is bounded within a fixed range.

To see the relation between the compressing property and the mismatch factor, let us review the

first condition in the definition of the mismatch factor (Formula 23). For an input pair (𝑎, 𝑎′) and a

fixed complementary input 𝑐 , this condition requires orig𝑛 (whose output domain is 𝑉 𝑛
) to output

the same on 𝑎 and 𝑎′, and requires orig ◦ op (whose output domain is 𝑉 ) to output differently on

(𝑐, 𝑎) and (𝑐, 𝑎′). The strength of this condition can be estimated using probabilities. The probability

for a given (𝑎, 𝑎′) and 𝑐 to satisfy this condition can be estimated as 𝑠−𝑛
𝑉
(1 − 1/𝑠𝑉 ) because (1)

the probability for two random values in 𝑉 𝑛
to be the same is 𝑠−𝑛

𝑉
and (2) the probability for two

random values in 𝑉 to be different is 1 − 1/𝑠𝑉 . It means, in the random sense, there is one pair

(𝑎, 𝑎′) satisfying this condition in every 𝑂 (𝑠𝑛
𝑉
) pairs4. Since there are up to 𝑆𝐴/(2𝑛) independent

pairs in 𝐴𝑛 ×𝐴𝑛
and 𝑠𝐴 is far larger than 𝑠𝑉 by the compressing property, this estimation tells that

the mismatch factor is far larger than 𝑠𝑉 with a high probability. A concrete example of analyzing

the mismatch factor for a given lifting problem can be found in Appendix A.2.

Theorem 5.6 combines the above analysis with Theorem 5.4. It demonstrates that the unrealizable

rate of AutoLifter is almost always small when the compressing property holds.

Theorem 5.6 (Unrealizable Rate Under the Compressing Property). Consider the size-
limited unrealizable rate of AutoLifter on a random lifting problem. When there are at least two values
(i.e., 𝑠𝑉 > 1), for any constant 𝜖 > 0, the probability for this rate to exceed 𝜖 tends to 0 when 𝑠𝐴/𝑠𝑤

′

𝑉

tends to∞, where𝑤 ′ ≜ 𝑛 · lim𝑐 · lim𝑠 + 𝑛 + 1.

5.2.3 Preference of AutoLifter for simpler auxiliary programs . In the discussion above, we model the

semantics of candidate programs in Laux and Lcomb as independent to ease the analysis. However,

a semantical dependency between programs indeed exists in practice because the semantics is

usually defined along with the syntax under domain theories. Such a dependency weakens the

4
Here we assume that 𝑠𝑉 > 1, that means, there are at least two different outputs.
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specification for aux (Formula 21) because it makes the realizability of an aux subtask (i.e., the

existence of a valid auxiliary program) imply the validness of (infinitely) many other programs.

Example 5.7. In the sndmin example (Section 2.4), many valid programs for the aux subtask

(Formula 6) can be constructed from the target auxiliary program min xs, for example, by including

more auxiliary values (e.g., (min xs,max xs)) or performing invertible arithmetic operations (e.g.,

(min xs) + (min xs)). Many of them may lead to unrealizable subtasks, for example, the combination

function corresponding to (min xs) + (min xs) cannot be implemented in Lex
comb (Figure 5b).

The key for AutoLifter to perform well under such a dependency is its preference for simpler

auxiliary programs, following the principle of Occam’s razor. The aux synthesizer in AutoLifter
(Algorithm 4) is an enumeration-based synthesizer and always returns a minimal possible auxiliary

program (Theorem 5.8). Therefore, this synthesizer can successfully avoid those unnecessarily

complex programs derived from the expected one.

Theorem 5.8 (Minimality). Given an example-based synthesis task for the auxiliary program, the
program aux∗ synthesized by our aux synthesizer must be a minimal valid program. In other words,
any strict sub-program of aux∗ must not be valid for the given task.

6 APPLICATIONS OF AUTOLIFTER
We have seen how to reduce the applications of D&C and incrementalization to lifting problems

(Sections 2.1 and 4.1). Through these reductions, AutoLifter can be instantiated to synthesizers for

the corresponding paradigms. In this section, we shall supply more details on how the efficiency

of the resulting program is ensured in these reductions (Section 6.1) and provide reductions for

several other D&C-like paradigms (Section 6.2).

6.1 Efficiency Condition
When applying an algorithmic paradigm, the synthesizer needs to ensure that the resulting program

must be efficient. We achieve this guarantee by limiting the domain-specific languages Laux and

Lcomb, following the SyGuS framework. Specifically, we require these languages to include only

programs that can lead to an efficient result. When instantiating AutoLifter for a specific algorithmic

paradigm, we can establish different efficiency guarantees by using different languages.

In this paper, we consider a specific condition (denoted as the efficiency condition) for the domain-

specific languages. This condition requires that (1) every program in Laux runs in constant time on

a constant-sized input, and (2) every program in Lcomb runs in constant time.

Example 6.1. The domain-specific languages Lex
aux and L

ex
comb (Figures 5a and 5b, discussed in the

sndmin example) satisfy the efficiency condition.

The efficiency condition implies the efficiency of the D&C and the incremental programs synthe-

sized by the corresponding instantiation of AutoLifter , as shown below.

• In the D&C program synthesized through the reduction in Section 2.1, each of orig, aux, and
comb is invoked𝑂 (𝑛) times, and the former two are only invoked on singleton lists. Therefore,

this program is ensured to be 𝑂 (𝑛/𝑝) time in parallel on a list of length 𝑛 and 𝑝 ≤ 𝑛/log𝑛
processors when (1) the efficiency condition is satisfied and (2) orig runs in constant time on

a singleton list.

• In the incremental program synthesized through the reduction in Section 3.1, comb will be
invoked once after each change. Therefore, this program is ensured to be constant-time per

change when the efficiency condition is satisfied.
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res = (orig([]), aux([]))
for v in xs:
res = comb(v, res)

return res[0]

Fig. 15. A template of single-pass.

info = (p([]), aux([]))
res, l = 0, 0
for r in range(len(xs)):
info = comb1(xs[r], info)
while l <= r and not info[0]:
info = comb2(xs[l], info)
l += 1

res = max(res, r - l + 1)
return res

Fig. 16. A template of sliding window.

6.2 More Applications
Single-Pass. Single-pass [Schweikardt 2009] is an algorithmic paradigmwidely applied in various

domains such as databases and networking. It is also the input format required by Parsynt [Farzan
and Nicolet 2017, 2021b] (Section 2.1). A single-pass program (Figure 15) scans the input list once

from the first element to the last and iteratively updates the result after visiting each element. To

apply single-pass to an original program orig, an auxiliary program aux and a combinator comb
satisfying the formula below are required.

orig′ (xs++ [𝑣]) = comb (𝑣, orig′ xs),where orig′ ≜ orig △ aux

This task is equivalent to that for incrementalization (Section 4.1) and can be regarded as a lifting

problem LP(orig, op) with op (𝑣, (xs)) ≜ xs++ [𝑣]. Under the efficiency condition, the resulting

single-pass program runs in 𝑂 (𝑛) time on a list of length 𝑛 because its bottleneck is the 𝑂 (𝑛)
invocations of comb in the loop.

General Incrementalization. In the previous incrementalization example (Section 4.1), the only

allowed change is to append an element to the back of the input list. In the general case, there can be

different types of changes in a single task, captured by a change set𝐶 denoting all possible changes

and a change operator change : 𝐶 ×𝐴 ↦→ 𝐴 applying a change to an 𝐴-element. To incrementally

update the result of the original program orig after each change, an auxiliary program aux and a

combinator comb satisfying the formula below are required.

orig′ (change (𝑐, 𝑎)) = comb (𝑐, orig′ 𝑎),where orig′ ≜ orig △ aux

This task can be regarded as LP(orig, op) with op (𝑐, (𝑎)) ≜ change (𝑐, 𝑎). Under the efficiency

condition, the resulting incremental program must run in𝑂 (1) time per change because only comb
is invoked once after each change.

Example 6.2. Continuing with the previous incrementalization task (Section 3.1), let us consider

a new change that pushes a new element to the front of the input list. In the new task, the change

set 𝐶 can be defined as {“front”, “back”} × Int and the corresponding change is as follows.

change ((tag, 𝑣), xs) ≜ if tag = “front” then [𝑣] ++xs else xs++ [𝑣]

Longest Segment Problem. Given a predicate 𝑝 and an input list, there may be multiple segments

of the input list satisfying 𝑝 , and the longest segment problem asks for the maximum length of

valid segments. Zantema [1992] studies three different subclasses of longest-segment problems and

proposes three algorithmic paradigms for them, respectively. Here, we select and introduce one

typical paradigm among them, and the details on the others can be found in Appendix B.

This paradigm enumerates segments via a technique named sliding window (Figure 16), where 𝑙

and 𝑟 are the indices of the current segment (from the 𝑙-th to the 𝑟 -th element in the input list xs)
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and info records (1) whether 𝑝 is currently satisfied and (2) necessary auxiliary values. The outer

loop appends every element in the input list xs to the back of the current segment one by one, and

the inner loop repeatedly removes the first element of the current segment until 𝑝 is satisfied. This

enumeration guarantees to visit the longest valid segment when 𝑝 is prefix-closed, that is, every

prefix of a list satisfying 𝑝 satisfies 𝑝 as well.

To apply this paradigm to a longest segment problem, an auxiliary program aux and two combi-

nators comb1 and comb2 are required to correctly update info during the enumeration. Concretely,

they must satisfy the formulas below, where head returns the first element of a list and tail returns
the result of removing the first element from a list.

(𝑝 △ aux) (xs++ [𝑣]) = comb1 (𝑣, (𝑝 △ aux) xs)
head 𝑥𝑠 = 𝑣 → (𝑝 △ aux) (tail xs) = comb2 (𝑣, (𝑝 △ aux) xs)

The condition of head xs = v is involved to allow the second combinator comb2 to access the element

to be removed. When reducing the above task to a lifting problem, this condition can be eliminated

by assigning a dummy output to op when the condition is violated, and the two formulas can be

merged through the construction in Example 6.2. A possible operator op of the resulting lifting

problem is shown below, where the complementary input is in {“append”, “remove”} × Int.

op ((tag, 𝑣), (xs)) ≜


xs++ [𝑣] tag = “append”
tail xs tag = “remove” ∧ head xs = 𝑣

[] otherwise

Under the efficiency condition, the resulting program runs in 𝑂 (𝑛) time on a list of length 𝑛

because both aux1 and aux2 are invoked at most 𝑛 times.

Segment Trees. The segment tree is a type of classical data structure for answering queries on a

specific property of a segment in a possibly long list [Bentley 1977b]. Given an initial list, after a

linear-time pre-processing, a segment tree can efficiently evaluate a pre-defined function orig on a

segment (e.g., “answer the second minimum of the segment from the 2nd to the 5,000th element”) or

applies a pre-defined change operator change to a segment (e.g., “add each element in the segment

from the 2nd to the 5,000th element by 1”), each in logarithmic time w.r.t. the list length.

The detailed template of a segment tree can be found in Appendix B, and in brief, it uses D&C to

respond to queries and uses incrementalization to respond to changes. Therefore, implementing

a segment tree is to find an auxiliary program aux and two combinators comb1 and comb2 such
that (aux, comb1) is a solution to the lifting problem of D&C and (aux, comb2) is a solution to the

lifting problem of incrementalization; in other words, the formulas below need to be satisfied.

(orig △ aux) (𝑥𝑠𝐿 ++𝑥𝑠𝑅) = comb1 ((orig △ aux) 𝑥𝑠𝐿, (orig △ aux) 𝑥𝑠𝑅)
(orig △ aux) (change (𝑐, 𝑥𝑠)) = comb2 (𝑐, (orig △ aux) 𝑥𝑠)

Through the construction in Example 6.2, these two formulas can be unified into a single lifting

problem with the following op, where the complementary input is either an element in the change

set of change or a token “d&c” never used before.

op (𝑐, (xs𝐿, xs𝑅)) ≜ if 𝑐 = “d&c” then xs𝐿 ++ xs𝑅 else change (𝑐, xs𝐿)

Let 𝑛 be the length of the initial list. A segment tree invokes comb1 and comb2 𝑂 (log𝑛) times

when processing each operation (either a query or a change). Therefore, the resulting program

must be 𝑂 (log𝑛) time per operation under the efficiency condition. More details on this guarantee

can be found in Appendix B.
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Start symbol 𝑆 → 𝑁Z | (𝑆, 𝑆)
Integer expr 𝑁Z → IntConst | 𝑁Z ⊕ 𝑁Z | sum 𝑁L | len 𝑁L | head 𝑁L

| last 𝑁L | access 𝑁Z 𝑁L | count 𝐹B 𝑁L | min 𝑁L
| max 𝑁L | neg 𝑁Z

List expr 𝑁L → Input | take 𝑁Z 𝑁L | drop 𝑁Z 𝑁L | rev 𝑁L
| map 𝐹Z 𝑁L | filter 𝐹B 𝑁L | zip ⊕ 𝑁L 𝑁L | sort 𝑁L
| scanl ⊕ 𝑁L | scanr ⊕ 𝑁L

Binary Operator ⊕ → + | − | × | min | max
Integer Function 𝐹Z → (+ IntConst) | (− IntConst) | neg
Boolean Function 𝐹B → (< 0) | (> 0) | odd | even

Fig. 17. The grammar of Laux.

Start symbol 𝑆 → 𝑁Z | (𝑆, 𝑆)
Integer expr 𝑁Z → IntConst | 𝑁Z ⊕ 𝑁Z | if 𝑁B then 𝑁Z else 𝑁Z | 𝑁T .𝑖

Bool expr 𝑁B → ¬𝑁B | 𝑁B ∧ 𝑁B | 𝑁B ∨ 𝑁B | 𝑁Z ≤ 𝑁Z | 𝑁Z = 𝑁Z
Tuple expr 𝑁T → Input | 𝑁T .𝑖

Binary Operator ⊕ → + | − | × | div

Fig. 18. The grammar of Lcomb.

7 IMPLEMENTATION
Our implementation of AutoLifter focuses on lifting problems related to integer lists and integers. It

can be generalized to other cases if the corresponding types, operators, and grammars are provided.

Domain-specific languages. A lifting problem requires two languages Laux and Lcomb to specify

the spaces of candidate auxiliary programs and combinators, respectively (Definition 3.1).

LanguageLaux in our implementation (Figure 17) is the language of DeepCoder [Balog et al. 2017].
It includes 17 list-related operators, including common higher-order functions (e.g., map and filter)
and several operators that perform branching and looping internally (e.g., count and sort). Because
the language of DeepCoder does not support producing tuples, we add an operator for constructing

tuples at the top level to cope with the cases where multiple auxiliary values are required.

Example 7.1. Operator scanl in our Laux receives a binary operator ⊕ and a list. It constructs all

non-empty prefixes of the list and reduces each of them to an integer via ⊕, as shown below.

scanl (⊕) [xs1, . . . , xs𝑛] ≜ [xs1, xs1 ⊕ xs2, . . . , xs1 ⊕ · · · ⊕ xs𝑛]
Using this operator, the maximum prefix sum of list xs can be implemented as max (scanl (+) xs).

Language Lcomb in our implementation (Figure 18) is the language of the conditional arithmetic

domain in SyGuS-Comp [Alur et al. 2019], a world-wide competition for program synthesis. It

includes basic arithmetic operators (e.g., + and ×), comparison operators (e.g., = and ≤), Boolean
operators (e.g., ¬ and ∧), and the branch operator if-then-else. This language can express complex

scalar calculations by using the branch operator in a nested manner. Similar to the case of Laux,

we add operators for accessing and constructing tuples (i.e., (𝑆, 𝑆) and 𝑁T.𝑖) to deal with the cases

requiring multiple auxiliary values.

These languages match the assumption we used when analyzing the probability for AutoLifter to
generate unrealizable subtasks (Section 5, assuming the compressing property of 𝐿aux) and when

analyzing the efficiency of the resulting program (Section 6.1, assuming the efficiency condition).
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• For the compressing property, programs in Laux all map an integer list (that can be arbitrarily

large) to a constant-sized integer tuple. Therefore, their input domains are far larger than

their output domains when large enough lists are considered and every integer is bounded

within a fixed range
5
.

• For the efficiency condition, one can verify that every program in Laux runs in constant time

on a constant-sized list, and every program in Lcomb runs in constant time. Therefore, the

efficiency condition is satisfied, and our implementation can provide all efficiency guarantees

established in Section 6.

Verification. Since AutoLifter applies the CEGIS framework to solve leaf subtasks (Section 4.3), it

requires corresponding verifiers to generate counter-examples for incorrect programs. We imple-

ment these verifiers using bounded model checking [Biere et al. 2003]. Specifically, we assume the

original program is implemented in C++. Given a candidate program written in our domain-specific

languages (Figures 18 and 17), our verifier will first translate it and its specification into C++ and

then apply CBMC [Kroening et al. 2023], a popular bounded model checker, to verify whether the

specification is satisfied. In this procedure, we consider only lists within a length limit (6 by default)

to bound the depth of loops and recursions.

Besides, since it is time-consuming to perform bounded-model checking, in each CEGIS iteration,

we will first test the candidate program using a set of random examples and will invoke the above

verifier only when the candidate program satisfies all of these examples. Note that the random

testing itself can provide a probabilistic correctness guarantee when the number of tested examples

is large enough. Details on this point can be found in Appendix A.3.

Our implementation generates random examples as follows.

• Every tuple is generated by recursively generating its components.

• Every list is generated by (1) uniformly drawing its length from integers in [0, 10], and then

(2) recursively generating every element.

• Every integer is uniformly drawn from integers in [−5, 5] by default. This range may change

for tasks with specialized requirements. For example, some tasks in the dataset collected by

Farzan and Nicolet [2021b] consider only 01 lists. Correspondingly, the range of integers is

set to [0, 1] on these tasks.

Other configurations. We implement the decomposition system in AutoLifter using the greedy
strategy (Algorithm 1). In each decomposition, our implementation considers only the first solution

synthesized from the first subtask and will fail once an unrealizable subtask is generated.

A synthesizer based on input-output examples is required to solve the leaf subtasks for comb
(Algorithm 3, Section 4.3). Our implementation uses PolyGen [Ji et al. 2021], a state-of-the-art

synthesizer on the conditional arithmetic domain.

The example-based synthesizer for aux (Algorithm 3, Section 4.3) is configured by an integer

lim𝑐 , representing the maximum number of components in the top-level combination. We set lim𝑐

to 4 by default because 4 auxiliary values are already enough for most known lifting problems.

8 EVALUATION
To evaluate AutoLifter , we report two experiments to answer the following research questions.

• RQ1: How effective does AutoLifter solve lifting problems?

• RQ2: Does AutoLifter outperform existing synthesizers in applying D&C?

• RQ3: Does AutoLifter outperform existing synthesizers in applying single-pass?

5
The actual case is relatively more complex because many programs in Laux may enlarge the range of integers. We shall

discuss this point in Section 9.
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• RQ4: How does observational covering affect the performance of AutoLifter?

8.1 Experimental Setup
Baseline Solvers. In our evaluation, we compare AutoLifter with two general-purpose synthesizers,
Enum [Alur et al. 2013] and Relish [Wang et al. 2018]. Both of them can be applied to solve lifting

problems and can be instantiated as synthesizers for D&C-like paradigms as AutoLifter does.

• Enum [Alur et al. 2013] is an enumerative solver. Given a lifting problem, Enum enumerates

all possible (aux, comb) from small to large until a valid one is found.

• Relish [Wang et al. 2018] is a state-of-the-art synthesizer for relational specifications. It first

excludes many invalid programs via a data structure namely hierarchical finite tree automata
and then searches for a valid program among the automata.

In our evaluation, we re-implement both Enum and Relish because of the reasons below.

• The original implementation of Enum cannot solve lifting problems in our dataset. Specif-

ically, this implementation requires the synthesis task to be specified in the SyGuS input

format [Padhi et al. 2021]. However, this format does not support list-related operators and

thus cannot express the language Lcomb we use (Figure 18).

• The input format of the original implementation of Relish does not support the languages we

use, and it is difficult to update this implementation to match our demand.

We re-implement these two synthesizers using the same setting as our implementation of AutoLifter
(Section 7). Specifically, we use the same domain-specific languages to specify the program spaces

and use the same verifier to generate counter-examples for incorrect candidate programs.

Besides, we also compare AutoLifter with two state-of-the-art specialized synthesizers.

• Parsynt [Farzan and Nicolet 2017, 2021b] is a specialized synthesizer for D&C that relies

on syntax-based program transformations. Specifically, it requires the original program to

be single-pass, then extracts aux by transforming the loop body using pre-defined transfor-

mations, and at last, synthesizes a corresponding comb via an existing synthesizer. There

are two versions of Parsynt available, denoted as Parsynt17 [Farzan and Nicolet 2017] and

Parsynt21 [Farzan and Nicolet 2021b], where different syntax-based program transformations

are used. We consider both versions of Parsynt in our evaluation.

• DPASyn [Pu et al. 2011] is a specialized synthesizer for single-pass. It reduces the application

task of single-pass to a Sketch problem [Solar-Lezama 2013], solves this task using existing

Sketch solvers, and also includes specialized optimizations for dynamic programming pro-

grams. We use a re-implementation based on Grisette [Lu and Bodík 2023] (provided by the

authors of DPASyn) in our evaluation.

We list two worth-noting details on these two specialized base solvers as follows.

• Parsynt and DPASyn cannot be applied to each other’s tasks because they both rely on the

domain-specific property of their respective paradigms. Specifically, the program transforma-

tions used by Parsynt rely on the specific relationship between D&C and single-pass, and the

reduction to the Sketch problem in DPASyn is specifically designed for single-pass.

• These two solvers provide the same efficiency guarantee on the resulting program as Auto-
Lifter . Specifically, both AutoLifter and Parsynt ensure that the resulting D&C program runs

in Θ(𝑛/𝑝) time on a list of length 𝑛 and 𝑝 ≤ 𝑛/log𝑛 processors; both AutoLifter and DPASyn
ensure that the resulting single-pass program runs in Θ(𝑛) time on a list of length 𝑛.

Dataset. Our evaluation is conducted on a dataset of 96 tasks of applying D&C-like algorithmic

paradigms (Table 4). These tasks are related to the four algorithmic problems.
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Table 4. The profile of synthesis tasks considered in our evaluation.

Problem D&C Single-pass Longest Segment Segment Tree Total

#Task 36 39 8 13 96

• Problem 1: applying D&C to a program. We collect 36 such tasks from the datasets of previous

studies [Bird 1989a; Farzan and Nicolet 2017, 2021b]
6
, including all tasks used by Farzan and

Nicolet [2017] and Bird [1989a] and 12 out of 22 tasks used by Farzan and Nicolet [2021b].

The other 10 tasks used by Farzan and Nicolet [2021b] are out of the scope of AutoLifter
because they cannot be reduced to lifting problems. They require a more general form of

D&C where the divide operator is not determined, making our reduction inapplicable.

• Problem 2: applying single-pass to a program. We consider the tasks used in the evaluation of

DPASyn [Pu et al. 2011] and include 4 out of 5 tasks into our dataset. The last task includes

multiple input lists and is not supported by our current implementation.

Besides, we construct a series of tasks from our D&C tasks as a supplement. For each D&C task,

a single-pass task with the same original program is constructed
7
. These tasks correspond

to a possible application for removing the restriction on the input program from existing

transformation-based synthesizers for D&C: one can first apply AutoLifter to get a single-pass
program and then use existing synthesizers to generate a D&C program.

• Problem 3: Longest Segment Problem. Zantema [1992] proposes three algorithmic paradigms

for longest segment problems and discusses 3, 1, and 4 example tasks, respectively. For each

example task, we include the task of applying the respective paradigm in our dataset.

• Problem 4: applying segment trees to answer queries on a specific property of a segment in a
list. We collect some such tasks online because no previous work on segment trees provides

a dataset. Specifically, we collect 13 tasks by searching on Codeforces (https://codeforces.

com/), a website for competitive programming, using keywords "segment tree" and "lazy

propagation"
8
, and include all these tasks in our dataset.

In our evaluation, we assume the correct paradigm for each task is available and thus evaluate

AutoLifter (as well as baseline solvers Enum and Relish) by directly applying the corresponding

instantiation to each task. This setting is the same as the previous studies on automatically applying

algorithmic paradigms [Acar et al. 2005; Farzan and Nicolet 2021b; Lin et al. 2019; Morita et al. 2007;

Raychev et al. 2015] and corresponds to the usage scenario that the users need to decide which

paradigm to use by themselves. We shall discuss the selection of paradigms in Section 9.

Configuration. Our experiments are conducted on Intel Core i7-8700 3.2GHz 6-Core Processor.

Every execution is under a time limit of 300 seconds and a memory limit of 8 GB.

8.2 RQ1: Comparison of Synthesizers for Lifting Problems
Procedure. In this experiment, we compare AutoLifter with Enum and Relish, the two baseline

solvers that support solving general lifting problems, on all tasks in our dataset. We consider three

different aspects when comparing these solvers.

• The effectiveness of synthesis, measured by the number of solved tasks.

• The efficiency of synthesis, measured by the average time cost of successful synthesis.

6
The original dataset of Parsynt21 contains two bugs in task longest_1(0*)2 and longest_odd_(0+1) that were introduced
while manually rewriting the original program into single-pass. These bugs were confirmed by the original authors, and we

fixed them in our evaluation. This also demonstrates that writing a single-pass program is difficult and error-prone.

7
A duplicated task involved by both DPASyn and our D&C dataset is ignored in this construction.

8
A common alias of segment trees.
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Table 5. The results of comparing AutoLifter with Enum and Relish.

Solver

D&C Single-pass

#Solved TimeBase TimeOurs TimeRes #Solved TimeBase TimeOurs TimeRes

AutoLifter 29/36 20.01 ×1.000 33/39 8.861 ×1.000
Enum 5/36 46.76 0.247 ×0.981 9/39 9.544 0.337 ×1.090
Relish 12/36 34.75 7.283 ×0.986 16/39 18.03 4.366 ×1.018

Solver

Longest Segment Segment Tree

#Solved TimeBase TimeOurs TimeRes #Solved TimeBase TimeOurs TimeRes

AutoLifter 7/8 22.87 ×1.000 13/13 43.30 ×1.000
Enum 1/8 14.99 0.530 ×0.981 4/13 115.1 19.84 ×1.001
Relish 3/8 4.229 2.377 ×0.980 7/13 86.47 42.20 ×1.002

Solver

Total

#Solved TimeBase TimeOurs TimeRes

AutoLifter 82/96 20.17 ×1.000
Enum 19/96 41.84 4.430 ×1.035
Relish 38/96 34.98 14.07 ×1.002

• The efficiency of the resulting program, measured by the time cost of the resulting program

on a randomly generated test suite. Specifically, we calculate this time cost in three steps.

(1) For each paradigm considered in our dataset, we implement a template in C++ and an

automatic translator to fill the synthesis result of lifting problems into this template.

(2) For each task in our dataset, we construct a test suite by randomly generating 5 different

inputs. These inputs are generated in the same way as random examples (Section 7),

except the length of lists is fixed to 10
7
. We believe such an input scale is large enough to

reflect the efficiency difference between different programs.

(3) For each successful synthesis, we first complete the synthesis result into an executable

program using the translator of the corresponding paradigm, then execute this program

on every input in the test suite of the corresponding task, and at last record the average

time cost on these inputs (with the IO cost excluded).

Result. The results of this experiment are summarized in Table 5, organized as follows.

• Column #Solved reports the number of tasks solved by each solver.

• Columns TimeBase and TimeOurs report the average time costs of each baseline solver and

AutoLifter , respectively. Only those tasks solved by both the baseline solver and AutoLifter
will be considered when calculating these time costs.

• Column TimeRes reports the relative time cost of the resulting programs of each baseline

solver compared with the resulting programs ofAutoLifter . Specifically, for each task solved by
both the baseline solver and AutoLifter , we calculate the relative time cost as ratio 𝑡Base/𝑡Ours,
where 𝑡Base and 𝑡Ours denote the time costs of the resulting programs of the baseline solver

and AutoLifter , respectively. Then, we report the geometric average of these ratios in Column

TimeRes. Here, an average ratio larger than 1 means that the resulting program of AutoLifter
is more efficient than that of the baseline solver.

Besides, we also manually analyze the synthesis results from two aspects, as shown below.
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• Since the verifier in our implementation (which is a combination of bounded model checking

and random testing, Section 7) does not ensure the full correctness, we manually verify all

synthesis results and confirm that they are all completely correct9.
• We manually verify the applications of our decomposition methods in every execution of

AutoLifter and confirm that no unrealizable subtask is generated from realizable lifting

problems, which matches our probabilistic completeness guarantee (Theorem 5.6).

The results in Table 5 demonstrate that AutoLifter significantly outperforms the baseline solvers.

In the sense of solving lifting problems, AutoLifter not only solves many more tasks but also uses a

much smaller time cost; and in the sense of synthesizing efficient programs, there is no significant

efficiency difference between the resulting programs of AutoLifter and those of the baseline solvers,
where the relative difference never exceeds 2%.

It is expected that there is no significant efficiency gap between the resulting programs. Specifi-

cally, the efficiency of a program is roughly determined by two factors, its time complexity and the

constant factor in its time cost. Both of these factors must be the same (or close) when comparing

the resulting programs of AutoLifter , Enum, and Relish.

• The time complexity of these resulting programs must be the same because our efficiency

condition (Section 6.1) ensures that, for any paradigm considered in our evaluation, the time

complexity of the resulting program must be the same no matter which aux and comb are
synthesized from the domain-specific languages we use (Figures 18 and 17).

• The constant factor of these resulting programs must be close because (1) the constant factor

is majorly determined by the time cost of the synthesized comb, (2) the time cost of comb is
closely related to its size, and (3) solvers AutoLifter , Enum, and Relish all ensure to synthesize

a comb whose size is close to the smallest. Specifically, both Enum and Relish ensure that the

total size of the synthesized aux and comb is minimized, and PolyGen (the client synthesizer

in AutoLifter for synthesizing comb) ensures that the size of the synthesized program is close

to the smallest under the theory of Occam learning [Blumer et al. 1987].

AutoLifter fails on 14 out of 96 tasks in our dataset, all of which are unrealizable because of the

limited expressiveness of the default languages used in our implementation. These tasks require

specialized operators such as regex matching on an integer list and the power operator on integers.

These operators are not included in the general-purpose languages we used since they are not

common in the domains of lists and integer arithmetic.

After supplying missing operators, AutoLifter can solve 13 more tasks and find a valid auxiliary

program for the last remaining task. The last failed task is longest_odd_(0+1) constructed by Farzan

and Nicolet [2021b], on which AutoLifter fails because PolyGen times out in finding a corresponding

combinator. This result suggests that AutoLifter can be further improved if missing operators can

be inferred automatically, for example, by incorporating those transformation-based approaches

and extracting useful operators from the source code. This is a direction for future work.

8.3 RQ2: Comparison with Synthesizers for Divide-and-Conquer
Procedure. In this experiment, we compare AutoLifter with Parsynt, the baseline solver specialized
for D&C, on all D&C tasks in our dataset. The details of the experiment setup are shown below.

• Since Parsynt requires the original program to be single-pass (Section 8.1), we provide a

single-pass implementation of the original program for each task to invoke Parsynt10. Note

9
A gold medal winner in international programming competitions helped us to verify the synthesized programs.

10
For those tasks taken from Parsynt, we use the program in its original evaluation and fix the two bugs we found.
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Table 6. The results of comparing AutoLifter with Parsynt.

Solver #SolvedBase #SolvedOurs TimeBase TimeOurs TimeRes #AuxSP

Parsynt17 19/20 19/20 15.59 8.552 N/A 58.62%

Parsynt21 24/36 29/36 6.856 7.315 ×1.201 40.54%

that this setting favors Parsynt because (1) many programs cannot be implemented as single-

pass unless some auxiliary values are manually introduced (Section 2.3), and (2) Parsynt can
access those auxiliary values provided in the single-pass implementation.

• Since there are two versions of Parsynt available (i.e., Parsynt17 and Parsynt21, mentioned in

Section 8.1), we consider both of them in this experiment.

• We failed in installing Parsynt17 because of some dependency issue. This issue has been

confirmed by the authors of Parsynt17 but has not been solved yet. Therefore, we compare

with Parsynt only on its original dataset (which is a subset of ours) using the evaluation

results reported by its original paper [Farzan and Nicolet 2017].

• Similar to the first experiment (Section 8.2), we consider three metrics when comparing

AutoLifter with Parsynt, including the number of solved tasks, the time cost of successful

synthesis, and the time cost of the resulting programs. When evaluating the time cost of

the resulting programs, we will fill the synthesis result of Parsynt into our template of D&C

because the original implementation of Parsynt does not provide a default template.

Results. The results of this experiment are summarized in Table 6, organized as follows.

• Columns #SolvedBase and #SolvedOurs report the number of tasks solved by each version of

Parsynt and AutoLifter , respectively.
• Columns #TimeBase and #TimeOurs report the average time costs of Parsynt and AutoLifter ,
respectively, and Column #TimeRes report the relative time cost of the resulting programs of

Parsynt compared with the resulting programs of AutoLifter . Values in these columns are

calculated in the same way as the corresponding columns in Table 5.

• Column #AuxSP report the ratio of the number of auxiliary values provided in the input

single-pass program to the number of auxiliary values used in the D&C program synthesized

by Parsynt. A larger value here means that Parsynt requires more extra inputs.

Besides, the value of cell (Parsynt17,TimeRes) in this table is unavailable because the original paper

of Parsynt17 does not provide the full synthesis results.

The results in Table 6 show that compared with Parsynt, AutoLifter can offer competitive perfor-

mance on synthesizing D&C programs while using significantly less information from the input.

Specifically, when compared with Parsynt17, AutoLifter solves the same number of tasks with a

smaller time cost; and when compared with Parsynt21, AutoLifter solves more tasks and synthesizes

more efficient D&C programs, though requiring slightly more time for synthesis. Please note that

in this comparison, Parsynt takes much more input than AutoLifter , including 40.54%-58.62% of

those necessary auxiliary values.

Now, we would like to discuss more the efficiency of the resulting programs. Table 6 shows

that, although AutoLifter and Parsynt21 provide the same guarantee on the time complexity of the

resulting programs (Section 8.1), the resulting programs of AutoLifter tend to be more efficient

than those of Parsyn21, with a relative advantage of about 20%. One important reason for this

result is that the resulting programs of Parsynt21 tend to use more auxiliary values than those of

AutoLifter , leading to an extra time cost for calculating auxiliary values. In this experiment, the
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resulting programs of Parsyn21 never use fewer auxiliary values than those of AutoLifter and use

more auxiliary values on 10 tasks.

Parsynt21 tends to use more auxiliary values because its syntax-based program transformations

may be misled by the source code of the original program. For example, the original program of

task line_sight (abbreviated as ls) checks whether the last element is the maximum of the list. It can

be implemented as single-pass with an auxiliary program max returning the maximum of a list,

because ls (xs++ [𝑣]) = 𝑣 ≥ (max xs). Given this program, Parsynt will extract the last element of a

list as an auxiliary value because the last visited element 𝑣 is used in the loop body. However, this

value is not necessary because ls (𝑙1 ++ 𝑙2) is always equal to (ls 𝑙2) ∧ (max 𝑙1 ≤ max 𝑙2). AutoLifter
can generate this simpler solution because it finds auxiliary values by enumerating programs in

Laux instead of transforming the source code of the original program.

At last, we find that when applying D&C, the issue of missing operators on AutoLifter (Section
8.2) can be alleviated by combining AutoLifter with Parsynt21. Although the default languages

we use are not expressive enough for 7 D&C tasks in our dataset, our languages are enough

for applying single-pass to the original programs of 5 tasks among these tasks. AutoLifter can
successfully synthesize single-pass programs for these 5 tasks, and then Parsynt21 can synthesize

D&C programs for 4 among them. In this way, the combination of AutoLifter and Parsynt21 can
solve 33 out of 36 tasks, outperforming both individual solvers.

8.4 RQ3: Comparison with Synthesizers for Single-Pass
Procedure. In this experiment, we compare AutoLifter with DPASyn, the baseline solver specialized
for single-pass, on all single-pass tasks in our dataset. Similar to the previous experiments, we

consider three metrics in this experiment, including the number of solved tasks, the time cost of

successful synthesis, and the time cost of the resulting programs. When evaluating the time cost of

the resulting programs, we will fill the synthesis result of DPASyn into our template of single-pass

because DPASyn does not provide a default template.

We consider two different configurations of DPASyn in this comparison, a normal configuration

(denoted as DPASyn=) for establishing a fair comparison and an enhanced configuration (denoted

as DPASyn+) for better revealing the performance of DPASyn.

• DPASyn= uses the same language as AutoLifter to specify the program space.

• DPASyn+ uses a more compact program space. We consider this configuration because, as a

Sketch-based synthesizer, the time cost of DPASyn will increase dramatically when the scale

of the target program increases. However, the language Lcomb we use (Figure 18) is so basic

that a large program may be necessary for even simple tasks. Therefore, to better evaluate

DPASyn, we customize the program space of each task for DPASyn+ by (1) adding operators

max and min and (2) excluding those operators that are not used.

Note that the comparison between AutoLifter and DPASyn+ favors the latter because DPASyn+
needs only to explore a much smaller program space.

Solver #Solved TimeBase TimeOurs TimeRes

AutoLifter 33/39 8.861 ×1.000
DPASyn= 15/39 10.32 4.685 ×1.019
DPASyn+ 21/39 27.74 3.951 ×1.044

Results. The results of this experiment

are summarized in the right-side table, or-

ganized in the same way as the table of

the first experiment (Table 5, Section 8.2).

These results show that AutoLifter outper-
forms both versions of DPASyn. Specifi-
cally, AutoLifter solves more tasks with a smaller time cost, and there is no significant efficiency

difference between the resulting programs of AutoLifter and DPASyn.

Proc. ACM Program. Lang., Vol. 1, No. , Article 1. Publication date: January 2020.



1:38 Ruyi Ji, Yuwei Zhao, Yingfei Xiong, Di Wang, Lu Zhang, and Zhenjiang Hu

Table 7. The results of comparing AutoLifter with AutoLifterOE.

Solver

D&C Single-pass

#Solved TimeBase TimeOurs TimeRes #Solved TimeBase TimeOurs TimeRes

AutoLifter 29/36 30.79 ×1.000 33/39 8.861 ×1.000
AutoLifterOE 13/36 3.329 1.010 ×0.985 28/39 5.563 4.141 ×0.954

Solver

Longest Segment Segment Tree

#Solved TimeBase TimeOurs TimeRes #Solved TimeBase TimeOurs TimeRes

AutoLifter 7/8 22.87 ×1.000 13/13 43.30 ×1.000
AutoLifterOE 7/8 46.79 22.87 ×0.968 8/13 48.69 39.66 ×1.011

Solver

Total

#Solved TimeBase TimeOurs TimeRes

AutoLifter 82/96 23.27 ×1.000
AutoLifterOE 56/96 16.36 10.83 ×0.971

The advantage of AutoLifter majorly comes from its decomposition system, which decomposes

the original task into subtasks on sub-programs with much smaller scales. In contrast, DPASyn
directly searches for the whole target program, leading to a combinatorially larger search space.

8.5 RQ4: Comparison with the Variant without Observational Covering
Procedure. AutoLifter uses a specialized optimization named observational covering when syn-

thesizing aux (Section 4.3). In this experiment, we conduct an ablation study to test the effect of

this optimization. Specifically, we consider a variant of AutoLifter (denoted as AutoLifterOE) where
the leaf subtasks of aux are solved by the pure OE without using observational covering. Then, we

compare this variant with the default AutoLifter on all tasks in our dataset. Similar to the previous

experiments, we consider three metrics in this comparison, including the number of solved tasks,

the time cost of successful synthesis, and the time cost of the resulting programs.

Results. The results of this experiment are summarized in Table 7, organized in the same way as

the table of the first experiment (Table 5, Section 8.2). These results demonstrate that observational

covering significantly improves the efficiency of AutoLifter .
Note that even when observational covering is removed, AutoLifter

OE
still outperforms Enum

and Relish (Table 5) and outperforms DPASyn on synthesizing single-pass programs (Table 7). This

result also demonstrates the effectiveness of our decomposition system.

8.6 Qualitative Analysis of Selected Tasks
To further illustrate the effectiveness ofAutoLifter , we shall discuss two tasks in our dataset and show
that (1) AutoLifter can solve tasks that are difficult for previous transformation-based approaches,

and (2) AutoLifter can solve algorithmic tasks that are different for human programmers.

Maximum segment product. The first task is named as maximum segment product (msp) [Bird
1989a], which is an advanced version of mss (Section 4.1). Given list 𝑥𝑠 [1 . . . 𝑛], the problem is to

select a segment 𝑠 from 𝑥𝑠 and maximize the product of values in 𝑠 .

It is not easy to calculate the maximum segment product by D&C. According to the experience

in solving the mss task, one may choose the maximum prefix/suffix product as the auxiliary values.

However, these two values are not enough. The counter-intuitive point here is that the maximum

segment product is also related to theminimum prefix/suffix product. This is because both the

minimum suffix product of the left half and the minimum prefix product of the right half can be
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negative integers with large absolute values. Their product will flip back the sign, resulting in a

large positive number. For example, the segment with the maximum product of [−1,−5] ++ [−3, 0]
is [−5,−3], formed by the suffix with the minimum product of the left half (i.e., [−5]) and the prefix
with the minimum product of the right half (i.e., [−3]).

Parsynt fails to solve this task as its transformation rules are not enough to extract these auxiliary

values (related to the minimum) from the original program (related to the maximum). In contrast,

AutoLifter successfully solves this task in 287.9 seconds (where 113.9 seconds are used by bounded

model checking) and finds an auxiliary program as follows.

aux 𝑥𝑠 ≜
(
max (scanl (×) xs),max (scanr (×) xs), min (scanl (×) xs),

min (scanr (×) xs), head (scanr (×) xs)
)

This program calculates five auxiliary values, corresponding to the maximum prefix product, the

maximum suffix product, the minimum prefix product, the minimum suffix product, and the product

of all elements, respectively. We omit the combinator synthesized by AutoLifter because it is large
in scale but is straightforward from the synthesized auxiliary program.

Longest segment problem 22-2. The second problem is proposed by Zantema [1992], which is

used as the second example on Page 22 of that paper. This problem is to find a linear-time program

for the length of the longest segment 𝑠 satisfying min 𝑠 +max 𝑠 > length 𝑠 for a given list.

This problem is difficult even for professional programmers in competitive programming. It was

set as a problem in 2020-2021 Winter Petrozavodsk Camp, a worldwide training camp representing

the highest level of competitive programming. Only 26 out of 243 participating teams solved this

problem within the 5-hour competition.

The third algorithmic paradigm proposed by Zantema [1992] can be applied to solve this problem.

The synthesis task is to find an auxiliary program aux and a combinator comb such that the formula

below is satisfied for any lists 𝑥𝑠𝐿, 𝑥𝑠𝑅 and integer 𝑣 satisfying 𝑣 < min 𝑥𝑠𝐿 ∧ 𝑣 ≤ min 𝑥𝑠𝑅 .

(orig △ 𝑎𝑢𝑥) (xs𝐿 ++ [𝑣] ++xs𝑅) = comb
(
𝑣,
(
(orig △ aux) xs𝐿, (orig △ aux) xs𝑅

) )
where orig is an arbitrary reference program returning the length of the longest valid segment.

However, it is difficult to find proper aux and comb satisfying the above formula. We encourage the

readers to try to solve this task before moving to the discussion below.

AutoLifter can find an auxiliary program aux 𝑥𝑠 ≜ (length 𝑥𝑠,max 𝑥𝑠) and a correct combinator

comb in 100.0 seconds. The synthesized comb includes 152 AST nodes and is formed by several

components dealing with different cases. Here, we only explain the component for calculating the

expected output under the condition that max xs𝐿 ≥ max xs𝑅 , as shown below.

comb (𝑣, (res𝐿, res𝑅)) ≜
{
max(lsp𝑅,min(len𝐿+len𝑅+1, 𝑣+max𝐿−1)) 𝑣+max xs𝐿 > length xs𝐿+1

max(lsp𝐿, lsp𝑅) otherwise
where res𝐿 is unfolded to (lsp𝐿, (len𝐿,max𝐿)), res𝑅 is unfolded to (lsp𝑅, (len𝑅,max𝑅))
assuming max xs𝐿 ≥ max xs𝑅

Case 1: (max xs𝐿 ≥ max xs𝑅) ∧ (𝑣 + max xs𝐿 > length xs𝐿 + 1). There are only three possible

cases for the longest valid segment: the longest valid segment 𝑠𝐿 in xs𝐿 , the longest valid segment

𝑠𝑅 in xs𝑅 , or the longest valid segment 𝑠𝑣 including element 𝑣 . In this case, 𝑠𝐿 is no longer than 𝑠𝑣
because segment xs𝐿 ++ [𝑣] is valid under the condition that 𝑣 +max xs𝐿 > length xs𝐿 + 1. Therefore,
the longest valid segment of the whole list must be the longer one between 𝑠𝑅 and 𝑠𝑣 . Since the

length of 𝑠𝑅 is known as lsp𝑅 , the remaining task is to get the length of 𝑠𝑣 .

An observation is that segment xs𝐿 ++ [𝑣] already achieves the maximum possible min 𝑠 +max 𝑠
among segments including 𝑣 because (1) min 𝑠 must be 𝑣 , the minimum of the whole list, and (2)
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max 𝑠 must be no larger than max xs𝐿 , the maximum of the whole list under the condition that

max xs𝐿 ≥ max xs𝑅 . Therefore, 𝑠𝑣 is the longest segment expanded from xs𝐿 ++ [𝑣] until the length
limit (i.e., 𝑣 +max xs𝐿) is reached or the whole list is used up, that means, the length of 𝑠𝑣 must be

min(len𝐿 + len𝑅 + 1, 𝑣 +max𝐿 − 1).
Case 2: (max xs𝐿 ≥ max xs𝑅) ∧ (𝑣 +max xs𝐿 ≤ length xs𝐿 + 1). In this case, 𝑠𝑣 is no longer than

𝑠𝐿 , so the longest valid segment of the whole list is the longer one between 𝑠𝐿 and 𝑠𝑅 , and the result

ismax(lsp𝐿, lsp𝑅). This property can be proved in two steps. First, 𝑠𝑣 must be no longer than xs𝐿 , as
shown by the derivation below.

length 𝑠𝑣 ≤ 𝑣 +max 𝑠𝑣 − 1 ≤ 𝑣 +max xs𝐿 − 1 ≤ length xs𝐿

The first inequality uses the fact that 𝑣 is the minimum of the whole list, the second inequality uses

the fact thatmax xs𝐿 is the maximum of the whole list under the condition thatmax xs𝐿 ≥ max xs𝑅 ,
and the third inequality uses the condition that 𝑣 +max xs𝐿 ≤ length xs𝐿 + 1.

Second, since 𝑠𝑣 is no longer than xs𝐿 , there exists another segment 𝑠′ that includes the maximum

of xs𝐿 and has the same length as 𝑠𝑣 . As shown by the derivation below, 𝑠′ must be valid as well.

Therefore, 𝑠′ is no longer than 𝑠𝐿 , implying that 𝑠𝑣 is no longer than 𝑠𝐿 .

min 𝑠′ +max 𝑠′ ≥ 𝑣 +max 𝑠𝑣 > length 𝑠𝑣 = length 𝑠′

As we can see, the correct comb here relies on several tricky properties. Finding this program is

challenging for a human user. In comparison, AutoLifter can solve this problem quickly.

9 DISCUSSION
Selecting algorithmic paradigms. As discussed in Section 6, AutoLifter can be instantiated as a

series of synthesizers, each for applying a specific D&C-like paradigm. However, the presence of

multiple instantiations brings another problem in usage, that is, how to select a proper instantiation

for a practical task. Currently, this selection problem is not yet an issue because the number of

available instantiations of AutoLifter is not large (6 in our implementation): we can simply try all

available instantiations in order or in parallel until the task of interest is solved. In the future, when

more instantiations are developed, it may be necessary to design an automated approach to select

among all possible choices. This is a direction for future work.

Besides, we believe AutoLifter can still have a significant practical effect even if the selection

problem is left to the user.

• On the one hand, some paradigms are so important that even a specialized synthesizer is

still valuable. For example, the problem of automatic parallelization has long been studied

in literature [Farzan and Nicolet 2017; Fedyukovich et al. 2017; Morita et al. 2007; Raychev

et al. 2015]. The instantiation of AutoLifter on the D&C paradigm solves this problem, and

compared with previous approaches, this instantiation of AutoLifter is the first one that does
not require the original program to be single-pass.

• On the other hand, it is usually not difficult for the user to select among paradigms because

the application scope of different paradigms is usually clear. For example, the D&C paradigm

is usually used for parallelization, where the goal is to achieve a sublinear time complexity on

multiple processors; the incrementalization paradigm is only available for incremental tasks

where the original program will be executed multiple times on a series of similar inputs.

Verification. In this paper, we focus on designing an effective synthesizer for applying algorith-

mic paradigms and do not consider designing specialized verifiers. Instead, our approach can be

combined with any off-the-shelf verifier to provide a correctness guarantee on the synthesis result.

Proc. ACM Program. Lang., Vol. 1, No. , Article 1. Publication date: January 2020.



Decomposition-Based Synthesis for Applying D&C-Like Algorithmic Paradigms 1:41

Although our current implementation (Section 7, where bounded model checking is used) cannot

ensure full correctness, it works well in our evaluation. As discussed in Section 8.2, we manually

verify all synthesis results and confirm that all of them are completely correct. This result shows

that our current implementation can already provide reliable synthesis results in practice.

Besides, even when the user decides to manually verify the synthesized program, we believe

this task will still be easier than solving the algorithmic task by the users themselves. On the one

hand, an algorithmic task can be extremely difficult (e.g., the second task discussed in Section 8.6),

and AutoLifter can provide a candidate solution for the user to check, which is correct with a high

probability. On the other hand, AutoLifter ensures to synthesize simple programs (Theorem 5.8 and

the property of PolyGen [Ji et al. 2021]), making its result usually easy to understand.

In the future, we believe the ability of verifiers will be continuously improved and will be able to

verify more and more complex programs. At that time, by combining with those more advanced

verifiers, AutoLifter can potentially provide a stronger correctness guarantee on its result.

The greedy strategy v.s. the backtracking strategy. The effectiveness of AutoLifter comes from

its decomposition system, which uses approximate specifications to break the dependency among

sub-programs. There are two possible strategies for implementing such a decomposition system

(Section 5). The greedy strategy used in our implementation considers only the first solution of each

subtask and will fail once an unrealizable subtask is generated. In comparison, the backtracking

strategy will roll back and try to find other solutions each time an unrealizable subtask is met. It

will not fail but will be inefficient if too many unrealizable subtasks are generated.

At first glance, the backtracking strategy may seem like a good choice because it can realize a

complete synthesis, that is, the synthesis will never fail on a realizable lifting problem. However, it

is not easy to implement this strategy because there are still two challenges remaining.

• First, to decide whether to roll back the decomposition, the backtracking strategy requires

checking whether the current subtask is unrealizable. Although some research progress has

been made [Hu et al. 2020; Kim et al. 2021], proving unrealizability for a program synthesis

task is still time-consuming in practice.

• Second, some efficiency synthesis techniques will be unavailable for synthesizing aux if we
want to achieve completeness using the backtracking strategy. Specifically, the synthesizer

for aux needs to ensure that every possible auxiliary program will be considered after

backtracking enough times, otherwise, some valid solutions may be missed. However, most

synthesis techniques (e.g., observational equivalence and observational covering we used)

fail to satisfy this requirement. They are designed only for synthesizing a single program

and may skip many non-optimal programs during the synthesis for efficiency.

Because of the above challenges in implementing the backtracking strategy, we use the greedy

strategy to implement AutoLifter . Although in theory, the greedy strategy may fail in solving

realizable lifting problems, both our probabilistic analysis (Section 5) and our evaluation results

(Section 8) suggest that this failure seldom happens in practice.

The compressing property.When analyzing the effectiveness of AutoLifter (Section 5), we utilize

the compressing property of practical lifting problems, that is, the original program and auxiliary

programs usually map from a large input domain to a small output domain. Our analysis does not

put a strict restriction on how much the input domain should be larger than the output domain,

instead, it shows how the effectiveness of AutoLifter is gradually affected by a larger input domain.

Specifically, when the input domain becomes larger (compared to the output domain), the mismatch

factor of a lifting problem will become larger, making the unrealizable rate of AutoLifter become

smaller (Theorem 5.4). This unrealizable rate will finally converge to 0 when the size of the input

domain approaches infinity (Theorem 5.6).
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Table 8. The largest outputs from an integer list whose length ≤ 𝑛 and element integers ∈ [−𝑚,𝑚].

Program length min sndmin sum mps mss msp (Section 8.6)

Max Output 𝑛 𝑚 𝑛 ×𝑚 𝑛𝑚

Please note that the compressing property is never a sufficient condition for AutoLifter to succeed
in synthesis. It is still possible to construct a realizable lifting problem where the input domain is

much larger than the output domain but AutoLifter fails. We study the compressing property in

this paper only to explain the effectiveness of AutoLifter and clarify the boundary of AutoLifter .

In the previous discussions, we simply regard those programs mapping from integer lists to a

constant number of integers as compressing (Example 5.5 and Section 7). This claim holds only

when the range of integers is assumed fixed and finite, but the practical situation is more complex.

Many programs mapping from integer lists to integers will enlarge the range of integers, for

example, the program calculating the sum of a list can return a number as large as 𝑛 ×𝑚 from a list

whose length is no larger than 𝑛 and element integers are inside range [−𝑚,𝑚]. If such enlargement

is not limited, non-compressing programs may exist, for example, there exist injective functions

from integer lists to a single integer when the output integer is not bounded.

Luckily, the extreme case seldom happens in practice. Table 8 lists the output ranges of several

programs mentioned before. As we can see, most of these programs enlarge the range of integers

only polynomially and thus are still compressing because the number of integer lists is exponential

to the list length and the input range. Even for the last program msp (maximum segment product,

Section 8.6) that may return an exponentially larger integer, the compressing property still holds

when the range of input integers is small. For example, the result of msp must be in the form of

2
𝑎
3
𝑏
5
𝑐
for 0 ≤ 𝑎 ≤ 2𝑛 and 0 ≤ 𝑏, 𝑐 ≤ 𝑛 when only integers within [−5, 5] are used in the input.

Consequently, msp maps 11
𝑛
different input lists to only 𝑂 (𝑛3) different outputs, leading to the

compressing property.

Besides the case of mapping data structures to scalar values, we observe that the compressing

property also holds for many programs mapping between data structures. For example, the sorting

program maps all permutations of length 𝑛 (𝑛! possibilities in total) to the same output [1, 2, . . . , 𝑛].
This observation suggests interesting future work of applying AutoLifter to those tasks where not

only auxiliary values but also auxiliary data structures are required.

10 RELATEDWORK
Automatic applications of D&C-like paradigms. There have been previous studies on applying

individual D&C-like algorithmic paradigms.

First, several approaches [Farzan and Nicolet 2017; Fedyukovich et al. 2017; Morita et al. 2007;

Raychev et al. 2015] have been proposed to apply D&C. All of these approaches are based on syntax-

based program transformations and require the input program to be implemented as single-pass.

Compared with them, AutoLifter does not require single-pass implementations but can still offer

competitive performance compared with the previous state-of-the-art (Section 8.3).

When applying D&C, we assume the list is always divided from the middle and thus focus on

synthesizing the auxiliary program aux and the combinator comb. In this sense, Farzan and Nicolet

[2021b] study the application of a more general form of D&C where the divide operator is to be

synthesized as well. Their approach and ours are complementary because their approach requires

a single-pass implementation of the original program while AutoLifter does not. A possible future

direction is to combine these approaches with AutoLifter .
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Second, Acar et al. [2005] proposes an approach for incrementalization. This approach records the

execution trace of the original program as the auxiliary value and lets the combinator re-evaluate

only those operations affected by the change. Consequently, this approach can generate an efficient

program only when the execution trace of the original program is affected little by the change.

However, it can be difficult to satisfy this requirement. For example, in the incrementalization

task for sndmin (Section 3.1), the resulting program generated from the natural implementation of

sndmin (Figure 1) will trace into the sorting function and thus runs in 𝑂 (log𝑛) time per change,

much slower than the expected solution that runs in constant time per change (Figure 8).

Both AutoLifter and Acar et al. [2005]’s approach have their advantages in automatic incremen-

talization. AutoLifter does not rely on the source code of the original program and thus can generate

efficient results regardless of the user-provided implementation. However, when a proper original

program is given, Acar et al. [2005]’s approach can construct incremental programs for extremely

difficult tasks such as generating dynamic data structures requiring hundreds of lines of code [Acar

et al. 2009], where even the decomposed subtasks generated by AutoLifter are still out of the scope
of existing synthesizers. Scaling up inductive synthesis to these complex programs is future work.

Third, Pu et al. [2011] propose an approach named DPASyn to apply single-pass. This approach

reduces the synthesis task to a Sketch problem and solves it via existing Sketch solvers. Compared

with this approach, AutoLifter involves a decomposition system to decompose the synthesis task

into subtasks with much smaller scales and thus greatly reduces the search space. Our evaluation

results demonstrate the effectiveness of AutoLifter (Section 8.4).

At last, there exist multiple approaches that do not support finding necessary auxiliary values

when the paradigm cannot be directly applied. The related paradigms include D&C [Ahmad and

Cheung 2018; Radoi et al. 2014; Smith and Albarghouthi 2016], structural recursion [Farzan et al.

2022; Farzan and Nicolet 2021a], and incrementalization [Liu and Stoller 2003]. These approaches

will fail when the output of the original program cannot be directly calculated, for example, when

applying D&C to sndmin (where the first minimum is required as an auxiliary value). Compared

with these approaches, AutoLifter supports finding necessary auxiliary values.

Type- and resource-aware synthesis. There is another line of work for synthesizing efficient

programs, namely type- and resource-aware synthesis [Hu et al. 2021; Knoth et al. 2019]. These

approaches use a type system to represent a resource bound, such as the time complexity, and use

type-driven program synthesis [Polikarpova et al. 2016] to find programs satisfying the given bound.

Compared with AutoLifter , these approaches can deal with more refined efficiency requirements

via advanced type systems. However, they suffer from a more serious scalability challenge because

they need to synthesize the whole resulting program from the start. As far as we are aware, so far

none of these approaches can scale up to applying algorithmic paradigms as our approach can.

Program synthesis. Program synthesis is an active field andmany synthesizers have been proposed.

Here we only discuss the most related approaches.

First, AutoLifter addresses the scalability challenge by decomposing lifting problems into simpler

subtasks. This decomposition-based framework is common in program synthesis and has been

applied to various scenarios. We list some representative approaches in this category as follows.

• Natural Synthesis [Qiu and Solar-Lezama 2017] uses loop invariants to decompose a loop

synthesis problem into subtasks for pre-loop, in-loop, and after-loop codes, respectively.

• Myth [Osera and Zdancewic 2015] and Synquid [Polikarpova et al. 2016] use a top-down

enumeration scheme to synthesize recursive programs and will utilize type information to

decompose certain intermediate synthesis problems into independent subtasks.

Our decomposition method, component elimination, is related to the tuple-decomposition

method in Myth. Both of them are proposed to decompose an unknown program with a
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tuple output. In comparison, the method in Myth requires the specification of the unknown

program to be input-output examples, while component elimination considers a specification

where the input and the output both depend on another unknown program.

• DryadSynth [Huang et al. 2020] proposes a general framework for reconciling inductive

and deductive program synthesis. This framework repeatedly applies deductive rules to

decompose a synthesis task into subtasks and then solves these subtasks using inductive

program synthesis. DraydSynth implements this framework for the domain of conditional

integer arithmetic, and AutoLifter can be regarded as an implementation of this framework

for solving lifting problems.

• Toshokan [Huang and Qiu 2022] proposes a decomposition method for dealing with complex

library calls in component-based program synthesis. It uses library models to decompose a

synthesis problem involving library calls into subtasks of library verification and client-code

synthesis. This decomposition method cannot be applied to our task because lifting problems

do not involve any libraries.

Second, since many algorithms can be regarded as recursive programs (e.g., D&C and single-pass

programs), AutoLifter is also related to previous studies on recursive program synthesis [Albargh-

outhi et al. 2013; Farzan et al. 2022; Farzan and Nicolet 2021a; Lee and Cho 2023; Miltner et al. 2022;

Yuan et al. 2023]. However, previous recursive synthesizers cannot be applied to our tasks because

of two major differences between recursive program synthesis and the automatic application of

algorithmic paradigms.

• The two problems treat input-output examples (or the original program) differently. Recursive

program synthesis typically treats input-output examples as a full specification. It requires

the synthesized recursive procedure to produce exactly the same outputs as specified in

the examples. However, when applying algorithmic paradigms, we often need to introduce

auxiliary values as part of the output of the recursive procedure. Sticking to the same outputs

would lead to synthesis failures.

• The two problems put different restrictions on the recursion. In recursive program syn-

thesis, the synthesizer can use any recursion that can implement the target functions. In

contrast, when applying algorithmic paradigms, the recursion of programs is prescribed by

the paradigm, and the problem is how to calculate using the given recursions.

Both settings have their respective challenges. In recursive program synthesis, the challenge

is to find a proper recursion; and when applying algorithmic paradigms, the given recursion

may significantly increase the scale of the resulting program. For example, the D&C program

of sndmin (Figures 3 and 4) is much more complex than its single-pass program (Figure 6),

though both of them can be regarded as recursive programs.

Besides, our reduction from applying algorithmic paradigms to lifting problems shares the same

idea with trace completeness in recursive program synthesis [Albarghouthi et al. 2013]. They both

utilize the interpretation of the original program and then reduce the problem of synthesizing

recursions to the problem of synthesizing the body of recursions.

At last, AutoLifter is also related to Enum [Alur et al. 2013] and Relish [Wang et al. 2018] because

they can also be applied to solve lifting problems. We compare AutoLifter with both of them in our

evaluation, and the results demonstrate the better performance of AutoLifter .

11 CONCLUSION
In this paper, we study the problem of applying D&C-like algorithmic paradigms and aim to address

the limitation of previous transformation-based approaches which put strict restrictions on the

original program. To achieve this goal, we propose a novel approach named AutoLifter that applies

Proc. ACM Program. Lang., Vol. 1, No. , Article 1. Publication date: January 2020.



Decomposition-Based Synthesis for Applying D&C-Like Algorithmic Paradigms 1:45

D&C-like paradigms by decomposition instead of by syntax-based transformation. To achieve an

effective synthesis, AutoLifter repeatedly applies two decomposition methods, namely component

elimination and variable elimination, to decompose an application task into simpler subtasks and

derive specifications for different sub-programs of the synthesis target.

To break the dependency among sub-programs, both decomposition methods in AutoLifter use
approximate specifications in their first subtasks. We demonstrate that these approximations do not

affect the effectiveness of AutoLifter by conducting theoretical analysis and empirical evaluation.

In theory, we prove that these approximations will seldom produce unrealizable subtasks when the

compressing property holds; in practice, we evaluate AutoLifter on a dataset of 96 tasks and the

results show that AutoLifter can solve most of these problems within a short time.

We believe many techniques in this paper are general and can be potentially applied to other

tasks. For example, variable elimination may be used to separate the composition of two unknown

programs in other relational synthesis problems. Exploring other applications is future work.

The source code of our implementation and the experimental data of our evaluation are available

online [Ji et al. 2024].
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A APPENDIX: PROOFS AND GUARANTEES
This section provides the proofs for the theorems in this paper (Section 5) and supplies the details

on the probabilistic correctness guarantee provided by our verifier (Section 7).

A.1 Proofs for Theorems
Theorem A.1 (Theorem 5.1). The result of AutoLifter (Algorithm 1) is valid for the original lifting

program if the verifiers of leaf subtasks accept only valid programs for respective subtasks.

Proof. The soundness of AutoLifter is directly implied by the two facts below.

• The result of AutoLifter must be valid when the sub-programs synthesized from leaf subtasks

are valid because both decomposition methods in AutoLifter are sound by definition (i.e., the

merged result is valid for the original task when the sub-results are valid for the subtasks).

• Since leaf subtasks are solved using the CEGIS framework, their results must be valid when

the verifiers accept only valid programs.

□

Theorem A.2 (Theorem 5.4). Given a lifting problem LP(orig, op) of which the mismatch factor is
at least 𝑡 , the size-limited unrealizable rate of AutoLifter is bounded, as shown below.

unreal(orig, op, lim𝑠 ) ≤ 2
𝑤
exp(−𝑡/𝑠𝑛 ·𝑤𝑉 ),where𝑤 ≜ lim𝑐 · lim𝑠

Proof. For simplicity, we shall abbreviate our probabilistic model M[orig, op] as M and in-

terchangeably use a synthesis task as a predicate, where 𝜑 (prog) represents that prog is a valid
program for task 𝜑 . Besides, we shall use the following two notations in our proof.

• Let �̃� be the first aux subtask generated from 𝜑 , of which the specification is shown below.

(orig △ aux1)𝑛 𝑎 = (orig △ aux1)𝑛 𝑎′ → orig (op (𝑐, 𝑎)) = orig (op (𝑐, 𝑎′))

• Let A(𝜑) be the set of auxiliary programs that can lead to a valid solution of 𝜑 with a size

no larger than lim𝑠 , defined as below. Using this notation, the condition in the size-limited

unrealizable rate (Definition 5.2) can be restated as |A(𝜑) | > 0.

A(𝜑) ≜ {aux | ∃comb, 𝜑 (aux, comb) ∧ size(aux, comb) ≤ lim𝑠 }

Step 1: a sufficient condition. Any program in A(𝜑) is valid for �̃� by definition. Furthermore,

AutoLifter will not generate unrealizable subtasks when a program in A(𝜑) is synthesized from �̃� .

Specifically, when such a program is synthesized, AutoLifter will only generate 3 subtasks after �̃� ,

as shown below.

(1) The first comb subtask targets at a combinator for the output of orig. It is realizable because
there is always a valid combinator for any program in A(𝜑).

(2) The second aux subtask targets at an auxiliary program for the output of the synthesis result

of �̃� . The result of this subtask must be null as (1) it is valid by the definition of Aaux, and (2)

it is the first choice of the corresponding synthesizer Saux (Algorithm 4).

(3) The second comb subtask targets at a combinator for the output of the auxiliary program,

which is also realizable by the definition Aaux.

Therefore, the event that the synthesis result of �̃� is in A(𝜑) is a sufficient condition for the success

of AutoLifter . As a result, we know that the size-limited unrealizable rate of AutoLifter is bounded
by the probability below.

Pr

𝜑∼M

[
Saux (�̃�) ∉ A(𝜑)

�� |A(𝜑) | > 0

]
(24)
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This probability is difficult for direct analysis because it involves second-order quantification

(in the definition of A(𝜑)) and the concrete behavior of a synthesizer, which can be very complex.

Therefore, we conduct a series of derivations to eliminate these difficult parts from the probability.

Step 2: eliminating left-side A(𝜑). The conditional probability can be transformed as follows.

Pr

𝜑∼M

[
Saux (�̃�) ∉ A(𝜑)

�� |A(𝜑) | > 0

]
= Pr

𝜑∼M

[
Saux (�̃�) ∉ A(𝜑) ∧ |A(𝜑) | > 0

]/
Pr

𝜑∼M

[
|A(𝜑) | > 0

]
=

∑︁
𝑃⊆Laux

[|𝑃 | > 0] Pr

𝜑∼M

[
Saux (�̃�) ∉ 𝑃 ∧ A(𝜑) = 𝑃

]/ ∑︁
𝑃⊆Laux

[|𝑃 | > 0] Pr

𝜑∼M

[
A(𝜑) = 𝑃

]
(25)

≤
∑

𝑃⊆Laux
[|𝑃 | > 0]

(
Pr𝜑∼M

[
Saux (�̃�) ∉ 𝑃 ∧ A(𝜑) = 𝑃

]
+ (|𝑃 | − 1) Pr𝜑∼M

[
A(𝜑) = 𝑃

] )∑
𝑃⊆Laux

|𝑃 | Pr𝜑∼M
[
A(𝜑) = 𝑃

] (26)

The inequality of (𝑎 + 𝑐)/(𝑏 + 𝑐) ≥ 𝑎/𝑏 (when 𝑎, 𝑏 > 0, 𝑐 ≥ 0, 𝑎 < 𝑏) is used in the last step.

Let us consider the claim below under the premise that |𝑃 | > 0.

Pr

𝜑∼M

[
Saux (�̃�) ∉ 𝑃 ∧ A(𝜑) = 𝑃

]
+ (|𝑃 | − 1) Pr

𝜑∼M

[
A(𝜑) = 𝑃

]
=

∑︁
aux∗∈𝑃

Pr

𝜑∈M

[
Saux (�̃�) ≠ aux∗ ∧ A(𝜑) = 𝑃

]
To prove this claim, let 𝜑 be any task satisfying A(𝜑) = 𝑃 . There are two cases on Saux (�̃�).
• When Saux (�̃�) ∉ 𝑃 , the probability of 𝜑 contributes to both sides for |𝑃 | times.

• Otherwise, the probability of 𝜑 contributes to both sides for |𝑃 | − 1 times.

Therefore, the two probabilities involved in this claim must be the same.

Note that the size of any program in A(𝜑) is no larger than lim𝑠 by the definition of A(𝜑). By
applying the claim to Formula 26, we further perform the derivation below, where L≤lim𝑠

denotes

the subspace of Laux including only those programs of which the size is no larger than lim𝑠 .

Formula 26 =
∑︁

𝑃⊆Laux

∑︁
aux∗∈𝑃

Pr

𝜑∈M

[
Saux (�̃�) ≠ aux∗ ∧ A(𝜑) = 𝑃

]/ ∑︁
𝑃⊆Laux

∑︁
aux∗∈𝑃

Pr

𝜑∼M
[A(𝜑) = 𝑃]

=
∑︁

aux∗∈L≤lim𝑠

Pr

𝜑∼M

[
Saux (�̃�) ≠ aux∗ ∧ aux∗ ∈ A(𝜑)

]/ ∑︁
aux∗∈L≤lim𝑠

Pr

𝜑∼M
[aux∗ ∈ A(𝜑)]

≤ max

aux∗∈L≤lim𝑠

(
Pr

𝜑∼M

[
Saux (�̃�) ≠ aux∗ ∧ aux∗ ∈ A(𝜑)

]/
Pr

𝜑∼M
[aux∗ ∈ A(𝜑)]

)
(27)

= max

aux∗∈L≤lim𝑠
Pr

𝜑∼M

[
Saux (�̃�) ≠ aux∗

�� aux∗ ∈ A(𝜑)
]

(28)

Formula 27 is obtained via the following inequality (where 0/0 is defined as 0).

∀𝑎𝑖 , 𝑏𝑖 ≥ 0,

𝑛∑︁
𝑖=1

𝑎𝑖
/ 𝑛∑︁

𝑖=1

𝑏𝑖 ≤
𝑛

max

𝑖=1
(𝑎𝑖/𝑏𝑖 )

So far, the left-side A(𝜑) in the sufficient condition (Formula 24) has been eliminated.

Step 3: eliminating the output of Saux. A worth noting property of Saux (Algorithm 4) is that,

given a task that has a solution with a size no lager than lim𝑠 , the size of its synthesis result is no

larger than lim𝑐 lim𝑠 . First, the result of Saux includes at most lim𝑐 components. Second, the size of
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each component must be no larger than lim𝑠 , otherwise, the smallest solution (which is no larger

than lim𝑠 ) will be found by OE and be synthesized instead.

Therefore, “any program in L≤lim𝑐 lim𝑠
is invalid for �̃� except aux∗” forms a sufficient condition

of Saux (�̃�) = aux∗. Then, the conditional probability in Formula 28 can be bounded as follows.

Pr

𝜑∼M

[
Saux (�̃�) ≠ aux∗

�� aux∗ ∈ A(𝜑)
]

≤ Pr

𝜑∼M

[
∃aux ∈ L≤lim𝑐 lim𝑠

, aux ≠ aux∗ ∧ �̃� (aux)
�� aux∗ ∈ A(𝜑)

]
≤

∑︁
aux∈L≤lim𝑐 lim𝑠

[aux ≠ aux∗] Pr

𝜑∼M

[
�̃� (aux)

�� aux∗ ∈ A(𝜑)
]

≤ 2
lim𝑠 lim𝑐

max

aux∈L≤lim𝑐 lim𝑠
[aux ≠ aux∗] Pr

𝜑∼M

[
�̃� (aux)

�� aux∗ ∈ A(𝜑)
]

(29)

The last step uses the fact that the number of programs whose size is no larger than 𝑘 is at most 2
𝑘
.

So far, the concrete output of Saux has been eliminated.

Step 4: eliminating the condition in the probability. The probability in Formula 29 can be

transformed as follows by unfolding the definition of A(𝜑).

Pr

𝜑∼M

[
�̃� (aux)

�� aux∗ ∈ A(𝜑)
]
= Pr

𝜑∼M

[
�̃� (aux)

�� ∃comb, 𝜑 (aux∗, comb) ∧ size(aux∗, comb) ≤ lim𝑠

]
Recall that our probabilistic modelM is parameterized by the semantics of orig and op, and its

randomness comes only from the semantics of programs inLaux andLcomb. In the probability above,

the outcome �̃� (aux) is determined only by aux, while the condition aux∗ ∈ A(𝜑) is determined

by aux* and programs in Lcomb. Therefore, the two events in this conditional probability are

independent, making it safe to directly ignore the condition, as shown below.

Pr

𝜑∼M

[
�̃� (aux)

�� aux∗ ∈ A(𝜑)
]
= Pr

aux
[�̃� (aux)]

Step 5: bounding the probability of �̃� (aux) using the mismatch factor. Let us first unfold
and transform the above probability Pr[�̃� (aux)] as follows.

Pr

aux
[�̃� (aux)]

= Pr

aux

[
(orig △ aux)𝑛 𝑎 = (orig △ aux)𝑛 𝑎′ → orig (op (𝑐, 𝑎)) = orig (op (𝑐, 𝑎′))

]
= Pr

aux

[ (
orig𝑛 𝑎 = orig𝑛 𝑎′ ∧ orig (op (𝑐, 𝑎)) ≠ orig (op (𝑐, 𝑎′))

)
→ aux𝑛 𝑎 ≠ aux𝑛 𝑎′

]
(30)

Suppose the mismatch factor of (orig, op) is at least 𝑡 , that means, there are 𝑡 pairs of orig inputs
(𝑎𝑖 , 𝑎′𝑖 ) such that (1) every pair satisfies the premise of the event in Formula 30, as shown below,

∃𝑐,
(
orig𝑛 𝑎𝑖 = orig𝑛 𝑎′

𝑖
∧ orig (op (𝑐, 𝑎𝑖 )) ≠ orig (op (𝑐, 𝑎′

𝑖
))
)

and (2) all components involved in these pairs (2𝑡𝑛 in total) are different.

The event in Formula 30 is satisfied only when aux𝑛 outputs differently on all these 𝑡 pairs of

inputs. Using this fact, the target probability can be bounded as follows.

Pr

aux
[�̃� (aux)] ≤ Pr

aux

[
𝑡∧
𝑖=1

aux𝑛 𝑎𝑖 ≠ aux𝑛 𝑎′
𝑖

]
≤

𝑡∏
𝑖=1

Pr

aux

[
aux𝑛 𝑎𝑖 ≠ aux𝑛 𝑎′

𝑖

]
≤

(
1 − pow(𝑠𝑉 ,−lim𝑐 lim𝑠 )𝑛

)𝑡 ≤ exp

(
− 𝑡/pow(𝑠𝑉 , 𝑛lim𝑐 lim𝑠 )

)
We supply some details on the above derivation as follows.
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• The second step uses the premise that all components involved in 𝑎𝑖 and 𝑎
′
𝑖
are different. This

fact implies that events aux𝑛 𝑎𝑖 ≠ aux𝑛 𝑎′
𝑖
are totally independent.

• The third step uses the fact that the size of aux is no larger than lim𝑠 · lim𝑠 . Under this

condition, aux can only output at most lim𝑐 · lim𝑠 auxiliary values, and thus the size of the

output domain of aux is no larger than pow(𝑠𝑉 , lim𝑐 · lim𝑠 ).

Step 6: Summary. Let us now sum up the previous sub-results and then prove the target theorem.

First, the inequality below is obtained by combining Steps 4 and 5.

Pr

𝜑∼M

[
�̃� (aux)

�� aux∗ ∈ A(𝜑)
]
≤ exp(−𝑡/𝑠𝑛 ·𝑤𝑉 ),where𝑤 ≜ lim𝑐 · lim𝑠

Second, the inequality below is obtained by further combining Step 3.

Pr

𝜑∼M

[
Saux (�̃�) ≠ aux∗

�� aux∗ ∈ A(𝜑)
]
≤ 2

𝑤
exp(−𝑡/𝑠𝑛 ·𝑤𝑉 )

At last, we know the size-limited unrealizable rate of AutoLifter is bounded by the formula below

after further combining Steps 1 and 2, which is exactly the target theorem.

2
𝑤
exp(−𝑡/𝑠𝑛 ·𝑤𝑉 ), where𝑤 ≜ lim𝑐 · lim𝑠

□

Before proving Theorem 5.6, we shall first introduce and prove the following lemma. It shows

that the mismatch factor of a random lifting problem is almost surely large.

Lemma A.3. When there are at least two values (i.e., 𝑠𝑉 > 1), for any constant 𝜖 > 0, there always
exists a constant 𝛿 such that the probability for the mismatch factor of a random lifting problem to be
smaller than 𝛿 · 𝑠𝐴/(𝑛 · 𝑠𝑛+1𝑉

) does not exceed 𝜖 , as shown below.

∀𝜖 > 0, ∃𝛿,∀𝑛,𝐴,𝑉 , Pr

orig,op

[
the mismatch factor of LP(orig, op) < ⌊𝛿 · 𝑠𝐴/(𝑛 · 𝑠𝑛+1𝑉 )⌋

]
≤ 𝜖

where orig is a random function with type 𝐴→ 𝑉 , op is a random function with type 𝑉 ×𝐴𝑛 → 𝐴,
𝑠𝐴 and 𝑠𝑉 are the numbers of values in types 𝐴 and 𝑉 , respectively, and it is assumed that 𝑠𝑉 > 1.

Proof. In this proof, we only need to consider the case where 𝑠𝐴/(𝑛 · 𝑠𝑛+1𝑉
) is large enough. To

see this point, let 𝑡 be an arbitrary threshold that may depend on 𝜖 . By taking 𝛿 as a value smaller

than 1/𝑡 , the target inequality will be satisfied in cases where 𝑠𝐴/(𝑛 · 𝑠𝑛+1𝑉
) ≤ 𝑡 , as shown below.

Pr

orig,op

[
the mismatch factor of LP(orig, op) < ⌊𝛿 · 𝑠𝐴/(𝑛 · 𝑠𝑛+1𝑉 )⌋

]
= Pr

orig,op
[the mismatch factor of LP(orig, op) < 0]

= 0 ≤ 𝜖

Therefore, in the remainder of this proof, we shall focus on the cases where 𝑠𝐴/(𝑛 · 𝑠𝑛+1𝑉
) is larger

than a threshold 𝑡 . Note that in these cases, 𝑠𝐴 must also be large because 𝑠𝑉 is at least 2.

As the first step, we divide values in type 𝐴 into subsets 𝐴1 and 𝐴2, whose sizes are 𝛼𝑠𝐴 and

(1 − 𝛼)𝑠𝐴 values for some constant 𝛼 , respectively. This construction ensures that the outputs of

orig on 𝐴1 and 𝐴2 are independent.

Second, we prove that with a high probability, orig will not map too many values in 𝐴2 to the

same value. Let num(𝑣) for 𝑣 ∈ 𝑉 be the number of values in 𝐴2 on which the outputs of orig is 𝑣 .
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We bound the probability of ∃𝑣 ∈ 𝑉 , num(𝑣) ≥ 2|𝐴2 |/3 (denoted as event E) as follows.

Pr[E] ≤
∑︁
𝑣∈𝑉

Pr

[
num(𝑣) > 2|𝐴2 |/3

]
≤
∑︁
𝑣∈𝑉

Pr

[
num(𝑣) > (1 + 1/3)E

[
num(𝑣)

] ]
≤ 𝑠𝑉 · exp

(
− (1 − 𝛼)𝑠𝐴

21𝑠𝑉

)
Here the first step uses the union bound, the second step uses the facts that E[num(𝑣)] ≤ |𝐴2 |/𝑠𝑣
and 𝑠𝑣 ≥ 2, and the last step uses the Chernoff bound.

Third, we assume that E does not happen and then construct a valid sequence of input pairs

for the mismatch factor using only values in 𝐴1. Concretely, values in 𝐴1 can be arranged into a

sequence 𝑆 including𝑚 = ⌊|𝐴1 |/(2𝑛)⌋ independent input pairs in 𝐴𝑛 ×𝐴𝑛
. Then, we call an input

pair (𝑎, 𝑎′) as valid if it satisfies the conditions below for a given value 𝑐 ∈ 𝐶 .

orig𝑛 𝑎 = orig𝑛 𝑎′ orig (op (𝑐, 𝑎)) ≠ orig (op (𝑐, 𝑎′)) op (𝑐, 𝑎) ∈ 𝐴2 op (𝑐, 𝑎′) ∈ 𝐴2

Let 𝑆 ′ be the sub-sequence of 𝑆 that includes only valid pairs. The left two conditions above ensure

that 𝑆 ′ is a valid sequence for the mismatch factor. Therefore, |𝑆 ′ | provides a lower bound on the

mismatch factor, and the task remaining is to prove that |𝑆 ′ | is large with a high probability.

For an input pair (𝑎, 𝑎′) in 𝑆 , the probability for it to satisfy the first condition is 𝑠−𝑛
𝑉

, and the

probability for it to satisfy the other three conditions is at least (1 − 𝛼)2/3 when event E does not

happen. These two probabilities are independent because the outputs of op, the outputs of orig on
𝐴1, and the outputs of orig on 𝐴2 are all independent. Therefore, the probability for a pair in 𝑆 to

be valid is at least (1 − 𝛼)2/3 · 𝑠−𝑛
𝑉

.

Now let us bound the length of sub-sequence 𝑆 ′. On the one hand, the expectation of |𝑆 ′ | is
(1−𝛼)2/3 · 𝑠−𝑛

𝑉
·𝑚, which is no smaller than 𝛾 · 𝑠𝐴/(𝑛 · 𝑠𝑛𝑉 ) for some constant 𝛾 < (1−𝛼)2/6. On the

other hand, it is easy to verify that the probabilities for each pair in 𝑆 to be valid are independent

when the outputs of orig on 𝐴2 are fixed. Therefore, the Chernoff bound can be applied to provide

a probabilistic lower bound for |𝑆 ′ |, as shown below, where 𝜏 is an arbitrary constant in (0, 1).

Pr

[
|𝑆 ′ | ≤ (1 − 𝜏) · 𝛾 · 𝑠𝐴/(𝑛 · 𝑠𝑛𝑉 )

�� ¬E]
≤ Pr

[
|𝑆 ′ | ≤ (1 − 𝜏)E[|𝑆 ′ |]

�� ¬E]
≤ exp

(
− 𝜏2/2 · E[|𝑆 ′ |]

)
≤ exp

(
−𝜏

2

2

· 𝛾 · 𝑠𝐴

𝑛 · 𝑠𝑛
𝑉

)
By combining the above results, we can bound the mismatch factor as follows.

Pr

[
the mismatch factor of LP(orig, op) ≤ (1 − 𝜏) · 𝛾 · 𝑠𝐴/𝑠𝑛𝑉

]
≤ Pr

[
|𝑆 ′ | ≤ (1 − 𝜏) · 𝛾 · 𝑠𝐴/(𝑛 · 𝑠−𝑛𝑉 )

�� ¬E] + Pr[E]
≤ exp

(
−𝜏

2

2

· 𝛾 · 𝑠𝐴

𝑛 · 𝑠𝑛
𝑉

)
+ 𝑠𝑉 · exp

(
− (1 − 𝛼)𝑠𝐴

21𝑠𝑉

)
Since we have assumed that 𝑠𝐴/(𝑛 · 𝑠𝑛+1𝑉

) is no smaller than some value 𝑡 , the value of 𝑠𝐴/(𝑛 · 𝑠𝑛𝑉 ) is
no smaller than 𝑡 , and the value of 𝑠𝐴/𝑠𝑉 is no smaller than 𝑡 · 𝑠𝑉 . Therefore, the formula above can
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be further simplified as below, resulting in the target lemma.

≤ exp
(
−𝜏

2

2

· 𝛾 · 𝑡
)
+ 𝑠𝑉 · exp

(
− (1 − 𝛼)

21

· 𝑠𝑉 · 𝑡
)

≤ exp
(
−𝜏

2

2

· 𝛾 · 𝑡
)
+ exp

(
− (1 − 𝛼)

21

· 𝑡
)
when 𝑡 >

210

1 − 𝛼
≤ 𝜖 when 𝑡 > 𝑘 · ln(1/𝜖) for a large enough constant 𝑘

□

Theorem A.4 (Theorem 5.6). Consider the size-limited unrealizable rate of AutoLifter on a random
lifting problem. When there are at least two values (i.e., 𝑠𝑉 > 1), for any constant 𝜖 > 0, the probability
for this rate to exceed 𝜖 tends to 0 when 𝑠𝐴/𝑠𝑤

′

𝑉
tends to∞, where𝑤 ′ ≜ 𝑛 · lim𝑐 · lim𝑠 + 𝑛 + 1.

Proof. To prove this theorem, we need to prove that for any constants 𝜖, 𝜖′ > 0, the probability

for the unrealizable rate to exceed 𝜖 is at most 𝜖′ when 𝑠𝐴/𝑠𝑤
′

𝑉
is large enough, as shown below.

Pr

orig,op

[
unreal(orig, op, lim𝑠 ) > 𝜖

]
≤ 𝜖′

By Lemma A.3, there exists a constant 𝛿 such that with a probability of at least 1 − 𝜖′, the
mismatch factor on a random lifting problem will be at least ⌊𝛿 · 𝑠𝐴/(𝑛 · 𝑠𝑛+1𝑉

)⌋, as shown below.

Pr

orig,op

[
the mismatch factor of LP(orig, op) ≥ ⌊𝛿 · 𝑠𝐴/(𝑛 · 𝑠𝑛+1𝑉 )⌋

]
≥ 1 − 𝜖′

When the event in the above probability happens (denoted as event E), the size-limited unrealiz-

able rate is bounded by Theorem 5.4, as shown below.

E→ unreal(orig, op, lim𝑠 ) ≤ 2
𝑤
exp(−⌊𝛿 · 𝑠𝐴/(𝑛 · 𝑠𝑛+1𝑉 )⌋/𝑠

𝑛 ·𝑤
𝑉 ),where𝑤 ≜ lim𝑐 · lim𝑠

When 𝑠𝐴/𝑠𝑤
′

𝑉
is larger than a threshold 𝑘 , the above formula can be simplified as follows.

2
𝑤
exp(−⌊𝛿 · 𝑠𝐴/(𝑛 · 𝑠𝑛+1𝑉 )⌋/𝑠

𝑛 ·𝑤
𝑉 ) ≤ 2

𝑤
exp(−𝛿 · 𝑘/𝑛) ≤ 𝜖 when 𝑘 is large enough

Therefore, we know the following inequality holds when 𝑠𝐴/𝑠𝑤
′

𝑉
is large enough. This result

directly implies the target conclusion.

Pr

orig,op

[
unreal(orig, op, lim𝑠 ) > 𝜖

]
≤ Pr

orig,op

[
unreal(orig, op, lim𝑠 ) > 𝜖

�� E] + Pr

orig,op
[¬E]

< 𝜖′ when 𝑠𝐴/𝑠𝑤
′

𝑉 is large enough

□

Theorem A.5 (Theorem 5.8). Given an example-based task for the auxiliary program, let aux∗ be
the synthesis result of Saux. Then, any sub-program of aux∗ must not be valid for the given task.

Proof. Assume that there is a strict sub-program of aux∗ (denoted as aux) that is also valid for

the example-based task. Then there are two possible cases.

Case 1: aux is strictly included in a component of aux∗. Let comp be the corresponding component.

Since OE enumerates programs strictly from small to large, it must return aux as a component

before comp. Therefore, aux will be considered by Saux before aux∗, so aux should be the synthesis

result of Saux instead, leading to a conflict.

Case 2: aux is not strictly included in any component of aux∗. Since aux∗ is formed as a tuple

of components (i.e., in the form of comp
1

△ . . . △ comp𝑘 ), as a sub-program of aux∗, aux must be

a tuple of several components in aux∗. So aux must be considered by Saux before aux∗ since the
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top-level combination enumerates the number of components from small to large. Consequently,

aux should be the synthesis result of Saux instead, leading to a conflict.

In summary, the assumption never holds, and thus the target theorem is obtained. □

A.2 Example of Analyzing the Mismatch Factor
In Section 2.1, we have discussed a lifting problem about applying D&C to sndmin, where the

original program orig calculates sndmin and the operator op concatenates two given lists. Now, we

are going to prove a lower bound for the mismatch factor of this lifting problem. For simplicity, in

the discussion below, we assume each input list includes up to 𝑙 integers in the range [1, 𝑠𝑉 ].
To get a lower bound of the mismatch factor, we need to find a sequence of input pairs satisfying

the two conditions in Definition 5.3. Specifically, in this example, we need to find a sequence of

4-list tuples such that (1) every tuple

(
(xs𝐿, xs𝑅), (xs′𝐿, xs′𝑅)

)
in this sequence satisfies the formula

below, and (2) every list is used at most once in this sequence.

(sndmin xs𝐿, sndmin xs𝑅) = (sndmin xs′
𝐿
, sndmin xs′

𝑅
)

∧ sndmin (xs𝐿 ++ xs𝑅) ≠ sndmin (xs′
𝐿
++ xs′

𝑅
) (31)

We can construct such a sequence from those lists formed by 𝑙 − 2 integers in range [3, 𝑠𝑉 ].
Specifically, for every such list ys, we construct a tuple

(
(xs𝐿, xs𝑅), (xs′𝐿, xs′𝑅)

)
as shown below

11
.

xs𝐿 ≜ [1, 2] ++ys xs𝑅 ≜ [1, 3] ++ys
xs′

𝐿
≜ [2, 2] ++ys xs′

𝑅
≜ [2, 3] ++ys

This construction results in a sequence of length (𝑠𝑉 − 2)𝑙−2, the number of different ys. We can

verify that this sequence indeed satisfies the two conditions in Definition 5.3.

• For the first condition, Formula 31 is satisfied by all tuples because the outputs of sndmin
on xs𝐿 and xs′

𝐿
are always 2, the outputs on xs𝑅 and xs′

𝑅
are always 3, but the outputs on

xs𝐿 ++ xs𝑅 and xs′
𝐿
++ xs′

𝑅
are always different, which are 1 and 2, respectively.

• For the second condition, no two lists in this sequence are the same because (1) no two lists

in the same tuple can be the same as their first two elements must be different, and (2) no

two lists in different tuples can be the same as their last 𝑙 − 2 elements must be different.

Therefore, the mismatch factor of the lifting problem in Section 2.1 is at least (𝑠𝑉 − 2)𝑙−2. By
combining this lower bound with Theorem 5.4, we can get the conclusion that the size-limited

unrealizable rate of this lifting problem tends to 0 when the length of lists (i.e., 𝑙 ) tends to∞.

A.3 Probabilistic Correctness Guarantee of Our Verifier
Our implementation of AutoLifter includes a testing procedure as a part of the verifier (Section 7).

In the 𝑖-th CEGIS iteration, it tests the candidate program using 10
4 × 𝑖 random examples generated

from a pre-defined distribution. This testing procedure provides a guarantee that the probability

for the error rate of the synthesis result to be more than 10
−3

is at most 4.55 × 10−5.
To prove this guarantee, let us first introduce some necessary notations. Let 𝑛 be the number of

examples used in the first CEGIS iteration (10
4
in our implementation) and 𝛿 be the tolerable error

rate in the probabilistic guarantee (10
−3

in the above claim). Then, let E be the event that the error

rate of the synthesis result is more than 𝛿 , and let E𝑖 be the event that a program with an error rate

larger than 𝛿 is accepted by the verifier in the 𝑖-th CEGIS iteration.

To get a probabilistic guarantee, our target is to derive an upper bound for Pr[E]. By the definition,
E happens only when some event E𝑖 happens, and E𝑖 happens only when a program with an error

11
In this construction, we assume the value of 𝑠𝑉 is at least 3.
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rate larger than 𝛿 passes 𝑛 · 𝑖 random examples, of which the probability is no larger than (1− 𝛿)𝑛 ·𝑖 .
Therefore, the following inequality holds.

Pr[E] ≤
+∞∑︁
𝑖=1

Pr[E𝑖 ] ≤
+∞∑︁
𝑖=1

(1 − 𝛿)𝑛 ·𝑖 ≤
+∞∑︁
𝑖=1

exp(−𝛿 · 𝑛 · 𝑖) = 𝑤/(1 −𝑤) for𝑤 ≜ exp(−𝛿 · 𝑛)

When (𝑛, 𝛿) is set to (104, 10−3), the value of𝑤 is exp(−10) ≈ 4.54 × 10−5, and thus the upper

bound of Pr[E] is 𝑤/(1 − 𝑤) < 4.55 × 10
−5
. Therefore, the probability for the error rate of the

synthesis result to be more than 10
−3

is at most 4.55 × 10−5.

B APPENDIX: ALGORITHMIC PARADIGMS
In this section, we supply the details on the remaining two paradigms of longest segment problems

and the paradigm of segment trees. For each paradigm, we introduce three aspects in order: (1) its

procedure, (2) its reduction to lifting problems, and (3) the time complexity under the efficiency

condition (Section 6.1), i.e., the efficiency guarantee provided by AutoLifter .

B.1 The first algorithmic paradigm for the longest segment problem
Recall that a longest segment problem is specified by a predicate 𝑝 on lists. Given a list xs, this
problem asks for the length of the longest segment in xs satisfying the predicate.

Procedure. The first paradigm proposed by Zantema [1992] aims at the cases where predicate 𝑝 is

predict-closed and overlap-losed, defined as follows.

• prefix-closed means that for any list satisfying the predicate, all its prefixes must also satisfy

the predicate, i.e., 𝑝 (xs++ys) → 𝑝 xs.
• overlap-closed means that for any two overlapped segments satisfying the predicate, their

join must also satisfy the predicate, i.e.,

(length ys > 0 ∧ 𝑝 (xs++ys) ∧ 𝑝 (ys++ zs)) → 𝑝 (xs++ys++ zs)

This paradigm considers all prefixes of the input list xs in order and calculates the longest suffix

satisfying 𝑝 for each of them. Let 𝑙𝑠 (pref) be the longest suffix of pref satisfying predicate 𝑝 . For two
consecutive prefixes pref

1
and pref

2
= pref

1
++ [𝑣], when 𝑝 is both prefix-closed and overlap-closed,

𝑙𝑠 (pref
2
) must be one of 𝑙𝑠 (pref

1
) ++ [𝑣], [𝑣] and [].

Figure 19 shows a template of this paradigm (in C-like syntax), where 𝐴 and 𝑛 denote the input

list and the length of the input list respectively. This template calculates the longest valid suffix for

each prefix of 𝐴, stores its length (Line 6), and auxiliary values on the longest valid suffix as info
(Line 9). When a new element is considered, lsp verifies whether 𝑙𝑠 (𝐴[0 . . . 𝑖 − 1]) ++ [𝐴𝑖 ], [𝐴𝑖 ], []
are valid, and picks the first valid one among them (Lines 9-18). In this procedure, combinator comb
is used to quickly update info and verify whether 𝑙𝑠 (𝐴[0 . . . 𝑖 − 1]) ++ [𝐴𝑖 ] is valid (Line 9).

Reduction to the lifting problem. To apply this paradigm, we need to find a combinator comb
and an auxiliary program aux satisfying the specification below, where comb updates whether a
segment is valid after a new element is appended, and aux provides necessary auxiliary values.

(𝑝 △ aux) (xs++ [𝑣]) = comb
(
𝑣, (𝑝 △ aux) xs

)
This task can be regarded as a lifting problem LP(𝑝, op) where op (𝑣, (xs)) ≜ xs++ [𝑣].
Time complexity. The bottleneck here is 𝑂 (𝑛) invocations of comb in the loop. Therefore, under

the efficiency condition, the resulting program will run in 𝑂 (𝑛) time on a list of length 𝑛.
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1 struct Info {
2 bool is_valid;
3 // Variables representing the output of aux.
4 };
5 int lsp(int* A, int n){
6 int res = 0, len = 0;
7 Info info = {/*p [], aux []*/};
8 for (int i = 0; i < n; ++i) {
9 info = /*comb (A[i], info)*/;
10 if (!info.is_valid) {
11 info = {/*p [A[i]], aux [A[i]]*/};
12 if (info.is_valid) {
13 len = 1;
14 } else {
15 len = 0, info = {/*p [], aux []*/};
16 } else {
17 len += 1;
18 }
19 res = max(res, len);
20 }
21 return res;
22 }

Fig. 19. The template of the first paradigm for the longest segment problem.

B.2 The third algorithmic paradigm for the longest segment problem
Procedure. This paradigm does not have any requirement on the 𝑝 and is based on a technique

named segment partition. Given list 𝐴[1 . . . 𝑛], its segment partition is a series of consecutive

segments (𝑟0 = 0, 𝑟1], (𝑟1, 𝑟2], . . . , (𝑟𝑘−1, 𝑟𝑘 = 𝑛] satisfying (1) ∀𝑖 ∈ [1, 𝑘],∀𝑗 ∈ (𝑟𝑖−1, 𝑟𝑖 ), 𝐴 𝑗 > 𝐴𝑟𝑖 ,

and (2) ∀𝑖 ∈ [2, 𝑘], 𝐴𝑟𝑖−1 ≤ 𝐴𝑟𝑖 . This paradigm first generates the segment partition of the given list

and then gets the result by merging the information of all segments in the partition.

Figure 20 shows a template of this paradigm, which runs in two steps. In the first step, it constructs

a segment partition of the whole list (Lines 8-15). Starting from the empty list, it considers each

element in the list, updates the segment partition, and then gets the partition of the whole list when

all elements are considered. In this procedure, several variables are used.

• num represents the number of segments in the current partition (Line 7).

• rpos[𝑖] represents the index of the right end the 𝑖th segment in the partition (Line 3).

• info[𝑖] records the function value of orig (i.e., the length of the longest valid segment) and

aux on the content of the 𝑖th segment.

When a new element is inserted, the template merges the last several segments via combinator

comb to ensure that the remaining segments form a partition of the current prefix (Lines 9-14).

In this second step, after the whole segment partition is obtained, the template merges these

segments (Lines 16-20) using comb again and thus gets the result of the whole list (Line 21).

Reduction to the lifting problem. In this template, combinator comb is invoked on an element 𝑣

and the cared information on two lists xs𝐿, xs𝑅 , and its task is to return the cared information on

xs𝐿 ++ [𝑣] ++xs𝑅 . By the definition of the segment partition, all these invocations ensure that 𝑣 is

the leftmost maximum in xs𝐿 ++ [𝑣] ++xs𝑅 , i.e., min xs𝐿 > 𝑣 and min xs𝑅 ≥ 𝑣 .
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1 struct Info{
2 int res; // Variable representing the output of orig
3 // Variables representing the output of aux
4 }info[N];
5 int rpos[N];
6 int solve(int *A, int n) {
7 int num = 0;
8 for (int i = 0; i < n; i++) {
9 Info now = {/*orig [], aux []*/};
10 while (num > 0 && A[rpos[num]] > A[i]) {
11 now = /*comb (A[rpos[num]], (info[num], now))*/;
12 --num;
13 }
14 num++; rpos[num]=i; info[num]=now;
15 }
16 Info now = {/*orig [], aux []*/};
17 for (int i = num; i > 0; i--) {
18 now = /*comb (A[rpos[i]], (info[i], now))*/;
19 }
20 return now.res;
21 }

Fig. 20. The template of the third paradigm for the longest segment problem.

Therefore, to apply this paradigm, we need to find a combinator comb and an auxiliary program

aux satisfying the following specification.

min xs𝐿 > 𝑣 ∧ min xs𝑅 ≥ 𝑣 →
(orig △ aux) (xs𝐿 ++ [𝑣] ++xs𝑅) = comb (𝑣, ((orig △ aux) xs𝐿, (orig △ aux) xs𝑅))

This task can be reduced to a lifting problem LP(orig, op), where op is defined as follows and the

premise above is eliminated by setting the corresponding outputs of op to a dummy list.

op (𝑣, (xs𝐿, xs𝑅)) ≜
{
xs𝐿 ++ [𝑣] ++xs𝑅 min xs𝐿 > 𝑣 ∧min xs𝑅 ≥ 𝑣

[] otherwise

Time complexity. Under the efficiency condition, the synthesized program runs in 𝑂 (𝑛) time on

a list of length 𝑛 because its bottleneck is 𝑂 (𝑛) invocations of comb.

B.3 Segment Tree
The segment tree aims at the problem of Range Update and Range Query [Bentley 1977a], a classical

data structure problem. Given an initial list xs, a query program ℎ, and an update program 𝑢, the

task is to process a series of operations in order. There are two types of operations.

• Range update (U, 𝑎, 𝑙, 𝑟 ): set the value of xs𝑖 to 𝑢 (𝑎, xs𝑖 ) for each 𝑖 ∈ [𝑙, 𝑟 ].
• Range query (Q, 𝑙, 𝑟 ): calculate and output the value of ℎ [xs𝑙 , . . . , xs𝑟 ].

The segment tree requires the semantics of the update operator 𝑢 to form a monoid, that is, there

exists a constant 𝑎0 and an operator ⊕ satisfying the following conditions.

∀𝑤,𝑢 (𝑎0,𝑤) = 𝑤 ∀𝑎1,∀𝑎2,𝑤,𝑢 (𝑎1, 𝑢 (𝑎2,𝑤)) = 𝑢 (𝑎1 ⊗ 𝑎2,𝑤)
Here, we assume that 𝑎0 and ⊗ are directly given for simplicity. In general, finding 𝑎0 and ⊗ for

a given update program is an isolated synthesis task and thus can be treated separately.
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Procedure. A segment tree is a tree-like data structure where each vertex corresponds to a segment

in the list. On each vertex, several values with respect to the corresponding segment are maintained.

• For each update operation, the segment tree distributes the updated range into several disjoint

vertices and applies the update in batch via lazy tags, which will be discussed later.

• For each query operation, the segment tree also distributes the updated range into disjoint

vertices and merges the maintained values on these vertices together.

Figure 21 shows the sketch of segment trees. For simplicity, we assume the element in the list,

the output of the query program ℎ, and the parameter 𝑎 of the update program 𝑢 are all integers.

This template uses an array info to implement the segment tree, where

• info[1] records the information on the root node, which corresponds to the whole list.

• info[2𝑘] and info[2𝑘 +1] correspond to the left child and the right child of node 𝑘 respectively.

• For each node 𝑘 , info[𝑘] records the output of ℎ and the auxiliary values on the segment

corresponding to node 𝑘 (Lines 1-4).

• Array tag records the lazy tag on each node. tag[𝑘] represents that all elements inside the

range corresponding to node 𝑘 should be updated via 𝜆𝑤.𝑢 (tag[𝑘],𝑤), but such an update

has not been applied to those nodes strictly in the subtree of node 𝑘 yet.

There are several functions used in this template:

• apply deals with an update on all elements in the segment corresponding to node pos by
updating info[𝑝𝑜𝑠] via combinator comb2 (Line 7).
• pushdown applies the tag on node pos to its children (Lines 11-12) and then clears it (Line 13).

• initialize initializes the information for node pos which corresponds to range [𝑙, 𝑟 ]. It
recurses into two children (Lines 18-19) and merges the sub-results via comb1 (Line 20).
• update applies an update ([𝑢𝑙,𝑢𝑟 ], 𝜆𝑤.𝑢 (𝑎,𝑤)) to node pos that corresponds to range [𝑙, 𝑟 ]. If
[𝑙, 𝑟 ] does not overlap with [𝑢𝑙,𝑢𝑟 ], the update will be ignored (Line 23). If [𝑙, 𝑟 ] is contained
by [𝑢𝑙,𝑢𝑟 ], a lazy tag will be put (Line 24). Otherwise, update recurses into two children

(Lines 26-27) and merges the sub-results via comb1 (Line 28).
• query calculates a sub-result for query [𝑢𝑙,𝑢𝑟 ] by considering elements in node pos only. It

is implemented similarly to update.

To solve a task, the segment tree is first initialized via function initialize (Line 37) and then

responds to each operation by invoking the corresponding function (Lines 39-43).

Reduction to the lifting problem. To apply this paradigm, we need to find two combinators

comb1, comb2 and an auxiliary program aux satisfying the following condition, where comb1 merges

the sub-results on two sub-segments, comb2 update the result after an update operation is applied

to each element in the segment, and aux provides necessary auxiliary values.

(ℎ △ aux) (xs𝐿 ++ xs𝑅) = comb1 ((ℎ △ aux) xs𝐿, (ℎ △ aux) xs𝑅)
(ℎ △ aux) (map (𝜆𝑤.𝑢 (𝑎,𝑤)) xs) = comb2 (𝑎, (ℎ △ aux) xs)

Similar to the second paradigm of the longest segment problem (Section 6.2), the two formulas

above can be unified into a single lifting problem LP(ℎ, op), where op is defined as below and its

complementary input is from {“merge”, “update”} × (the update set of 𝑢).

op ((tag, 𝑎), (xs𝐿, xs𝑅)) ≜
{

xs𝐿 ++ xs𝑅 tag = “𝑚𝑒𝑟𝑔𝑒”

map (𝜆𝑤.𝑢 (𝑎,𝑤)) xs𝐿 tag = “𝑢𝑝𝑑𝑎𝑡𝑒”

Time complexity. Let 𝑛 be the length of the initial list. Under the efficiency condition, one can

verify that (1) the bottleneck of initialize is 𝑂 (𝑛) invocations of comb1, and (2) the bottleneck

of query and update are 𝑂 (log𝑛) invocations of comb1 and comb2. Therefore, under the efficiency
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1 struct Info {
2 Int res; // Variable representing the output of h.
3 // Variables representing the output of aux.
4 }info[N];
5 Int tag[N];
6 void apply(int pos, Int a){
7 info[pos] = /*comb2 (a, info[pos])*/;
8 tag[pos] = tag[pos] ⊗ a;
9 }
10 void pushdown(int pos) {
11 apply(pos * 2, tag[pos]);
12 apply(pos * 2 + 1, tag[pos]);
13 tag[pos] = a0;
14 }
15 void initialize(int pos, int *A, int l, int r) {
16 if (l == r) {info[pos] = /*h [A[l]], aux [A[l]]*/; return;}
17 int mid = l + r >> 1;
18 initialize(pos * 2, A, l, mid);
19 initialize(pos * 2 + 1, A, mid + 1, r);
20 info[pos] = /*comb1 (info[pos * 2], info[pos * 2 + 1])*/;
21 }
22 void update(int pos, int l, int r, int ul, int ur, Int a) {
23 if (l > ur || r < ul) return;
24 if (l >= ul && r <= ur) {apply(pos, a); return;}
25 int mid = l + r >> 1; pushdown(pos);
26 update(pos * 2, l, mid, ul, ur, a);
27 update(pos * 2 + 1, mid + 1, r, ul, ur, a);
28 info[pos] = /*comb1 (info[pos * 2], info[pos * 2 + 1])*/;
29 }
30 Info query(int pos, int l, int r, int ul, int ur) {
31 if (l > ur || r < ul) return {/*h [], aux []*/};
32 if (l >= ul && r <= ur) return info[pos];
33 int mid = l + r >> 1; pushdown(pos);
34 return /*comb1 (query(pos * 2, l, mid, ul, ur), query(pos * 2 + 1,

mid +1, r, ul, ur))*/;
35 }
36 void range(int n, int *A, int m, Operator* op) {
37 initialize(1, A, 0, n - 1);
38 for (int i = 0; i < m; ++i) {
39 if (op[i].type == Update) {
40 update(1, 0, n - 1, op[i].l, op[i].r, op[i].a);
41 } else {
42 print(query(1, 0, n - 1, op[i].l, op[i].r));
43 }
44 }
45 }

Fig. 21. The template for the algorithmic paradigm of segment trees.

condition, the resulting program will take linear time to perform pre-processing and will respond

to each operation in logarithmic time.
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