
1

L2S: a Framework for Synthesizing the Most Probable
Program under a Specification

YINGFEI XIONG and BO WANG, Peking University

In many scenarios, we need to find the most likely program that meets a specification under a local context,

where the local context can be an incomplete program, a partial specification, natural language description,

etc. We call such a problem program estimations. In this paper, we propose a framework, LingLong Synthesis
Framework, or L2S in short, to address this problem. Compared with existing work, our work is novel in the

following aspects. (1) We propose a theory of expansion rules to describe how to decompose a program into

choices. (2) We propose an approach based on abstract interpretation to efficiently prune off the program

sub-space that does not satisfy the specification. (3) We prove that the probability of a program is the product

of the probabilities of choosing expansion rules, regardless of the choosing order. (4) We reduce the program

estimation problem to a path finding problem, enabling existing path-finding algorithms to solve this problem.

L2S has been applied to program generation and program repair. In this paper, we report our instantiation

of this framework for synthesizing conditional expressions (L2S-Cond) and repairing conditional statements

(L2S-Hanabi). The experiments on L2S-Cond show that each option enabled by L2S, including the expansion

rules, the pruning technique, and the use of different path-finding algorithms, plays a major role in the

performance of the approach. The experiments on L2S-Hanabi show that it outperforms ACS, a state-of-the-art

APR system for repairing conditional statements, on the Defects4J benchmark. L2S-Hanabi increases the

number of repaired bugs from 17 to 28 and the precision from 74% to 85%. The performance of L2S-Hanabi on

Bugs.jar is consistent with that on Defects4J.

CCS Concepts: • Software and its engineering → Automatic programming; Software testing and
debugging.

Additional Key Words and Phrases: Program Estimation, Program Synthesis, Program Repair, Expansion Rules

ACM Reference Format:
Yingfei Xiong and Bo Wang. 2021. L2S: a Framework for Synthesizing the Most Probable Program under a

Specification. ACM Trans. Softw. Eng. Methodol. 1, 1, Article 1 (January 2021), 47 pages. https://doi.org/10.1145/

3487570

1 INTRODUCTION
In many tasks, we need to synthesize a program automatically to solve a problem. Some problems

have clearly defined specifications: when the program meets the specification, the program is

considered correct. Traditional program synthesis techniques are mainly designed to deal with such

problems [20]. However, many problems do not have such a complete specification. For example,

in test-based program repair [63] and program by examples [18], only a set of tests is available

to validate the correctness of the patched program. Other related fields are code completion [46]

and program synthesis from natural languages [51], where code is generated based on a partial

Authors’ address: Yingfei Xiong, xiongyf@pku.edu.cn; Bo Wang, wangbo_15@pku.edu.cn, Key Lab of High Confidence

Software Technologies, Ministry of Education; Department of Computer Science and Technology, EECS, Peking University,

Haidian, Beijing, 100871.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the

full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.

1049-331X/2021/1-ART1 $15.00

https://doi.org/10.1145/3487570

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.

https://doi.org/10.1145/3487570
https://doi.org/10.1145/3487570
https://doi.org/10.1145/3487570

1:2 Yingfei Xiong and Bo Wang

program and/or natural language specifications. In all the above cases, it is not enough to generate

a program that satisfies the specification. For the former two scenarios, existing studies [18, 40, 49]

have revealed repairing only for passing the tests often results in incorrect patches. In the latter two

scenarios, there is not even a partial formal specification, and returning an arbitrary compilable

program is definitely not desirable.

A more desirable solution to these cases, as we argue in this paper, is to find the program that

is most likely to be written under the current context. More formally, given a space of programs

Prog, a specification spec, and a context context, we would like to find a program prog such

that prog ∈ Prog satisfies spec, i.e., prog ⊢ spec, and maximizes the conditional probability

Pr(prog | context). In other words, we need to calculate the following formula.

argmaxprog∈Prog ∧ prog ⊢ specPr(prog | context)

The program space can be specified by grammar rules, the specification can be a test suite or

a logic specification, and the context can be the specification, an incomplete program, and/or

natural language description, etc. To distinguish from traditional program synthesis where a precise

specification exists, we call this problem program estimation.
Solving the program estimation problem is not easy, and involves three subproblems: (1) cal-

culate the conditional probability Pr(prog | context), (2) locate the program with the maximum

probability, and (3) ensure that the located program satisfies the specification. Since the program

estimation is difficult to be solved precisely, the first two subproblems are usually approached with

approximation: the conditional probability is estimated from a training set of context-program

pairs Data, and the algorithm finds a program whose probability is as large as possible.

Existing studies [5, 19, 57, 72] are mainly conducted from the machine learning perspective.

These approaches decompose a program into a set of choices, where for each choice the number

of options is small and can be handled by a learned classifier. For example, in an application that

generates a sequence of API calls [57], first, a model is used to estimate how much likely each API

method is called next, and then another model is used to estimate how much likely each variable is

used as an argument of the method. Afterwards, the probability of the whole program is the product

of each single choice. Finally, a beam search algorithm [44] is used to find the best combination of

all the choices.

However, the current approaches still have multiple limitations.

• First, most existing approaches are designed case by case, and it is not clear what possibilities

exist to decompose a program into a set of choices in general.

• Second, the existing approaches usually only ensure the generated program to satisfy certain

structural properties, such as syntactic correctness, but it is not clear how to satisfy more

complex specifications, such as type correctness and functional correctness.

• Third, existing approaches directly assume the probability of the program is the product of

the probabilities of the choices [5], and it is not clear under what conditions the assumption

holds.

• Fourth, most existing approaches use beam search to find the program with the maximum

probability, and it is not clear what other search algorithms can be used.

In this paper, we propose a framework, LingLong Synthesis Framework1, or L2S in short to address

the program estimation problem. L2S is a framework generalizing existing approaches for program

estimation, and we propose the following novel components to address the above limitations.

1
LingLong is a Chinese word meaning flexible and delicate

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.

L2S: a Framework for Synthesizing the Most Probable Program under a Specification 1:3

• To address the first limitation, we propose a theory of expansion rules. Expansion rules

generalize AST rules, and allow describing different ways of generating a program. L2S is

built upon expansion rules to describe different ways of decomposing a program into choices.

• To address the second limitation, we introduce an approach based on abstract interpretation

to efficiently prune off the program subspaces that cannot satisfy the specification early on.

• To address the third limitation, we show that the probability of the program is the product of

the probabilities of choosing the expansion rule at each expansion position (explained later),

and is not related to the order of choosing expansion positions, which allows an efficient

calculation of program probability from the probabilities of choosing the rules.

• To address the fourth limitation, we show that the program estimation problemwhose choices

are decomposed following expansion rules can be viewed as a path-finding problem, where

the vertexes are partial and complete programs and the weights on paths are the probabilities

of the programs, allowing to employ any algorithm for path finding problem to find the

program with the maximum probability.

L2S has already been applied in code generation: Sun et al. [59, 60] instantiated the L2S framework

to generate programs from natural language description, which significantly outperformed existing

work. In this paper, we give a complete introduction to the L2S framework and report our newest

instantiation of L2S to automated program repair [63].

Our instantiation is designed for repairing buggy conditional expressions, where we synthesize

a new conditional expression based on the context (the surrounding code) to replace the buggy

one. More concretely, we first build a tool, L2S-Cond, for synthesizing Java conditional expressions

by viewing the surrounding code as the context and the typing rules as the specification. Then

we build a repair tool, L2S-Hanabi
2
, by first localizing a buggy conditional expression and then

synthesizing a new conditional expression by L2S-Cond to replace the buggy one, following the

framework of ACS, an existing approach for repairing conditional expressions [68].

We first evaluate different ways of instantiating L2S to form L2S-Cond. The results suggest

that the options enabled by L2S, including different sets of expansion rules, different machine

learning techniques, different path-finding algorithms, and whether to prune off infeasible program

subspaces, play a major role in the performance of L2S-Cond. The best set of options correctly

predict 61.7% of the conditional expression in the top 5 candidates, and 75.1% in the top 200

candidates.

Next, we evaluate L2S-Hanabi on 272 real-world bugs from six diverse projects in two benchmarks,

i.e., Defects4J [29] and Bugs.jar [54]. L2S-Hanabi correctly repairs 32 defects, with a precision of

76.2%, outperforming ACS [68], the state-of-the-art approach for repairing conditions with 64.7%

more bugs repaired and slightly higher precision.

Our implementation and experimental data can be found at https://wangbo15.github.io/LingLong/.

In summary, this paper presents the following main contributions.

• We present a novel theory of expansion rules, which is a generalization of grammar rules to

describe different ways of generating a program.

• We present a framework, L2S, that converts the program estimation problem into a path

finding problem on graphs, allowing us to predict the probability of a program along an

expansion path and use different path-finding algorithms to solve this problem.

• We propose an approach based on abstract interpretation to efficiently prune off the program

subspaces that cannot satisfy the specification early on.

• We instantiate the L2S framework for repairing buggy conditional expressions by systemat-

ically exploring different sets of expansion rules and proposing a novel encoding method

2
Hababi is the Japanese word for fireworks, indicating the tool follows a bottom-up fashion which will be illustrated later.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.

https://wangbo15.github.io/LingLong/

1:4 Yingfei Xiong and Bo Wang

for identifiers. The evaluation shows that L2S-Hanabi significantly outperforms existing

approaches.

This paper is a significantly extended version of a previous workshop paper [67]
3
. First, the L2S

framework has been completely reworked, with a novel theory of expansion rules, a novel approach

based on abstract interpretation to prune off the space, an updated theorem of the probability,

and a novel characterization of the program as a path-finding problem. Second, the application

to APR has been improved to include a more sophisticated way to train the machine learning

models and systematic exploration of the design space of L2S-Cond. Third, the evaluation has been

extended to include a comprehensive evaluation on two real-world bug benchmarks, as well as

detailed analysis and discussion about the synthesized conditions in the repair experiments. Fourth,

the paper has been largely rewritten to improve the presentation, including a set of completely

re-designed formal notations and definitions.

In the remainder of the paper, we will introduce L2S step by step. We first give the approach

overview with a motivating example (Section 2), and then introduce L2S in detail (Section 3). Then

we instantiate the framework as L2S-Cond for generating Java conditional expressions (Section 4).

Based on L2S-Cond, we build our tool L2S-Hanabi for repairing conditional statements and evaluate

L2S-Hanabi on 272 real-world bugs (Section 5). Finally, we discuss related work (Section 6), analyze

the threats to validity (Section 7), and conclude the paper (Section 8).

2 MOTIVATING EXAMPLE AND APPROACH OVERVIEW
In this section we give an overview of L2S with a motivating example. After the introduction

of the motivating example (Section 2.1), we shall first introduce L2S with respect to the three

subproblems: (1) calculating the conditional probability of a program (Section 2.2), (2) generating

the program with maximum probability (Section 2.3), and (3) ensuring that the program satisfies

the specification (Section 2.4). We shall first consider a basic decomposition method that follows

the grammar (Section 2.2-2.1), and then introduce other potential decompositions based on the

theory of expansion rules (Section 2.5).

2.1 Motivating Example
Conditional expressions are a common source of bugs: an existing study [58] has shown that 43%

of real-world bugs are related to buggy if conditions. As a result, several existing program repair

approaches [39, 68, 70] focus on repairing buggy conditions. A typical approach for condition repair

first localizes a buggy conditional expression using fault localization approaches [28, 73], and then

synthesizes a new condition to replace the buggy one. Therefore, it is critical to synthesize the

condition correctly.

Synthesizing a condition is a typical program estimation problem. The context context is the
project source code surrounding the target condition. The specification spec is the syntactic and
type constraint of the programming language and the tests in the program, i.e., the synthesized

condition must be syntactically and type correct, and passes the tests in the program. The training

set Data includes pairs of conditional expressions and their context, which can be easily collected

from existing open source projects. Finally, there is a characterization of the program space Prog.
L2S follows existing program synthesis approaches [3] to use grammars to define the program

space. A simplified example grammar for conditional expressions is given below, where T is the

root symbol.

3
L2S was known as Learning to Synthesize in the workshop paper.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.

L2S: a Framework for Synthesizing the Most Probable Program under a Specification 1:5

T
T→E
===⇒

T

E

E→E “>12”
========⇒

T

E

E “> 12”

E→“hours”
========⇒

T

E

E

“hours”

“> 12”

Fig. 1. Decomposing program into choices

T→E

E →E “ > 12” | E “ > 0” | E “ > ” E | E “ + ” E | “hours” | “value”

2.2 Calculating the conditional probability
A standard way of decomposing a program into choices is to follow its top-down expansion order

defined by the grammar [50, 72]. For example, an expression “hours > 12” can be considered as

the result of the three choices shown in Figure 1. The first choice chooses among all grammar rules

starting with T to expand the root symbol, and in this case we have only one option. The second

choice chooses among all grammar rules starting with E to expand the node E. The third choice

again chooses among all grammar rules starting with E to expand the newly introduced node E.
After decomposing a program into choices, the probability of the program is the product of the

probabilities of all choices.

In L2S, the probabilities of the choices are specified by a probabilistic model. The conditional

probability has the form Pr(rule|context, prog, position), where context represents the context
for the program generation, prog represents the current program that has been generated, position
represents the position of the node to be expanded, and rule represents the choice of a rule starting
from the symbol at position. Such conditional probabilities could be predicted by machine learning

models trained on the a training set. When we have the conditional probability of each choice, the

probability of the whole program is the product of the probabilities of all choices.

L2S does not enforce any concrete machine learningmethods, and users could choose themethods

that fit best the problem. Furthermore, different machine learning methods could be specified for

different non-terminals for best results. Since the input only provides the set of programs and their

context, we need to parse the programs to reproduce the choices. At each choice, the chosen option

is the positive instance and all other options are negative instances.

In practice, we use two ways to train the machine learning models. For the non-terminals

whose expansions are common at different contexts, such as Statement → IfStatement |
WhileStatement | BasicStatement, we train a classifier for the multi-class problem, where each

class corresponds to a choice. For the non-terminals whose expansions may change at different

contexts, such as Variable→ “hours” | “values”, we train a binary classifier whose output is the

probability of the current rule.

However, the above example is special as in each step we have only one non-terminal node that

needs to be expanded. In general cases, there may be more than one non-terminal node that can

be extended. As a result, the choices involve not only which grammar rule to use but also which

non-terminal node to expand. For example, Figure 2 shows an expansion process that involves four

choices. The first partial program has two non-terminal nodes that need to be expanded, E1 and E2.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:6 Yingfei Xiong and Bo Wang

T

E0

E1 “>” E2

(a)

Choosing E1
========⇒
E→“hours”

T

E0

E1

“hours”

“>” E2

(b)

Choosing E2
========⇒
E→“value”

T

E0

E1

“hours”

“>” E2

“value”

(c)

Fig. 2. Choices including both grammar rules and non-terminals

The first choice chooses node E1, the second choice chooses grammar rule E → “hours”, the third
choice chooses node E2, and the last choice chooses grammar rule E → “value”.
The existence of choices on non-terminal nodes gives us a question: is the probability of the

program still equal to the product of the probabilities of all choices? If so, how can we compute the

probabilities of the node selections? Later in this paper we will show that, even if the choices of

nodes are involved, the probability of the program is equal to the product of only the probabilities

of choosing each grammar rule. In other words, the probabilities of choosing non-terminal nodes

are omitted. If we choose to expand E2 first and E1 second, we still should get the same probability.

This property gives us the freedom of setting up a policy to choose the non-terminal node to be

expanded first so as to best fit the machine learning models.

2.3 Generating the Program with Maximum Probability
In the previous section, we have described how to estimate the probability of a single program. Now

we introduce how to generate the program that satisfies the specification and has the maximum

probability, a combinatorial optimization problem.

L2S views this optimization problem as a path finding problem on directed graphs. Here the

vertexes of the graph are partial or complete programs, and the edges are labelled with a non-

terminal node in the program and a grammar rule. A program p connects to another program p ′

via an edge labelled with non-terminal node v and grammar rule д if applying д to p to expand v
produces p ′. For example, Figure 2 shows a path on such a graph.

The gain of an edge is the probability of choosing the grammar rule as predicted by the machine

learning models. The gain of a path is the product of the gain of the edges in the path. The start

vertex is the empty program. A goal vertex is a complete program that satisfies the specification.

Our task is to find a path from the start vertex to a goal vertex where the gain of the path is as high

as possible.

L2S does not enforce an algorithm for solving the path finding problem, and the application

could choose the path-finding algorithm that best fits the problem domain. For example, the classic

Dijkstra’s algorithm can be used. If we can find a proper heuristic function, the A* algorithm [22]

can also be used. Approximation algorithms, such as beam search algorithm [44] and Monte Carlo

tree search [6], could also be used.

2.4 Ensuring the satisfaction of the specification
The path finding problem requires that a goal vertex, or a goal program, satisfies the specification.

A basic method to implement it is that, every time the path-finding algorithm locates a complete

program, we check whether this program satisfies the specification or not. If it satisfies, we reach a

goal, otherwise we continue the search.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.

L2S: a Framework for Synthesizing the Most Probable Program under a Specification 1:7

While this method is simple to implement, it is not very efficient. It is often the case that a partial

program can never be expanded into a goal program, but the path-finding algorithm still keeps

expanding it. It would be desirable if we can determine whether a partial program can lead to a

goal program, and prune off those that cannot early.

Determining whether a partial program leads to a goal program is not trivial, because the partial

programs contain non-terminal nodes that have not been expanded. For example, let us suppose

the specification is an input-output example: the output of the conditional expression should be

"true" when hours = 1 and value = 10. It is easy to see that the program in Figure 2(c) does not

satisfy the example, but it is not easy to know whether the program in Figure 2(b) can lead to a

complete program that satisfies the example or not, as there is an unexpanded node E2.
To solve this problem, L2S introduces an offline static analysis procedure over the grammar rules.

By using a proper abstract domain following abstract interpretation [12], we can find an upper

bound of the values that a non-terminal can take in all possibly expansions, and if the upper bound

of root node does not contain the expected output, we know that the current program can never

lead to a goal program. For the running example, we can use intervals as the abstract domain for

integers. By performing a static analysis over the grammars, we can find out when E is used as

an integer, its value falls into the interval [1,+∞]. This is because only addition is allowed in the

grammar and both hours and value are larger than or equal to 1. Also we know that the interval

for hours is [1, 1], then [1, 1] > [1,+∞] only leads to false, and thus we know that the partial

program can never lead to a goal program.

Please note that determining whether a partial program can lead to a goal program also takes

time, and thus it is important to design an efficient abstract domain such that the benefit outweighs

the cost.

2.5 Other Expansion Orders
The above method of decomposing a program into choices follows the top-down expansion orders

of the grammar. L2S also allows decomposing a program into choices following other expansion

order of the grammar. For example, given a conditional expression “hours > 12”, we may assume

the expansion starts from the leftmost leaf node by choosing which variable to be tested in the

conditional expression among all variables. After we choose “hours”, we further choose its parent
node, i.e., what test should be applied on variable “hours”, and the choice is “> 12”.

Allowing different ways of decomposing a program is important because the search algorithms

for solving the path-finding problem may be greatly affected by the set of choices. For example, in

the application of synthesizing a conditional expression, it is often easy to predict which variable

would be used in the conditional expression, rather than predicting which tests would be performed.

With a properly trained machine learning model, we may often predict one variable, e.g., “hours”,
have a much higher probability to be tested than other variables, e.g., this variable has just assigned

the return value of a method whose return value needs to be checked. If we start from the choice of

variables, search algorithms such as Dijkstra’s algorithm and A* search could focus their searches

on the highly probable variables and efficiently explore the search space. Furthermore, machine

learning models may also exhibit different accuracies at different sets of choices.

L2S supports different sets of choices by generalizing grammar rules into expansion rules. Given

a grammar rule, we give indexes to the non-terminals in the rule, from left to right and starting

from zero. For example, N → N “ + ” N is numbered as N0 → N1 “ + ” N2, where the superscripts
indicate the indexes of the non-terminals. An expansion rule takes the form of ⟨rule, i⟩, indicating
when the ith non-terminal is presented, the rule can be applied to generate all other symbols in the

rule. When i is τ , the rule can be applied to an empty tree to generate the first set of symbols. For

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:8 Yingfei Xiong and Bo Wang

∅
⟨E→“hours”,τ ⟩
===========⇒

E

“hours”

⟨E→E “>12”,1⟩
===========⇒

E

E

“hours”

“> 12”

⟨T→E,1⟩
======⇒

T

E

E

“hours”

“> 12”

Fig. 3. Decomposing program with bottom-up expansion order

example, Figure 3 shows how to expand “hours > 12” from the leftmost leaf using two expansion

rules.

By using a different set of expansion rules, we can control how a program is decomposed into

choices. For example, if we would like to always expand a program in the top-down order, as in

the original grammar, we can produce a set of expansion rules by appending 0 to each original

grammar rule. If we would like to expand a program from a leaf node as in the above example, we

can use the following expansion rules.

⟨E → “hours”, τ ⟩ ⟨E → “hours”, 0⟩

⟨E → “value”, τ ⟩ ⟨E → “value”, 0⟩

⟨E → E “ > 12”, 1⟩ ⟨E → E “ > 12”, 0⟩

⟨E → E “ > 0”, 1⟩ ⟨E → E “ > 0”, 0⟩

⟨E → E “ + ” E, 1⟩ ⟨E → E “ + ” E, 0⟩

⟨E → E “ > ” E, 1⟩ ⟨E → E “ > ” E, 0⟩

⟨T → E, 1⟩

(1)

The rules on the left expand the tree upwards. The rules on the right expand the remaining

non-terminals generated during the process downward.

Please note that, to ensure that a program can be decomposed into choices, the set of expansion

rules should be complete. To ensure the probability of the program is the product of the probabilities

of the choices, the set of the expansion rules should be unique. Later we will introduce the definition
of completeness and uniqueness and describe a method to generate a set of complete and unique

expansion rules.

After generalizing grammar rules into expansion rules, the path-finding problem and the pruning

method based on static analysis still can be similarly defined, as we will explain in detail in the

next section.

3 APPROACH DETAILS
In this section we introduce the details of the L2S framework. As introduced before, the core idea of

L2S is to generalize grammar rules into expansion rules (3.1), such that the probability of the whole

program is the product of the probability of each expansion rule, easing probability prediction (3.2).

Also, the problem of the finding the best program is converted into a path finding problem such

that existing path finding algorithms can be used (3.3). Finally, L2S also introduces a static analysis

on grammar rules to prune off infeasible paths (3.4).

3.1 Expansion Rules
We shall start with the basic definition for grammars and abstract syntax trees (ASTs) (Section 3.1.1)

and then show how to generalize them into expansion rules and expansion trees (Section 3.1.2).

Then we discuss how ASTs and expansion trees can be converted from each other (Section 3.1.3).

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.

L2S: a Framework for Synthesizing the Most Probable Program under a Specification 1:9

Program hours>12 hours+value

AST

T→ E

E→ E “ > 12”

E→ “hours”

T→ E

E→ E “ + ” E

E→ “hours” E→ “value”

Fig. 4. Example ASTs in L2S

3.1.1 Grammar Rules and ASTs . We start with the definition of grammar rule.

Definition 3.1 (Grammar Rule). Given a set of terminal symbols Σ, a set of non-terminal symbols

N , and a root symbolT , where Σ,N , {T } are disjoint with each other, a grammar rule r is a sequence
of symbols taking the following form: n0 → n1 . . .nk , where n0 ∈ N ∪ {T } is called the left symbol,
n1 . . .nk ∈ N ∪ Σ are called right symbols. If the left symbol is the root symbol, we call this rule a

start rule.

We also introduce some notations to access the non-terminals in the grammar rules. We use д[i]
to denote the ith non-terminal in the right symbols of a grammar rule д, where i starts from 1. We

also use |д | to denote the number of non-terminals in the right symbols of д. If д is not a start rule,

д[0] indicates the left symbol, otherwise д[0] is not defined. Symbol д[i] is also not defined for any

i > |д |. We use д[i]↓ to denote that д[i] is defined.
The generation of a program is a series of applications of grammar rules, starting from the root

symbol. In each application, a non-terminal generated by a previous rule д′ can be further expanded

by a rule д whose left symbol matches the non-terminal. To capture this relation between д and д′,
we introduce the definition of connectivity.

Definition 3.2 (Connectivity of Rules). A grammar rule д is connectible to another rule д′ at the
ith symbol, denoted as д−∈д′[i], if 0 < i < |д′ | and д[0] = д′[i].

For example, E→ “hours” is connectible to E→ E “ > 12” at the first right symbol.

Based on the above definitions, we introduce the definition of abstract syntax tree (AST). In L2S,

an abstract syntax tree is viewed as a tree of grammar rules, where a grammar rule д1 can be the

ith child of a grammar rule д2 only if д1 is connectible to д2 at i . For example, Figure 4 shows a few

ASTs and their corresponding programs.

Definition 3.3 (AST). A (partial) abstract syntax tree (AST) is a tuple (V ,p,G, l) where V is a set

of vertexes, p : V → ((V × N) ∪ {τ }) is an injective parent function (where N is the set of natural

numbers, p(v) = (v ′, i) indicates that v is the ith child of v ′, and p(v) = τ indicates that v is the

root),G is a set of grammar rules, and l : V → G is a function labeling each vertex with a grammar

rule, such that

• let q0(v) = {v},qi (v) =
{
v ′′ | ∃j,v ′ ∈ qi−1(v) : p(v ′) = (v ′′, j)

}
, and we know that for any

v ∈ V , there does not exist k > 0, such that v ∈ qk (v), i.e., there is no cycle,

• p(v) = (v ′, i) implies that l(v)−∈l(v ′)[i], i.e., a child rule should be connectible to its parent;

• p(v) = τ =⇒ ¬l(v)[0]↓, i.e., the root vertex is associated with a start rule.

Please note that the injectivity of the parent function ensures that there is at most one root

vertex.

Given an AST (V ,p,G, l), we use nbp (v, i) to denote the ith neighbor of vertex v ∈ V , where
i = 0 indicates the parent vertex, and i > 0 indicates the ith child.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:10 Yingfei Xiong and Bo Wang

If there are unexpanded non-terminals, the partial AST can be further expanded. Formally, any

(v, i) such that 0 < i < |l(v)| ∧ ∀v ′ ∈ V ,p(v ′) , (v, i) is called a (grammatical) expansion position.
An abstract syntax tree is complete if there is no expansion position.

3.1.2 Expansion Rules and Expansion Trees . Based on the definition of grammar rules and AST,

we now generalize grammar rules into expansion rules. An expansion rule is a grammar rule plus

an index indicating the non-terminal from which the rule is expanded. If the index is τ , the rule is a
creation rule and is applied initially to create the first node in the AST.

Definition 3.4 (Expansion Rule). An expansion rule r is a pair (д, i), where д is a grammar rule

and i indicates the start of the expansion, i.e., i ∈ N∪ {τ } such that i , τ =⇒ д[i]↓. When i = 0, r
is called a top-down rule; when i > 0, r is called a bottom-up rule; when i = τ , r is called a creation
rule. We use rд to denote the grammar rule д of r and use r i to denote the index i of r . We refer to

the ith symbol of д as the start symbol of expansion rule (д, i) when i is not τ .

Similar to grammar rules, we also define the connectivity of expansion rules. Intuitively, two

expansion rules connect if their corresponding grammar rules connect, and the start symbol of one

rule is generated by the other.

Definition 3.5 (Connectivity of Expansion Rules). An expansion rule r = (д, i) is connectible to
another expansion rule r ′ = (д′, i ′) at the jth non-terminal, denoted as r−∈r ′[j], if д−∈д′[j], and the

expansion directions match, i.e., (i = 0 ∧ i ′ , j) ∨ (i , 0 ∧ i ′ = j).

An AST captures the structure of the program according to a set of grammar rules. After we

generalize grammar rules into expansion rules, a program is now generated by a set of expansion

rules applications. To capture the structure of the program based on a set of expansion rules, we

introduce the concept of expansion tree. An expansion tree is similar to an AST, except that each

vertex is mapped to an expansion rule rather than a grammar rule.

Definition 3.6 (Expansion Tree). A (partial) expansion tree is a tuple (V ,p,R,ϕ) whereV is a set of

vertexes, p : V → ((V × N) ∪ {τ }) is an injective parent function that defines the tree structure

similarly to the one in AST, R is a set of expansion rules, and ϕ : V → R is a function labelling each

vertex with an expansion rule, such that

• let q0(v) = {v},qi (v) =
{
v ′′ | ∃j,v ′ ∈ qi−1(v) : p(v ′) = (v ′′, j)

}
, we know that for anyv ∈ V ,

there does not exist k > 0, such that v ∈ qk (v), i.e., there is no cycle;

• p(v) = (v ′, i) indicates that ϕ(v)−∈ϕ(v ′)[i], i.e, a child rule should be connectible to its parent;
• ∃v ∈ V : ϕ(v)i = τ , i.e., there should be a creation rule.

Similarly, given an expansion tree (V ,p,R,ϕ), we use nbp (v, i) to denote the ith neighbor of

vertex v ∈ V .

For example, Figure 5 shows expansion trees. The arrows show the order of expansion for

facilitating understanding.

Lemma 3.7. There exists exactly one v ∈ V such that ϕ(v)i = τ , i.e., exactly one vertex with a
creation rule. We call v the initial vertex of the expansion tree.

Proof. Assume there are two vertexes with creation rules. Since the vertexes form a tree, there

is exactly one path between the two vertexes. As a result, there must be a vertex on the path that

has two start symbols, which is impossible. □

Similar to an AST, an expansion tree can be further expanded if there exist an expansion position.
Intuitively, an expansion position is a non-terminal that has been generated by a rule but not

expanded by another rule, and is τ if the tree is empty.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.

L2S: a Framework for Synthesizing the Most Probable Program under a Specification 1:11

Program hours>12 hours+value

Expansion

Trees

(T→ E, 1)

(E→ E “ > 12”, 1)

(E→ “hours”, τ)

(T→ E, 1)

(E→ E “ + ” E, 1)

(E→ “hours”, τ) (E→ “value”, 0)

These expansion trees are based on the expansion rules in listed in Equation (1).

Fig. 5. Example Expansion Trees

Definition 3.8 (Expansion Position). Given an expansion tree t = (V ,p,R,ϕ), an expansion position
of t is either

• τ when V = ∅, i.e., the tree is empty, or

• any (v, i) when |V | > 0, such that

– ϕ(v)д[i]↓, i.e., the non-terminal exists at v ,
– (i = 0 =⇒ p(v) = τ), i.e., the non-terminal is the left symbol and the vertex has no parent,

and

– (i , 0 =⇒ ∀v ′ ∈ V : p(v ′) , (v, i)), i.e., the non-terminal is a right symbol and there is no

corresponding child.

An expansion tree is complete if there is no expansion position.

If a rule can be used to expand an expansion position, the rule is called an expansion candidate.

Definition 3.9 (Expansion Candidate). Given an expansion tree t = (V ,p,R,ϕ) and an expansion

position ρ of t , an expansion candidate of t and ρ is either

• a creation rule when ρ = τ , or
• an expansion rule r = (д, j) when ρ = (v, i), such that

– r−∈ϕ(v)[i] when i , 0, or

– ϕ(v)−∈r [j] when i = 0.

Finally, we define how an expansion candidate performs the expansion.

Definition 3.10 (Expanded Tree). Given an expansion tree t = (V ,p,R,ϕ), an expansion position

ρ and an expansion candidate r = (д, j), an expanded tree of t , p and r is a new expansion tree

(V ′,p ′,R,ϕ ′) such that

• V ′ = V ∪ {v ′}, where v ′ is a fresh vertex not in V ;

• ϕ ′ = ϕ ∪ {v ′ 7→ r }.
• when ρ = τ , p ′ = {v ′ 7→ τ }
• when ρ = (v, i), (i , 0 =⇒ p ′ = p[v ′ 7→ (v, i)]) ∧ (i = 0 =⇒ p ′ = p[v 7→ (v ′, j)][v ′ 7→ τ])

Here p[v 7→ (v ′, j)] is a new function that maps v to (v ′, j) and maps any other vertex v ′′ to p(v ′′).

3.1.3 Conversion between the two trees . Now we have two types of trees: the abstract syntax trees

based on grammar rules and the expansion trees based on expansion rules. We show that the two

types of trees can be converted from each other. This conversion is important because (1) once

we synthesize an expansion tree, we need to convert it into an AST to obtain the program, and

(2) during the training phase, we need to convert the ASTs into expansion trees to generate the

training set.

We first consider the conversion from an expansion tree to an AST. Since an AST requires to start

from the root symbol, not all expansion trees can be converted to AST: only those expansion trees

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:12 Yingfei Xiong and Bo Wang

where the root is mapped to an expansion rule with the root symbol can be converted. In other

words, those that can be further expanded upward cannot be converted. When an expansion tree

can be converted, the conversion is simple: by removing the second component in all expansion

rules, we obtain an AST.

Definition 3.11 (From Expansion Tree to AST). An expansion tree (V ,p,R,ϕ) generates an AST

(V ,p,G, l) such that ∀v ∈ V ,ϕ(v)д = l(v).

Theorem 3.12. If there exists v ∈ V , p(v) = τ and ¬ϕ(v)д[0]↓, (V ,p,R,ϕ) generates
(V ,p, {rд | r ∈ R}, {v 7→ ϕ(v)д | v ∈ V }).

Proof. Directly from the definition. □

However, the other direction is not that straightforward. First, given an AST (V ,p,G, l) and a

set of expansion rules R, it is not always possible to convert the AST into an expansion tree. For

example, if a vertex in the AST is associated with a grammar rule д such that there is no r ∈ R where

rд = д. Second, there may also be multiple ways to convert the grammar rule into an expansion

rules. For example, if the expansion rules contain all top-down rules and all bottom-up rules, the

AST can be generated from either top-down and bottom-up.

To enable training, we expect any AST can be converted to an expansion tree. Also, as will be

seen later, to facilitate probability calculation, we need to require that only one expansion tree can

be converted from an AST. Therefore, it is desirable for the expansion rules to have the following

two properties, completeness and uniqueness.

Definition 3.13 (Completeness). A set of expansion rules R is said to be complete with respect to

a set of grammar rule G, if for any AST (V ,p,G, l), there exists an expansion tree (V ,p,R,ϕ) that
generates (V ,p,G, l).

Definition 3.14 (Uniqueness). A set of expansion rule R is said to be unique with respect to and a

set of grammar ruleG , if for any AST (V ,p,G, l), there exists at most one expansion tree (V ,p,R,ϕ)
that generates (V ,p,G, l).

In the following we show a sufficient condition for a complete and unique rule set. Intuitively,

such a rule set must include creation rules to create the initial vetex, and a set of bottom-up rules

to expand the tree upward until we reach the root, and include all top-down rules to expand the

remaining non-terminals generated during the process. We call such an expansion rule set a regular
rule set.

Definition 3.15 (Regular Rule Set). A regular (expansion) rule set with respect to a grammar rule

set G is a minimal set R of expansion rules satisfying the following conditions.

• д ∈ G ∧ д[0]↓ =⇒ (д, 0) ∈ R,
• ∀root, child ∈ G : ¬(root[0]↓) ∧ (child, root) ∈ ChildRules∗ =⇒ isOK(child), where
– ChildRules = {(child,parent) | ∃i : child−∈parent[i] ∧ (parent, i) ∈ R}
– isOK(д) ::= |BURules(д)| = 1 ∨ (|BURules(д)| = 0 ∧ (д, τ) ∈ R).
– BURules(д) ::= {(д, i) ∈ R | i , 0},

The first condition ensures that a top-down rule is included for each grammar rule that is not a

start rule. The second condition ensures that, for each AST, a unique vertex will be constructed by a

creation rule, and there is a unique path from the vertex with the creation rule to the root that can

be constructed by bottom-up rules. This second condition is checked inversely. First, for each start

grammar rule, we check the condition isOK—if there is either a unique bottom-up expansion rule

associated with it, or a creation rule, i.e., there exists one unique way to convert this start rule into

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.

L2S: a Framework for Synthesizing the Most Probable Program under a Specification 1:13

an expansion rule. If there is an associated bottom-up expansion rule with a start symbol at i , we
perform this check again for any grammar rule that can connect to this start rule at i . We recursively

apply this check until we reach a creation rule. In the formal notations, this recursive check is

captured by the reflexive transitive closure of the relation ChildRule , denoted as ChildRule∗.
For example, a rule set containing all top-down rules (i.e., {(д, 0) | д ∈ G ∧ д[0]↓} ∪ {(д, τ) | д ∈

G ∧ ¬(д[0]↓)}), is a regular rule set. Also, the rule set in Formula (1) is a regular rule set.

Next we show that a regular set is complete and unique. To show this, we need the following

lemma, which shows that the position of the creation rule determines the expansion tree.

Lemma 3.16. Suppose both (V ,p,R,ϕ) and (V ,p,R,ϕ ′) generates (V ,p,G, l). If ∃v ∈ V ,д ∈ G :

ϕ(v) = ϕ ′(v) = (д, τ), we know that ϕ = ϕ ′.

Proof. Since the vertexes form a tree, there is exactly one path between a vertex v and the

vertex with the start symbol. As a result, the start symbol of v must be the one associated with the

path, i.e., there is a unique choice for the expansion rule of v . □

With the lemma, we have the following theorem.

Theorem 3.17. A regular rule set R with respect to G is complete and unique with respect to G.

Proof. We show the completeness of R by constructing an expansion tree (V ,p,R,ϕ) from an

arbitrary AST (V ,p,G, l). First let v be the root vertex. Based on the second condition of the regular

rule set, we know that there must exist either a creation rule (l(v), τ) or a bottom-up rule (l(v), i). If
the latter, let v be the ith child of v and repeat the process. Since the height of the tree is finite and

there is no bottom-up rule for leaf vertexes (since there is no non-terminal in the right symbols),

the process must end on a vertex v ′ where a creation rule (l(v ′), τ) exists. Then we choose the

creation/bottom-up rule for each vertex visited during the process, and choose the top-down rule

for all other vertexes. It is easy to see these choices form an expansion tree.

Then we show the uniqueness. Because the root vertex cannot be mapped to a top-down rule,

the above process determines a unique possible vertex for the creation rule. Further because of

Lemma 3.16, we know that the expansion tree is unique. □

Definition 3.15 also gives us a method to create a regular expansion rule set from a set of grammar

rules. Algorithm 1 demonstrates this method. First we add a top-down rule for each grammar rule

that is not a start rule. Then for each start rule д, we decide whether to add a creation rule or a

bottom-up rule. If we choose to add a bottom-up rule (д, i), we need to find all grammar rules

that connect to д at i , and decide for each such grammar rule whether we add a creation rule or a

bottom-up rule. We repeat this process until no more bottom-up rules left.

Finally, we present a dynamic programming algorithm to convert an expansion tree into an AST,

as shown in Algorithm 2. This algorithm has the time complexity of O(nm2) time, where n is the

number of vertexes in the AST andm is the maximum number of non-terminals in the right hand

side of a grammar rule. Asm is usually very small and does not scale with respect to the size of the

AST, this algorithm is effectively linear.

The core insight of the algorithm is that the expansion rule to which a vertex can be mapped is

determined by whether its children can be constructed upward and/or downward. The algorithm

visits the tree in the post order, and decides whether a vertex can be mapped to a top-down rule or

a bottom-up/creation rule based on the status of the children. The 2-dimensional array Feasible
is used to record this information, as well as the concrete rules for producing the results.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:14 Yingfei Xiong and Bo Wang

Input: G: a set of grammar rules

Output: R: a set of expansion rules

1 foreach д ∈ G such that д[0]↓ do
2 R ← R ∪ {д, 0}

3 end
4 foreach д ∈ G such that ¬д[0]↓ do
5 AddRule(д)

6 end
7 Procedure AddRule(д)
8 if |д | > 0 then
9 Decide to add a bottom-up rule or a creation rule.

10 if bottom-up is chosen then
11 Decide the index i of the start symbol, 1 ≤ i ≤ |д |.

12 R ← R ∪ {д, i}

13 foreach д ∈ G such that д′−∈д[i] do
14 AddRule(д)

15 end
16 return
17 end
18 end
19 R ← R ∪ {д, τ }

20 end
Algorithm 1: Convert a set of grammar rules into a regular expansion rule set

3.2 Probability
In this subsection we show the probability of an expansion tree is the product of the probabilities

of choosing expansion candidates during an expansion process, and the probabilities of choosing

expansion positions can be omitted. To show this, we first introduce the concept of expansion
sequence to represent an expansion process.

Definition 3.18 (Expansion Sequence). An expansion sequence is a sequence of triples (⟨progi, posi,
rulei⟩)

n
i=1, where prog1 = (∅, ∅,R, ∅), and for any 1 ≤ i ≤ n, posi is an expansion position of

progi, rulei is an expansion candidate of progi and posi, and progi+1 is an expanded tree based

on progi, posi, and rulei. We also use progn+1 to denote the expanded tree based on progn, posn
and rulen.

We say an expansion tree prog′ can be expanded from another expansion tree prog, if there
exists an expansion sequence (⟨progi, posi, rulei⟩)

n
i=1 such that prog = progj and prog

′ = progk
and 0 ≤ j < k ≤ n + 1.
We assume there exists a policy to select an expansion point when multiple expansion points

exist. Formally, a policy is a function that maps an incomplete expansion tree to an expansion

point. It is natural to assume that (1) the probability of a program is independent of the choice of

a policy, and (2) the probability of choosing an expansion candidate for an expansion position is

independent of the choice of a policy.

Now we present our theorem of probability and its proof. To prove this theorem, we need to first

prove a lemma about the uniqueness of expansion sequences.

Lemma 3.19. Given a unique set R of expansion rules, a policy policy, an AST prog, there exists at
most one expansion sequence (⟨progi, positioni, rulei⟩)ni=1 based on R such that policy(progi) =
positioni for any 1 ≤ i ≤ n, and progn+1 generates t .

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.

L2S: a Framework for Synthesizing the Most Probable Program under a Specification 1:15

Input: (V ,p,G, l): an AST

Input: R: a set of expansion rules

Output: ϕ: A map from a vertex to an expansion rule

Data: Feasible: A map from a vertex and a Boolean to a expansion rule, or Nil to denote infeasible.

The Boolean indicates whether the direction is top-down

// Initialize Feasible

1 foreach v ∈ V do
2 Feasible[v, true] ← Nil

3 Feasible[v, false] ← Nil

4 end
// Calculate a solution in the postorder

5 foreach v in the postorder of V do
6 foreach r ∈ R such that rд = l(v) do
7 if feasible(r ,v) then Feasible[v, i = 0] ← r ;

8 end
9 if ¬Feasible[v, true] ∧ ¬Feasible[v, false] then return Nil;

10 end
// Recover the solution in the preorder

11 root ← the root node

12 ϕ[root] ← Feasible[root, true] , Nil ? Feasible[root, true] : Feasible[root, false]
13 foreach v in the preorder of V such that v , root do
14 (vp , i) ← p(v)

15 (д, j) ← ϕ[vp]

16 ϕ[v] ← Feasible[v, i , j]

17 end
18 return ϕ

19 Function feasible(r ,v) : Boolean
// Determine if v can be mapped to (д, i).

20 (д, i) ← r

21 if i , 0 ∧ ¬Feasible[nbp (v, i), false] then return false;
22 forall j such that 0 < j < |д | ∧ j , i do
23 if ¬Feasible[nbp (v, j), true] then return false;
24 end
25 return true
26 end

Algorithm 2: Converting an AST to an expansion tree

Proof. This is a direct result from the definition of unique expansion rule set. □

Theorem 3.20. Given a unique set R of expansion rules, an AST prog, a context context , an
expansion sequence (⟨progi, posi, rulei⟩)ni=1 such that progn+1 generates prog, we know that

Pr(prog | context) =
∏
i

Pr(rulei | context, progi, posi)

Proof. In the following, we ignore context in all conditional probabilities as it is always

available as a condition. Let policy be a policy that generates the above expansion sequence. Since

the choice of a policy is independent of programs, we have that Pr(prog) = Pr(prog | policy).

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:16 Yingfei Xiong and Bo Wang

Because of Lemma 3.19, we have that

Pr(prog)
= Pr(prog | policy)
= Pr((⟨progi, posi, rulei⟩)

n
i=1 | policy)

= Pr(prog1 | policy)Pr(pos1 | policy, prog1)Pr(rule1 | policy, prog1, pos1)
Pr(prog2 | policy, prog1, pos1, rule1) . . .
Pr(progn+1 | policy, (progi)

n
i=1, (posi)

n
i=1, (rulei)

n
i=1)

Further considering that progi, posi and rulei determines progi+1, policy determines posi,
and R determines prog1, we know that Pr(progi+1 | progi, posi, rulei, . . .) = 1, Pr(posi |
policy, . . .) = 1, Pr(prog1 | . . .) = 1, and thus we have that

Pr(prog) =
∏

i Pr(rulei | policy, (⟨progj, posj, rulej⟩)
i−1
j=1, progi, posi)

=
∏

i Pr(rulei | policy, progi, posi)
=

∏
i Pr(rulei | progi, posi)

□

3.3 Path Finding Problem
In this section we formally define on how to convert the program estimation problem into a path

finding problem based on expansion rules. Given the following items,

• a set of grammar rules G,
• a set of expansion rules R based on G that is unique and complete,

• a context context,
• a specification spec that is a predicate on complete ASTs defined on G,
• a probability estimation functionpr that takes an expansion tree prog, an expansion point pos,
and an expansion candidate rule as input, and returns an estimated value of the probability

Pr(rule | prog, pos, context),

we define a path finding problem as the follows.

• A graph (V , E) where
– V is the (possibly infinite) set that contains all expansion trees defined onR, i.e., all expansion
trees taking the form (_, _,R, _), and

– (prog1, prog2) ∈ E iff prog1 and prog2 are expansion trees, and there exists an expansion

point pos of prog1 and an expansion candidate rule, such that prog2 is an expanded tree

of prog1, pos, and rule
• A gain function дain defines the gain of a path on graph and is defined as follows

дain(e1e2 . . . en) =
n∏
i=1

pr (progi, posi, rulei)

where e1e2 . . . en is n edges forming a path on graph, progi is the start vertex of ei , posi is
the expansion point of ei , and rulei is the expansion candidate of ei .
• A start vertex ({}, {},R, {}) ∈ V ;

• A set of goal vertexes {v ∈ V | there exists an AST t , s.t. t is complete, v generates t and spec(t)}.

The goal of the path finding problem is to find a path, whose gain is as large as possible, from the

start vertex to a goal vertex. Since R is complete, all valid ASTs have been taken into consideration.

Since R is unique, based on Theorem 3.20, we are looking for an AST whose estimated probability

is as large as possible.

As mentioned, L2S does not confine a particular algorithm for solving the path finding problem

and the user can choose any algorithm that best fits the target domain.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.

L2S: a Framework for Synthesizing the Most Probable Program under a Specification 1:17

cs(T→ E, 1) = {true}
cs(E→ E “ > 12”, 1)(E0) = {e1 | e0 ∈ E0∧

e0 = true→ e1 > 12 ∧ e0 = false→ e1 ≤ 12}

cs(E→ “hours”, τ)(E0) =

{
true if 13 ∈ E0
false otherwise

J(T→ E, 1)K = {true}

J(E→ E “ > 12”, 1)K = {v | v > 12}

J(E→ “hours”, τ)K = true

(a) For input-output example hours=13, ret=true and program hours > 12.

cs(T→ E, 1) = {10}
cs(E→ E “ + ” E, 1)(E0, E2)
= {e1 | e0 ∈ E0 ∧ e2 ∈ E2 ∧ e0 = e1 + e2}

cs(E→ “value”, 0) = {1}
cs(E→ “hours”, τ)(E0) ={

true if 13 ∈ E0
false otherwise

J(T→ E, 1)K = {10}

J(E→ E “ + ” E, 1)K = 9

J(E→ “hours”, τ)K
= false

J(E→ “value”, 0)K
= {1}

(b) For input-output example hours=13, value=1, ret=10 and program hours + value.

D is the set of values that each sub expression could have.

Fig. 6. Example semantic constraint function and the concrete attributes

3.4 Pruning off Infeasible Partial Programs
In this section, we introduce how we prune off the infeasible partial programs based on static

analysis on expansion rules. Infeasible partial programs are the programs that cannot lead to a

complete program satisfying the specification. To achieve this, L2S assumes the specification can be

represented as functions over expansion rules, called constraint functions. Each constraint function

produces an output at the start symbol based on values collected from other non-terminals. As a

result, given an expansion tree, the constraint function produces a value at each vertex, called a

vertex attribute. The vertex attribute at the initial vertex determines whether the expansion tree

satisfies the specification or not.

Definition 3.21 ((Concrete) Constraint Function). A (concrete) constraint function cs based on a

set D maps an expansion rule (д, i) to a function, where the input of the function is a sequence of

subsets of D corresponding to each non-terminal in the rule except for the ith non-terminal, and

the output of the function is a subset of D corresponding to the ith non-terminal. When i is τ , the
output of the function is Boolean, indicating whether the specification is satisfied or not.

Common specifications can be represented in constraint functions. For example, a common

type of semantic specification is input-output examples. The left column of Figure 6 shows two

specifications with different input-output examples. In the figures, we only show the expansion

rules that are used in the expansion trees in the right column, but in real applications, semantic

functions need to be defined for all expansion rules. Please note that a concrete constraint function

is not necessarily computable and is used to specify the semantics of the constraint. Later we will

introduce abstract constraint functions that perform the actual checks of the partial expansion

trees.

Besides semantic specification, other types of specifications can also be represented as constraint

functions. A basic specification for a program is that it should be typable. The left column of Figure 7

shows an example constraint function for type check. The basic idea is to compute all possible

types a non-terminal can have. Another specification that is often used in program synthesis is

size limit: the size of the synthesized program is limited to avoid searching for too large programs.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:18 Yingfei Xiong and Bo Wang

cs(T→ E, 1) = {Boolean}
cs(E→ E “ + ” E, 1)(E0, E2) =

E0 ∩ E2 ∩ {Int, Float}
cs(E→ “value”, 0) = {Int}
cs(E→ “hours”, τ)(E0) ={

true if Int ∈ E0
false otherwise

J(T→ E, 1)K = {Int}

J(E→ E “ + ” E, 1)K = {Int}

J(E→ “hours”, τ)K
= true

J(E→ “value”, 0)K
= {Int}

D is the set of type that each sub expression could have.

Fig. 7. Example type constraint function and the concrete attributes

cs(T→ E, 1) = 1

cs(E→ E “ + ” E, 1)(E0, E2) = E0 + E2 + 1
cs(E→ “value”, 0) = 1

cs(E→ “hours”, τ)(E0) ={
true if E0 + 1 ≤ 3

false otherwise

J(T→ E, 1)K = {0, 1, 2}

J(E→ E “ + ” E, 1)K = {0}

J(E→ “hours”, τ)K
= false

J(E→ “value”, 0)K
= {1}

Assume the maximum size of the AST is 3

D is the set of natural numbers.

Fig. 8. Example size constraint function and the concrete attributes

The left column of Figure 8 shows an example constraint function for checking the size limit. This

constraint function calculates the number of vertexes that is expanded from the current the vertex

plus the current one.

Based on the constraint functions, we give the definition of concrete vertex attributes.

Definition 3.22 ((Concrete) Vertex Attribute). Given a complete expansion tree (V ,p,R,ϕ) and a

constraint function cs , the (concrete) attribute of vertex v ∈ V , denoted as JvK, is defined as follows.

JvK = cs(ϕ(v))
((

Jnbp (v, j)K
)ϕ(v)i−1
j=0 , (Jnbp (v, j)K) |ϕ(v) |

j=ϕ(v)i+1

)
To check whether a complete expansion tree satisfies a constraint, we just need to check whether

Jv0K is true, where v0 is the initial vertex. For example, the right columns of Figure 6, Figure 7, and

Figure 8 show the vertex attributes on four example expansion trees based on the previous example

constraint functions.

Concrete constraint function defines the semantics of the specification on complete programs.

To check whether a partial program is feasible, L2S utilizes a user-defined abstract domain based on

the abstract interpretation framework [12]. The abstract domain is used for two computations. First,

an offline static analysis is performed on expansion rules to calculate the abstract upward/downward
attribute for each non-terminal, which is an abstract value covers all possible concrete vertex

attributes that a vertex expanded upward/downward from this non-terminal could have. Second, an

online analysis is performed on the partial expansion tree to calculate the abstract vertex attributes,
which cover concrete vertex attributes calculated from all possible complete trees. This second

analysis relies on the abstract upward/downward attributes calculated from the first analysis.

The user-defined abstract domain should satisfy some basic requirements. The abstract interpre-

tation framework captures such requirements by the Galois connection.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.

L2S: a Framework for Synthesizing the Most Probable Program under a Specification 1:19

Definition 3.23 (Galois Connection). A concrete domain D, a finite abstract domain A, a partial
order ⊑ over A, and two functions α : 2

D → A and γ : A → 2
D
form a Galois connection

(2D , ⊆)⇋
γ
α (A, ⊑) if and only if ∀d ∈ 2D ,a ∈ A : α(d) ⊑ a ⇔ d ⊆ γ (a).

For simplifying presentation, below we assume the existence of a Galois connection (2D , ⊆)⇋
γ
α

(A, ⊑). We also assume that there exists a safe union operator ⊔ on the abstract domain A that is

consistent with ⊑, i.e., a1 ⊑ a2 ⇔ a1 ⊔ a2 = a2 ∧ α(γ (a1) ∪ γ (a2)) ⊑ a1 ⊔ a2.
The computation over the abstract domain is captured by an abstract constraint function, which

is a function abstract of the concrete constraint function. Please note that for creation rules, an

abstract domain for the result is directly provided rather than user-defined: returning true indicates
that the concrete constraint function may return true, while returning false indicates that the
concrete constraint function never returns true.

Definition 3.24 (Abstract Constraint Function). A constraint function acs based on A abstracts a

constraint function cs based onD iff for any expansion rule r = (д, i)where i , τ , acs(r) is monotone

and is a safe function abstraction of cs(r), i.e., α ◦ cs(r)(γ (a1), . . . ,γ (an)) ⊑ acs(r)(a1, . . . ,an), and
for any expansion rule r = (д, τ), we have ∃d ⊆ γ (a) : cs(r)(d) =⇒ acs(r)(a).

For example, the left columns of Figure 9, Figure 10, and Figure 11 show the abstract constraint

functions for the previous example concrete constraint functions. For input-output examples, an

element in abstract domain is an interval [12]. For type checking, an element in the abstract domain

is a set of types. For size limit, an element in the abstract domain is a lowerbound of the size.

Given a computable constraint function acs that abstracts a constraint function cs , we can

calculate the two types of abstract attributes mentioned before.

Definition 3.25 (Abstract Upward/Downward Attributes). An abstract upward/downward attribute

of a non-terminals in R is a minimal value in A satisfying one of the following equations, where

TNU denotes the abstract upward attribute of non-terminal N , VNW denotes the abstract downward

attribute of non-terminal N .

For each N where ∃д : (д, 0) ∈ R ∧ д[0] = N :

VNW =
⊔

r=(д,0)∈R∧д[0]=N

acs (r)
((

Vд[j]W
) |д |
j=1

)
For each N where ∃д : (д, i) ∈ R ∧ д[i] = N ∧ i > 0:

TNU =
⊔

r=(д,i)∈R∧д[i]=N∧i>0

acs(r)
(
Tд[0]U,

(
Vд[j]W

) i−1
j=1 ,

(
Vд[j]W

) |д |
j=i+1

)
Since the abstract domain is finite and the functions produced by acs are monotone, these

equations can be solved by a standard fixed-point algorithm [2].

Definition 3.26 (Abstract Vertex Attribute). Given a partial expansion tree (V ,p,R,ϕ), the abstract
attribute of vertex v ∈ V , denoted as ∥v ∥, is defined as follows.

∥v ∥ = acs(ϕ(v))
(
(attr (v, j))

ϕ(v)i−1
j=0 , (attr (v, j))

|ϕ(v) |
j=ϕ(v)i+1

)
where

attr (v, j) =


∥nbp (v, j)∥ if nbp (v, j) exists
Tϕ(v)[0]U elif j = 0

Vϕ(v)[j]W else

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:20 Yingfei Xiong and Bo Wang

acs(T→ E, 1) = {true}
acs(E→ E “ > 12”, 1)(E0) =

[−∞,+∞] if {true, false} ⊑ E0
[12,+∞] elif {true} ⊑ E0
[−∞, 12] elif {false} ⊑ E0
∅ else

acs(E→ “hours”, τ)(E0) =

{
true if [13, 13] ⊑ E0
false otherwise

∥(T→ E, 1)∥ = {true}

∥(E→ E “ > 12”, 1)∥ = [12,+∞]

∥(E→ “hours”, τ)∥ = true

(a) For input-output example hours=13, ret=true and program hours > 12.

acs(T→ E, 1) = [10, 10]
acs(E→ E “ + ” E, 1)(E0, E2) =
(E0 − E2)

acs(E→ “value”, 0)(E0) = [1, 1]
acs(E→ “hours”, τ)(E0) ={

true if [13, 13] ⊑ E0
false otherwise

∥(T→ E, 1)∥ = [10, 10]

∥(E→ E “ + ” E, 1)∥ = [−∞, 9]

∥(E→ “hours”, τ)∥ = false VEW = [1,+∞]

(b) For input-output example hours=13, value=1, ret=10 and partial program hours + E.

Fig. 9. Example Abstract Semantic Constraint Function and the abstract attributes

acs(T→ E, 1) = {Boolean}
acs(E→ E “ + ” E, 1)(E0, E2) =

E0 ∩ E2 ∩ {Int, Float}
acs(E→ “value”, 0) = {Int}
acs(E→ “hours”, τ)(E0) ={

true if Int ∈ E0
false otherwise

∥(T→ E, 1)∥ = {Int}

∥(E→ E “ + ” E, 1)∥ = {Int}

∥(E→ “hours”, τ)∥
= true

VEW =
{Int, Float, Boolean}

Fig. 10. Example Abstract Type Constraint Function and the abstract attributes

acs(T→ E, 1) = [1,+∞]
acs(E→ E “ + ” E, 1)(E0, E2) = E0 + E2 + [1,+∞]
acs(E→ “value”, 0)(E0) = [1,+∞]
acs(E→ “hours”, τ)(E0) ={

true if 3 ∈ (E0 + [1,+∞])
false otherwise

∥(T→ E, 1)∥ = [0, 2]

∥(E→ E “ + ” E, 1)∥ = [0, 0]

∥(E→ “hours”, τ)∥ = false VEW = [1,+∞]

Fig. 11. Example Abstract Size Constraint Function and the abstract attributes

For example, the right columns of Figure 9, Figure 10, and Figure 11 give examples of the

abstract upward/downward attributes and the abstract vertex attributes calculated for some partial

expansion trees.

We prune off a partial expansion tree when the abstract vertex attribute of the initial vertex is

false, i.e., this partial tree can never be expanded to a complete tree that satisfies the specification.

Now we give a theorem to show that this pruning is safe.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.

L2S: a Framework for Synthesizing the Most Probable Program under a Specification 1:21

Theorem 3.27. Given a partial expansion tree prog = (V ,p,R,ϕ), for any complete expansion tree
prog′ = (V ′,p ′,R,ϕ ′) that can be expanded from prog, we have Jv0K =⇒ ∥v0∥, where v0 is the
initial vertex.

Proof. We show the theorem holds in three steps: (1) we show that for any v ∈ V ′, i , 0 =⇒

JvK ⊆ γ (TNU) and i = 0 =⇒ JvK ⊆ γ (VNW), where i = ϕ(v)i and N = ϕ(v)д[ϕ(v)i], (2)
JvK ⊆ γ (∥v ∥) for any v ∈ V for any v ∈ V that is not the initial vertex, and (3) the original theorem

holds.

(1) According to the definition of concrete attribute, any concrete attribute is calculated by

applications of the functions cs(ϕ(v)). We show this property holds by induction over k , where k
indicates the maximum number of applications. When k = 1 and i = 0, we have

JvK = cs(ϕ(v))() the definition of concrete vertex attribute
⊆ γ (acs(ϕ(v))()) safety of asbtract constraint function
⊆ γ (VNW) safety of union

Similarly we can show the case for k = 1 and i , 0.

Now assume that the property holds for all k < k ′ and we consider the case k = k ′. We first

consider the case where i = 0. Let vi = nb
p′(v, i) and n = |ϕ(v)|, we have

JvK = cs(ϕ(v))(Jv1K, . . . , JvnK) the definition of concrete vertex attribute
⊆ γ

(
acs(ϕ(v))(α({Jv1K}), . . . ,α {JvnK})

)
safety of abstract constraint function

⊆ γ (acs(ϕ(v))(Vϕ(v)д[1]W, . . . , Vϕ(v)д[n]W)) induction assumption and the monotonicity
of α , γ , and acs(ϕ(v))

⊆ γ (VNW) safety of union

Similarly we can prove the case for i , 0. Putting together, we prove the first step.

(2) Proving the second step is similar. We perform an induction over k , where k is the number of

abstract vertex attributes that are calculated during the calculation of ∥v ∥. Initially we consider the

case where k = 1 and i = 0. Since only one abstract vertex attribute is calculated, we know that v
has no children, i.e., nbp (v, j) does not exist for any j > 0. Then we have

JvK = cs(ϕ(v))(Jv1K, . . . , JvnK) the definition of concrete vertex attribute
⊆ γ

(
acs(ϕ(v))(α({Jv1K}), . . . ,α {JvnK})

)
safety of abstract constraint function

⊆ γ (acs(ϕ(v))(Vϕ(v)д[1]W, . . . , Vϕ(v)д[n]W)) the result of (1) and the monotonicity of α ,
γ , and acs(ϕ(v))

= γ (∥v ∥) the definition of abstract vertex attribute

Similarly, we can prove for the case where k = 1 and i , 0.

Now assume that the property holds for all k < k ′. We first consider the case k = k ′ and i = 0. We

show that JvK ∈ γ (attr (v, j)) holds for any 1 ≤ j ≤ |ϕ(v)д |: attr (v, j) can only be either ∥nbp (v, j)∥
or Vϕ(v)[j]W. Because of the induction assumption, the first case holds. Because of the results of (1),

the second case holds. Then JvK ∈ γ (attr (v, j)) holds. Based on this property, we have

JvK = cs(ϕ(v))(Jv1K, . . . , JvnK) by definition
⊆ γ

(
acs(ϕ(v))(α({Jv1K}), . . . ,α {JvnK})

)
safety of abstract constraint function

⊆ γ (acs(ϕ(v))(attr (v, 1), . . . ,attr (v,n)))
by the above discussion and the monotonic-
ity of α , γ , and acs(ϕ(v))

= γ (∥v ∥) the definition of abstract vertex attribute

Similarly, we can prove for the case where k = k ′ and i , 0.

(3) Based on the result of (2), the original theorem can be obtained from the definition of abstract

constraint function. □

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:22 Yingfei Xiong and Bo Wang

4 L2S-COND
In this section we describe how we implement L2S-Cond, an instantiation of L2S for synthesizing

Java conditional expressions where the surrounding code as context and the typing rules as

specification. To instantiate L2S, we need to design four sub-modules: (1) an expansion rule set to

define the search space, (2) machine learning models to estimate the conditional probability, (3) a

search algorithm to solve the path finding problem, and (4) abstract constraint functions to prune

off infeasible paths early. In the rest of this section we describe how we design the four modules.

In particular, the design of each module involves multiple design choices, and we decide some

of the choices empirically. We first supply several design options for each sub-module, then we

perform a set of controlled experiments to systematically explore the influence of the options on

the performance of L2S-Cond, and select the best overall design based on the experimental results.

4.1 Expansion rules
4.1.1 Grammar Rules. Expansion rules are derived from grammar rules. To define expansion

rules, we need to first give the grammar rules of the conditional expressions. One problem of

defining the grammar rules is that conditional expressions at different locations have different sets

of accessible variables and methods, and thus it is difficult to define one unique set of grammar

rules for all locations. To deal with this problem, we use two strategies, respectively for variables

and methods. For variables, since variables accessible at different locations are largely different,

we use different sets of variables for different locations. Compared with variables, the sets of

methods accessible at different locations are only slightly different. Furthermore, we observe that

in conditional expressions the methods are usually combined in fixed ways: for example, a.length
> 0 is often used rather than a.length + b.length > c.length for some arrays a, b, and c. We

call such a fixed combination of Boolean type a test. We mine all tests from the training set and use

them as part of the grammar. As a result, our grammar is partially fixed, the fixed part includes the

logical operators and the tests, and the unfixed part includes the variables extracted from current

local context.

Another design consideration is that designing grammar rules is a trade-off between the number

of non-terminals (depth) and the number of choices (width). For example, the following two rule sets

describe the same language, but set (2) has more non-terminals than set (3), while each non-terminal

has less choices.

E→ V “ > ” L, V→ “a” | “b”, L→ “0” | “1” (2)

E→ “a > 0” | “b > 0” | “a > 1” | “b > 1” (3)

To understand how the number of non-terminals and the number of choices affect the perfor-

mance of L2S-Cond, we design two sets of grammar rules, shown as Figure 12. Figure 12(a) have

more non-terminals, where only atomic tests are mined from the training set and a non-terminal E
recursively defines how these atomic tests are combined by logical operators. On the other hand,

Figure 12(b) defines a flattened set, where the tests containing logical operators are directly mined

from the training set and no more attempt is considered to combine them.

4.1.2 Expansion Rules. Expansion rules are derived from the grammar rules based on Algorithm 1.

The main decision consideration is where to put the creation rule to start search. To understand

the influence of this design choice, we use two strategies to generate an expansion rule set from a

grammar rule set. The first one is top-down, where we always decide to add a creation rule at line 9

of Algorithm 1, i.e., the creation rule is at the root vertex and the tree is expanded top-down. The

second one is bottom-up, where we always decide to add a bottom-up rule at line 9 of Algorithm 1

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.

L2S: a Framework for Synthesizing the Most Probable Program under a Specification 1:23

T → E
E → L | L “&&” E
| L “ | |” E | “!” E

L → “FastMath.abs(”V“) > V” | V“.isEmpty()”
| V “ > ” V | V “ == 0”
| V “! = 0” | V “ ∗ ” V “ == 0” | . . .

V → “overflow” | “a0”
| “u” | “v” | . . .

(a) The recursive grammar rule set

T → E
E → “FastMath.abs(”V“) > ”V | V“.isEmpty()”
| V “ > ” V | V “ == 0”
| V “ == 0 | |” V “ == 0” | V “ ∗ ” V “ == 0” | . . .

V → “overflow” | “a0”
| “u” | “v” | . . .

(b) The flat grammar rule set

Fig. 12. Two grammar rule sets in L2S-Cond
E: expression. L: boolean literal. V: variable.

and choose 1 at line 11 of Algorithm 1, i.e., the creation rule is at the leftmost leaf vertex and the

tree is first expanded bottom-up. We apply the top-down strategy to the recursive grammar set,

and apply the both strategies to the flat grammar set, and obtain three expansion rule sets as shown

in Figure 13. Later we will empirically evaluate the performance of the three sets to understand

their influences to the performance of L2S-Cond.

Please note that technically more strategies can be defined. For example, we may randomly

choose to add a bottom-up rule or a top-down rule at line 9 of Algorithm 1. However, such a strategy

may lead a rule set conceptually difficult to implement and debug. We leave such an exploration as

future work.

4.2 Machine-Learning Methods
For each non-terminal n and each expansion direction d (top-down or bottom-up), we need to

train a machine-learning model to estimate the probabilities of the expansion rules starting from n
along d . For each case where n = V and d is top-down, we train a binary classifier to predict the

probability of a rule as the variables expanded from V differ from location to location. For other

cases, we train a multi-class classification model where each class corresponds to an expansion

rule whose start symbol is n and its direction is d . Given a set of condition expressions for training,

we first parse the expressions into expansion trees, and each vertex in an expansion tree forms a

training data sample for the corresponding classifier.

4.2.1 Feature Engineering. Applying machine learning approaches requires feature engineering. A

challenge of feature engineering over programs is how to encode strings. Programs contain a lot

of strings, such as variable names, method names, type names, etc. Although these strings can be

encoded using standard methods such as label encoder, which maps different strings to different

integers, the relationship between the identifiers would be lost. In particular, a common substring

of strings often suggests some common attributes. For example, the identifiers “length”, “len”,

“xLen” have a common part “len” and are all related to length. Similarly, identifiers “mutationRate”,

“crosoverRate”, “elistimRate” have a common part “rate” and all related to rate.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:24 Yingfei Xiong and Bo Wang

⟨T → E , τ ⟩ ⟨E → L “ | |” E , 0⟩ ⟨L → V “ > ” V , 0⟩ ⟨V → “u”, 0⟩

⟨E → L, 0⟩ ⟨L → V “ == 0”, 0⟩ ⟨V → “v”, 0⟩

.

(4)

(a) The recursive expansion rule set derived by the grammar rule set of Figure 12(a)

⟨T → E , τ ⟩ ⟨E → V “ > ” V , 0⟩ ⟨V → “u”, 0⟩

⟨E → V “ == 0 | |” V “ == 0”, 0⟩ ⟨V → “v”, 0⟩

.

(5)

(b) The top-down expansion rule set derived by the grammar rule set of Figure 12(b)

⟨T → E , 1⟩ ⟨E → V “ > ” V , 1⟩ ⟨V → “u”, τ ⟩
⟨E → V “ == 0 | |” V “ == 0”, 1⟩ ⟨V → “u”, 0⟩

. . . ⟨V → “v”, τ ⟩
⟨V → “v”, 0⟩

. . .

(6)

(c) The bottom-up expansion rule set derived by the grammar rule set of Figure 12(b)

E: expression. L: boolean literal. V: variable.

Fig. 13. The expansions rule sets of Figure 12

To capture this relationship, we encode a string into a Boolean model containing bi-gram of

characters. The vector has n × n dimensions, where n is the length of the alphabet containing all

possible characters. If a bi-gram is presented, the corresponding dimension is set of 1, otherwise is

set to 0. For example, encoding len we would get a vector where the elements of “le" and “en" are 1

while all other elements are 0. Since the vector is large and sparse, we perform PCA analysis [13]

to reduce the dimensions to no more than 20. Here we only consider bi-gram but not N -gram with

a higher N , because the vector for bi-gram is already very large.

This encoding also allows us to encode a set of strings, where a bi-gram presented in any of the

string is considered to be presented in the set.

Based on the encoding, we design features for machine learning. As previously illustrated, the

conditional probability of a choice is Pr(rule | context, prog, pos). To train a model, we need to

extract features from the four parts, context, prog, and pos. For the binary classifiers dealing with

variables, we need to also extract features from the variables, i.e., rule. Here we give a high-level
description of the features extracted from the four parts.

Context features. Context features describe the surrounding context information of a code lo-

cation, including class information, method information and flow information. Class information

is extracted from the surrounding class, such as package name, class name, field names and field

types. Method information are extracted from the containing method, such as its signature, lines of

code, parameter names, etc. Flow information includes the local variable names and the structural

information, such as the types of closest control-flow statements (for, if, . . .) [62].

Program features. Program features are extracted from the (partial) conditional expression already

generated, including features related to variables and operators in the expression. Variable features

include name, type, and how many lines the last assignment is away from the condition. Operator

features include whether certain operators are present or not.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.

L2S: a Framework for Synthesizing the Most Probable Program under a Specification 1:25

Position features. Position features are extracted based on the position of the node to be expanded,

such as its index among the siblings, the direct parent symbol, the sibling symbols, and whether

the vertex to be expanded is an argument of a method call, and the index of a argument.

Rule features. The rule features are only available when expanding V downward, as in other

cases we have multi-class models. When expanding V downward, the choices are variables, and
we extract features about the variable including name, type, how many times it is used in other

conditional expressions, how many times it is used in the body of the conditional statement, how

many lines the the last assignment of the variable is away from the condition, etc.

4.2.2 Machine Learning Algorithm Options. To estimate the probabilities of expansion rule choices,

we employ a statistical machine-learning algorithm. A candidate machine-learning algorithm

should fulfill the following requirements: (1) it is able to output probabilities; (2) it is able to handle

unbalanced training data; (3) its outputs should be as precise as possible.

Based on the requirements, we consider three machine-learning algorithms, namely Naive Bayes

, Support Vector Machine (SVM), and XGBoost [9]. Naive Bayes is a classic statistical learning

method based on Bayes’ theorem, which assumes that the features are independent. SVM finds a

hyperplane to distinctly separates the data points. XGBoost is a tree-based learning algorithmwhich

is reasonably fast among modern machine learning algorithm. All algorithms directly produce

probabilities as output. Later we empirically evaluate the influences of these algorithms to the

performance of L2S-Cond.

4.3 Search Algorithm
To understand the performance of different path-finding algorithms, we implement two algorithms:

an exact algorithm—the Dijkstra’s algorithm and an approximation algorithm—the beam search

algorithm [44]. The Dijkstra’s algorithm maintains a list of visited vertexes and the highest gains

to reach these vertexes. In each iteration, it picks the vertex with the highest gain and add all

its neighbors to the list. The process continues until we reach a goal vertex. The beam search

algorithm is similar to Dijkstra’s search except that it maintains a list of only the top K vertexes

with the highest gains. The parameter K is called the beam width. Later we empirically evaluate

the influences of the two algorithms to the performance of L2S-Cond.

4.4 Abstract Constraint Functions
We implement two abstract constraint functions in L2S-Cond: a type constraint function and a size

constraint function. The type constraint function is similar to those in Figure 10 and filters out

infeasible partial expansion trees based on the typing rules of Java. The size constraint function

filters out partial expansion trees whose any complete form has a depth higher than a threshold

N , and are similar to those in Figure 11. In our current implementation, we set N to 4. Later we

empirically evaluate the influences of the type constraint function to the performance of L2S-Cond.

We do not evaluate the influence of the size constraint function as it is only effective for the

recursive expansion rule set, which, as the evaluation will show later, is not the most effective rule

set.

4.5 Evaluation of L2S-Cond
We have implemented L2S-Cond in Java based on Eclipse-JDT

4
.

4.5.1 Research Questions. We aim to understand the overall performance of L2S-Cond as well as

the influences of the sub-modules. Specifically, we answer the following research questions:

4
https://www.eclipse.org/jdt/

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:26 Yingfei Xiong and Bo Wang

• RQ1: What is the overall performance of each configuration?

• RQ2: What are the influences to the L2S-Cond performance of the three expansion rule sets,

TD, BU and RECUR?
• RQ3: What are the influences to the L2S-Cond performance of the path finding algorithms,

Dijkstra’s algorithm and beam search?

• RQ4: What are the influences to the L2S-Cond performance of the statistical learning algo-

rithms, XGBoost and Naive Bayes?

• RQ5: What is the influence to the L2S-Cond performance of the type constraint function?

• RQ6: Does the randomness introduced by selecting the training set affect the performance?

Table 1. Statistics of the subject projects

Project Bug ID KLoc∗ # If Validation Set Size Avg. # Token
Apache Commons Math 106 9 635 60 6.34

Apache Commons Lang 65 28 1880 183 5.60

Joda Time 27 50 1879 186 5.08

JFree Chart 26 37 5261 523 4.74

Total - 131 9655 952 5.09

The KLoc is reported by cloc.

4.5.2 Dataset. We select four Java projects from the benchmark Defects4J [29] v1.0.0, namely

Apache-Commons-Math
5
, Apache-Commons-Lang

6
, Joda-Time

7
and JFree-Chart

8
. We select

these four projects because they would also be used in our evaluation for L2S-Hanabi in the next

section. For each project, we select the version associated with the biggest bug ID. We extract all

the conditional expressions inside if statements and their corresponding contexts as our dataset.

For each project, we randomly select 90% of the if statements as training set, and train models

over the training set. Then we equip L2S-Cond with the models and validate it over the remaining

10% if statements. As shown in Table 1, in total we collect a validation set consisting of 961 if
statement conditional expressions to evaluate L2S-Cond. To measure the size of the expressions,

we count the average numbers of the tokens per expression, as shown in the last column. In this

experiment each expression contains 5.09 tokens on average.

To mitigate the potential bias of the above random selection of the training set and the validation

set, we repeat the experiment three times with three random division of the training set and the

validation set, and report the average results. We also analyze the derivation among the three

executions in RQ6.

4.5.3 Setup. To answer the latter four research questions, we need to explore the influence of each

design option for each component. However, since the combinatorial space of all options is very

large, we design a set of single-factor experiments. First, we conducted a pilot study on the project

involving the smallest number of 64 conditional expressions, Apache-Common-Math, and decided

a potentially effective configuration of all the options, as shown in the first line of Table 2. Then, we

use the pre-selected configuration as the default configuration, each time we change the option for

one sub-module, and observe the performance changes. The set of all configurations we use in our

experiment is shown in Table 2, and we use the following steps to answer the research questions.

• We use the first, default configuration to answer the RQ1.

5
http://commons.apache.org/proper/commons-math/

6
https://commons.apache.org/proper/commons-lang/

7
https://www.joda.org/joda-time/

8
https://www.jfree.org/jfreechart/

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.

L2S: a Framework for Synthesizing the Most Probable Program under a Specification 1:27

• By comparing the configurations 1-3, we answer RQ2, the influences of the three expansion
rule sets.

• By comparing the configurations 1, 4, 5 and 6, we answer RQ3, the influences of the search
algorithms and the effectiveness of beam width K .
• By comparing the configurations 1 7 and 8, we answer RQ4, the influences of the machine

learning methods.

• By comparing the configurations 5 and 9, we answer RQ5, the influence of the type constraint
function.

• By comparing the results of three independent runs against the configurations 1-8, we answer
RQ6, the randomness introduced by the selection of training data.

All the experiments in this section are performed in parallel in three VMware virtual machines,

each of which is equipped with four cores of an Intel Core i7-9870H processor and 8GB memory.

Table 2. Configurations

ID Expansion Rules Learning Algorithms Path Finding Algorithms Abstract Constraint Function
1 BU XGBoost Beam 400 Type Constraint

2 TD XGBoost Beam 400 Type Constraint

3 RECUR XGBoost Beam 400 Type Constraint

4 BU XGBoost Beam 100 Type Constraint

5 BU XGBoost Beam 25 Type Constraint

6 BU XGBoost Dĳkstra Type Constraint

7 BU Naive Bayes Beam 400 Type Constraint

8 BU SVM Beam 400 Type Constraint

9 BU XGBoost Beam 400 None

“Beam 400” indicates the beam search algorithm with K=400. “None” indicates that the type constraint function is not used.

4.5.4 Metrics. We use two metrics to measure the accuracy and the efficiency of each configuration.

For accuracy, we use the “TOP N ” metric, which indicates the number of conditional expressions

where the correct expression is within the top N predicted candidates. We consider an expression

as correct if it is token-by-token the same as the ground-truth. For efficiency, we calculate the time

needed for producing the top N candidates for the largest N .

Table 3. Performance of the configuration 1 on the validation set

ID TOP K Chart 26 Lang 65 Math 106 Time 27 SUM PCT.

1 (BU-XGB-Bm400-Tp)

TOP 5 318 104 27 115 564 58.7%

TOP 25 357 124 35 134 650 67.7%

TOP 100 367 144 37 141 689 71.7%

TOP 200 370 150 39 142 701 72.9%

TIME(S) 4989 1929 970 2815 10704

“BU-XGB-Bm400-Tp” is the abbreviation of the option “the BU expansion rule set, XGBoost method, the beam search

algorithm with K=400 and type constraint function used”. The line TIME(S) indicates the total execution time for generating

the top 200 candidates for all conditional statements in our validation set. The column PCT. indicates the percentage of
correctly synthesized expressions on the whole validation set.

4.5.5 RQ1: The overall performance of L2S-Cond. The overall performance of the configuration 1
is shown in Table 3. For the total 961 conditional expressions, L2S-Cond synthesizes 722 (75.1%)

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:28 Yingfei Xiong and Bo Wang

expressionswithin Top 200, 710 (73.9%) expressionswithin Top 100, 684 (71.2%) expressionswithin Top
25, and 593 (61.7%) expressions within Top 5. L2S-Cond in total costs 9681 seconds for 961 conditional
expressions, and on average it costs 10 seconds for synthesizing 200 candidate expressions for one

conditional statement. These performance data indicate that L2S-Hanabi has the potential to be

applied in different downstream applications, such as code completion and program repair.

Table 4. Performance of the expansion rule sets, BU, TD and RECUR

ID TOP N Chart 26 Lang 65 Math 106 Time 27 SUM

1 (BU-XGB-Bm400-Tp)

TOP 5 318 104 27 115 564

TOP 25 357 124 35 134 650

TOP 100 367 144 37 141 689

TOP 200 370 150 39 142 701

TIME(S) 4989 1929 970 2815 10704

2 (TD-XGB-Bm400-Tp)

TOP 5 301 102 21 98 522

TOP 25 378 133 32 133 676

TOP 100 402 147 37 143 729

TOP 200 404 150 38 143 736

TIME(S) 22831 7207 1779 8813 40630

3 (RC-XGB-Bm400-Tp)

TOP 5 281 97 20 93 491

TOP 25 340 119 28 123 610

TOP 100 357 128 33 130 649

TOP 200 362 132 33 131 657

TIME(S) 29166 7909 2645 9001 48721

“RC” indicates the RECUR expansion rule set.

4.5.6 RQ2: The influence of the three expansion rule sets. Table 4 shows the comparison of the

three expansion rule sets. In terms of accuracy, we can see that the performances of BU and TD are

close, especially over TOP 100 and TOP 200, and BU performs better at TOP 5 and TOP 25. On the

other hand, the performance of RECUR significantly lags behind BU and TD. In terms of efficiency,

BU is significantly faster than the other rule sets, where RECUR costs 4.17 times as much as BU and

TD costs 4.10 times as much as BU.
We conjecture the reason for the high efficiency of BU is that, as we discussed in Section 2.5,

the variables often have large probability differences in a conditional expression, and thus BU
converges to the probable expressions quickly.

To understand the accuracy difference between the three rule sets, we further analyze the

overlaps between the correctly generated expressions by each rule set. We compare the results

based on the second round experiment, because in this round the three rule sets have relatively even

sets of uniquely correctly generated expressions. In total, these rules generate 808 if conditions,

and TD/BU/Recur generates 789/693/698 conditions, respectively. Figure 14 shows the overlaps

among the three rules by a Venn diagram, where the red/green/blue circle represents TD/BU/Recur,

respectively. As we can see, there is a large overlap (602 conditions) among the three rule sets

and each rule set uniquely correctly synthesizes only a small part of the expressions (22, 5, 11,

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.

L2S: a Framework for Synthesizing the Most Probable Program under a Specification 1:29

respectively). Among the uniquely correctly synthesized expressions, we found that TD is good

at handling expressions with instanceof and expressions with many variables, BU is good at

handling expressions with ||, while Recur is good at handling expressions without logical operators,
i.e., &&, || and !.

602

TD

BU RC

22

5 11

83 82

3

Fig. 14. The overlaps among the rules

Table 5. Performance of the Dijkstra Algorithm and beam search with different widths

ID TOP N Chart 26 Lang 65 Math 106 Time 27 SUM

1 (BU-XGB-Bm400-Tp)

TOP 5 318 104 27 115 564

TOP 25 357 124 35 134 650

TOP 100 367 144 37 141 689

TOP 200 370 150 39 142 701

TIME(S) 4989 1929 970 2815 10704

4 (BU-XGB-Bm100-Tp)

TOP 5 318 104 27 115 564

TOP 25 357 124 35 134 650

TOP 100 365 140 37 139 681

TOP 200 365 140 37 139 681

TIME(S) 3215 975 601 1637 6428

5 (BU-XGB-Bm25-Tp)

TOP 5 318 104 27 115 564

TOP 25 356 123 34 131 644

TOP 100 356 123 34 131 644

TOP 200 356 123 34 131 644

TIME(S) 1554 422 251 685 2913

6 (BU-XGB-DJ-Tp)

TOP 5 318 104 27 115 564

TOP 25 357 124 35 134 650

TOP 100 367 144 37 141 689

TOP 200 370 150 39 142 701

TIME(S) 5138 1829 976 2509 10451

“DJ” is short for Dijkstra’s algorithm. “BmK" indicates beam search method with beam width K.

4.5.7 RQ3: The influence of search algorithms. Table 5 shows the comparison of the configuration

1, 4, 5 and 6. As we can see, with the increase of beam width K , the accuracy and the inference

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:30 Yingfei Xiong and Bo Wang

time both increase. When K = 400, the accuracy and the inference time are both the same as or

very close to those of Dijkstra’s algorithm. Also, we observe that a small beam width already gives

good accuracy in the first few candidates. For example, with K = 25, the performance of beam

search at TOP 5 is already the same as Dijkstra’ algorithm. This suggests that we should choose

the beam width based on how many candidates we need. In the next section we shall construct a

repair tool L2S-Hanabi based on L2S-Cond. Since in program repair the inference time of around 10

seconds is not critical, and hundreds of candidate expressions could be tested before the correct one

is found, we still choose for L2S-Hanabi the option in the default configuration, i.e., beam search

with K = 400.

Table 6. The performance of different machine learning methods

ID TOP N Chart 26 Lang 65 Math 106 Time 27 SUM

1 (BU-XGB-Bm400-Tp)

TOP 5 318 104 27 115 564

TOP 25 357 124 35 134 650

TOP 100 367 144 37 141 689

TOP 200 370 150 39 142 701

TIME(S) 4989 1929 970 2815 10704

7 (BU-NB-Bm400-Tp)

TOP 5 150 43 8 63 264

TOP 25 193 52 11 76 332

TOP 100 195 52 11 76 334

TOP 200 195 52 11 76 334

TIME(S) 1077 236 139 268 1720

8 (BU-SVM-Bm400-Tp)

TOP 5 84 58 11 45 198

TOP 25 97 79 15 53 244

TOP 100 101 85 18 56 260

TOP 200 101 89 19 56 265

TIME(S) 3781 1117 715 892 6505

“NB” is short for Naive Bayes.

4.5.8 RQ4: The influences of the machine learning methods. Table 6 shows the comparison of

the three machine learning methods. From the table we can find that Naive Bayes and SVM are

significantly behind XGBoost in terms of accuracy. Naive Bayes is the fastest as its algorithm is

relatively simple, SVM is much slower, and XGBoost is the slowest due to its complexity. As discussed

previously, since the inference time of around 10 seconds is not critical, in the construction of

L2S-Hanabi in the next section we will still choose XGBoost, as the default configuration.

4.5.9 RQ5: The influence of the type constraint function. The goal of the type constraint function
is to speed up the synthesis by pruning off infeasible partial programs early and avoid validating

the incorrect complete programs. To measure this speedup, we add a validation procedure to our

experiment. For each synthesized expression, we invoke the compiler to check if it is well-typed.

Since the validation requires a significant amount of time, we stop when we get 25 well-typed

expressions, or we have consumed all programs within the beam width.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.

L2S: a Framework for Synthesizing the Most Probable Program under a Specification 1:31

Table 7. The influence of the type constraint function

ID TOP K Chart 26 Lang 65 Math 106 Time 27 SUM

1 (BU-XGB-Bm400-Tp)
Cmpl. 62566 11305 2898 12660 89430

TIME(S) 30290 6147 1219 6411 44068

8 (BU-XGB-Bm400-NONE)
Cmpl. 105300 28207 9064 31931 174503

TIME(S) 50235 12901 3462 15777 82374

“Cmpl." is the total number of times to invoke the compiler.

Table 7 shows the comparison between the configuration with or without the type constraint

function. We observe that, to get the same amount of well-typed expression, the one with the

type constraint function requires only 51.9% compiler invocations, and 50.4% of the total time. The

results confirm the effectiveness of the type constraint function, and we still retain it in L2S-Hanabi.

4.5.10 RQ6: The effects of the randomness in training data selection. The previous research questions
were answered with the average results of three times experiments. To understand the derivation

between the three divisions of training set and validation set, we further analyze the standard

derivation, as shown in Table 8. The columns 1st, 2nd and 3rd show the results of the three

divisions, respectively. The column AVG shows the arithmetic averages and the column SD shows

the standard deviation. As we can see, the derivations are all small and do not affect the findings of

the previous research questions.

Table 8. Comparison of the results of 3 times evaluation

ID 1st 2nd 3rd AVG SD

1 (BU-XGB-Bm400-Tp)
TOP 25 684 636 631 650.3 23.9

TOP 200 722 693 688 701.0 15.0

2 (TD-XGB-Bm400-Tp)
TOP 25 649 747 632 676.0 50.7

TOP 200 721 789 697 735.7 39.0

3 (RC-XGB-Bm400-Tp)
TOP 25 608 650 573 610.3 31.5

TOP 200 661 698 611 656.7 35.6

4 (BU-XGB-Bm100-Tp)
TOP 25 684 636 631 650.3 23.9

TOP 200 705 664 673 680.7 17.6

5 (BU-XGB-Bm25-Tp)
TOP 25 678 626 627 643.7 24.3

TOP 200 678 626 627 643.7 24.3

6 (BU-XGB-DJ-Tp)
TOP 25 684 636 631 650.3 23.9

TOP 200 722 693 688 701.0 15.0

7 (BU-NB-Bm400-Tp)
TOP 25 336 320 339 331.7 8.3

TOP 200 337 323 342 334.0 8.0

8 (BU-SVM-Bm400-Tp)
TOP 25 242 258 233 244.3 10.3

TOP 200 253 283 258 264.7 13.1

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:32 Yingfei Xiong and Bo Wang

5 L2S-HANABI
Based on L2S-Cond, we build a program repair approach, L2S-Hanabi, for repairing buggy condi-

tional statements. In this section, we present the implementation details of L2S-Hanabi and evaluate

it on 272 real-world defects.

5.1 Workflow
L2S-Hanabi repairs buggy conditional statements based on L2S-Cond. L2S-Hanabi takes as input a

buggy program and a set of tests where at least one test fails, and produces a patch that repairs

a buggy conditional expression in the program. The design of L2S-Hanabi follows the state-of-

the-art approach to condition repair, ACS [68], and uses L2S-Cond for condition synthesis. L2S-

Hanabi consists of three main components, including fault localization, patch generation and patch

validation.

5.2 Fault Localization
This step takes the buggy program and its test suite which contains at least one failing test as input,

and returns a list of suspicious locations to be fixed. If the location is a conditional expression, it is

a candidate to be replaced with a new expression. If the location is not a conditional expression,

it is a candidate for inserting a new conditional statement. Following ACS, we use a popular

spectrum-based fault localization technique, Ochiai [1], to localize the suspicious locations. When

Ochiai localizes to a conditional expression, we further apply predicate switching [73] to verify if

it is indeed buggy. That is, we invert the returned Boolean value of a conditional expression, and

then check whether it can pass the failing test.

5.3 Patch Generation
For each a suspicious location, L2S-Hanabi attempts to apply one of the following templates to

repair the bug.

• Template 1: Repairing buggy conditional expression.
if (co) ⇒ if (c)
If the suspicious location is a conditional expression c0, L2S-Hanabi synthesizes a new

condition c using L2S-Cond to replace the original one.

• Template 2: Inserting a missing boundary check.
⇒ if (c) return v
⇒ if (c) throw e
If the suspicious location is not a conditional expression, L2S-Hanabi attempts to use this

template to insert an if statement before the suspicious location. First, L2S-Hanabi analyzes

the failed test and check if the test is expecting an error codev or an exception e . An expected

output v is an error code if the output is written as a const static field of a primitive type in

the test. If the test expects an error code or an exception, L2S-Hanabi assumes a boundary

check may be missing, synthesizes a new condition c using L2S-Cond and inserts the if
statement as shown in the template, otherwise L2S-Hanabi skips this suspicious location.

• Template 3: Repairing return or throw statement.
return vo ⇒ return v
throw eo ⇒ throw e
If the fault localization identifies a return or throw statement as faulty, we directly change

the returned value or the exception to the expected one. The expected values are extracted

from the oracle of the failed test.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.

L2S: a Framework for Synthesizing the Most Probable Program under a Specification 1:33

The first two templates are inherited from ACS, which rely on L2S-Cond to synthesize a condi-

tional expression. Moreover, we found that 27% (4/15) of the patches of the first template in ACS

add a redundant check, as follows.

if(c){
+ if(c){return v1;}

return v0;}

To generate more natural patches and avoid the duplicated check, we add the third template to

directly modify the return or throw statements. We apply the templates in the order of 3→ 2→ 1.

For the first two templates, we use L2S-Cond to synthesize M conditional expressions to form M

patches, and validate them one by one. If none of the M conditional expressions passes the tests,

we proceed to the next suspicious location. Currently we set M to 200 based on a pilot study on a

small set of subjects.

5.4 Patch Validation
For each generated patch, we validate it by the test suite in the project. Since existing work has

revealed that prioritizing the tests could significantly accelerate the validation [48], we prioritize

the tests using the following order:

(1) Execute the failing test method(s).

(2) Execute the test methods from the same test cases as the failing test methods.

(3) Execute the tests from the same package as the failing test methods.

(4) Execute all remaining tests.

In Defects4J there are cases where under the same bug ID there are a multi-hunk patch and

multiple failing tests, where each hunk repairs a bug revealed by a failing test. In other words, there

are actually multiple bugs under one bug ID. Following the existing practice [27, 68], we consider

that a patch passes the validation if the number of failing tests decreases. In this way, we enable

the fix of these multi-bug cases.

5.5 Evaluation of L2S-Hanabi
5.5.1 Research Questions. We evaluate L2S-Hanabi by answering the following three research

questions:

• RQ7: How does L2S-Hanabi perform over real-world defects?

• RQ8: How does the performance of L2S-Hanabi compare with existing APR approaches?

• RQ9: What are the contributions of the three patch generation templates?

Table 9. Statistics of the used projects

Project #Bugs Dataset KLoc∗
Test
KLoc∗

#Test
Classes

Apache Commons Math 106 Defects4J 84 86 497

Apache Commons Lang 65 Defects4J 22 38 128

Joda Time 27 Defects4J 28 53 155

JFree Chart 26 Defects4J 96 49 389

Apache Accumulo 16 Bugs.jar 154 20 147

Apache Camel 32 Bugs.jar 116 130 2,277

Total 272 - 500 376 3,593

KLoc and #Test Cases are taken from the most recent version, as reported by cloc.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:34 Yingfei Xiong and Bo Wang

Table 10. Training versions for repair Defects4J

Training # of Bugs Year Training # of Bugs Year
Math 12 12 2013 Lang 5 5 2013

Math 37 25 2012 Lang 14 9 2012

Math 59 22 2011 Lang 24 10 2011

Math 75 16 2010 Lang 35 11 2010

Math 94 19 2009 Lang 43 8 2009

Math 102 8 2008 Lang 48 5 2008

Math 104 2 2007 Lang 55 7 2007

Math 106 2 2006 Lang 65 10 2006

Time 11 11 2013 Chart 4 4 2009

Time 17 6 2012 Chart 16 12 2008

Time 24 7 2011 Chart 26 10 2007

Time 27 3 2010

ACCUMULO-4098 2 2016 CAMEL-8584 6 2015

ACCUMULO-3746 4 2015 CAMEL-7130 14 2014

ACCUMULO-1661 7 2014 CAMEL-6987 2 2013

ACCUMULO-1544 1 2013 CAMEL-5770 4 2012

ACCUMULO-907 1 2012 CAMEL-3960 5 2011

ACCUMULO-151 1 2011 CAMEL-3388 1 2010

5.5.2 Dataset. Our dataset is extracted from the Defects4J [29] benchmark and the Bugs.jar [54]

benchmark, which are real-world Java defects benchmarks. Table 9 shows the statistics about our

dataset. Because the four subjects from Defects4J are libraries, we further add two non-library

projects from Bugs.jar to avoid bias. Since the number of bugs in Bugs.jar is large and different

bugs often require different setups, we follow a common practice in existing studies [32, 55] to only

evaluate on bugs that require single-hunk patches. In the end, we have 272 defects from six diverse

projects.

5.5.3 Training L2S-Hanabi. As aforementioned, L2S-Hanabi relies on L2S-Cond to synthesize

conditional expressions. As L2S-Cond is driven by data, We need to prepare a training set. we

train L2S-Cond using the conditional expressions extracted from the same project to get the best

performance. We assume in a real-world usage, the team may periodically re-train the program

repair tool using the newest code. To simulate this scenario, we train L2S-Cond using the first

buggy project of a calendar year, and repair the bugs occurred in the same year based on the trained

models. Table 10 gives the details of the training versions, the number of corresponding bugs to

repair and the covered calendar year. Since some early versions do not have enough expressions to

train an effective synthesizer, we also added the source code of JDK as an additional training set.

5.5.4 RQ7: Repair performance of L2S-Hanabi.

Setup. To answer RQ6, we evaluated L2S-Hanabi over all the 272 bugs of our dataset. We set a

time budget for each bug as 180 minutes. Following existing studies [27, 55, 66, 68], we configured

L2S-Hanabi to terminate at the first patch that passes all the tests.

We determine a patch as plausible if it passes all the tests, and as correct if it is semantically

equivalent to the developer-provided patch. We manually checked the correctness of all the patches,

which is a standard practice in previous work [27, 43, 55, 64, 66, 68]. To reduce the possible errors

that may be introduced in this manual process, following the recommendation of Le et.al. [33], we

further evaluate the patches labeled as correct against independent test suites. If a patch is not

textually equal to the developer’s patch, we invoke EVOSUITE [16] to generate a new test suite

based on the fixed version and validate the patch with this test suite. We label the patch as incorrect

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.

L2S: a Framework for Synthesizing the Most Probable Program under a Specification 1:35

if the patch is unable to pass the enhanced tests. Furthermore, we release all the patches for public

judgement in our project repository. We measure the performances of the approaches by precision

and recall, where precision is defined as the portion of correct patches among plausible patches,

and recall is defined as the portion of correctly repaired bugs among all bugs.

Table 11. Performance of repair on our dataset

Project #Bugs Correct Incorrect Precision Recall
Math 106 19 3 86% 18%

Lang 65 4 0 100% 6%

Time 27 2 0 100% 7%

Chart 26 3 2 60% 12%

Results on Defects4J 224 28 5 85% 13%

Accumulo 16 1 0 100% 6%

Camel 32 3 1 75% 9%

Total Results 272 32 6 84% 12%

Precision=Correct/(Correct+Incorrect)×100%. Recall=Correct/#Bugs×100%.

Results. Table 11 shows the overall repair results of L2S-Hanabi on our dataset. Our approach

generates 38 plausible patches in total, 32 of which are correct, achieving a high precision of 84%

(32/38) and a recall of 12% (32/272).

If we group the results by benchmark, L2S-Hanabi has a precision of 85% (28/33) and a recall of

13% (28/224) on Defects4J and a precision of 80% (4/5) and a recall of 9% (4/45) on Bugs.jar. The

results show that the performance of L2S-Hanabi is stable across different types of projects and

different benchmarks.

5.5.5 RQ8: Comparison with existing approaches on Defects4J.

Setup. We compare L2S-Hanabi with a set of existing repair approaches as baselines. We select

the baseline approaches by the following criteria: (1) the approach was published after 2017; (2)

the approach was evaluated on Defects4J; (3) all the generated patches have been released. As a

result, we compare L2S-Hanabi with nine state-of-the-art APR approaches: TBar [37], SimFix [27],

CapGen [64], SketchFix [24], ELIXIR [55], JAID [7], ssFix [66], ACS [68] and Nopol [70]. Among

these approaches, ACS and Nopol are designed for repairing conditional statement bugs, which are

the same as L2S-Hanabi, while the others are aiming to fix more general defects. Some approaches

generate more than one patch for a bug, and we only consider the first reported patch for a fair

comparison. L2S-Hanabi and all the listed techniques have been evaluated on the same 224 defects

from the four projects of Defects4J (i.e. Math, Lang, Time and Chart), enabling us to compare their

performance directly.

We compare from two aspects. First, as L2S-Hanabi is designed for bugs in conditional statements

only, we compared the performance of these APR techniques in terms of fixing bugs in conditional

statements. We selected a subset of the 144 conditional statement bugs out of the 224 bugs, and

compare the nine techniques in terms of precision and recall. This subset was selected by Sobreira et

al. [58] and is publicly available
9
. The selection criterion is whether the bug is related to conditional

statements. Second, we compared the performance of the APR techniques on all of the 224 bugs, to

get overall comparison results.

9
http://program-repair.org/defects4j-dissection

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:36 Yingfei Xiong and Bo Wang

Table 12. Detailed comparison on all the 143 conditional bugs

Proj. Total Hanabi ACS Nopol TBar SimFix SketchFix CapGen ELIXIR JAID ssFix
Chart 16 3 (1) 2 (0) 1 (3) 5 (2) 1 (3) 2 (1) 1 (0) 2 (1) 1 (2) 1 (2)

Math 62 15 (4) 8 (4) 1 (11) 2 (12) 3 (9) 4 (1) 4 (2) 4 (3) 0 (5) 3 (10)

Lang 47 2 (0) 1 (1) 3 (1) 3 (7) 7 (4) 1 (0) 0 (0) 1 (3) 1 (3) 1 (6)

Time 19 2 (0) 1 (0) 0 (0) 0 (1) 0 (0) 0 (0) 0 (0) 1 (0) 0 (0) 0 (2)

Total 144 22 (5) 12 (5) 5 (15) 10 (22) 11 (16) 7 (2) 5 (2) 8 (7) 2 (10) 5 (20)

Precision - 81% 71% 25% 31% 41% 78% 71% 53% 17% 20%

Recall - 15% 8% 3% 7% 8% 5% 3% 6% 1% 3%

Table 13. Detailed comparison on all the 224 bugs of Defects4J

Proj. Total Hanabi ACS Nopol TBar SimFix SketchFix CapGen ELIXIR JAID ssFix
Chart 26 3 (2) 2 (0) 1 (5) 9 (5) 4 (4) 6 (2) 4 (0) 4 (3) 2 (2) 3 (4)

Math 106 19 (3) 12 (4) 1 (20) 19 (17) 14 (12) 7 (1) 12 (4) 12 (7) 1 (7) 10 (16)

Lang 65 4 (0) 2 (2) 3 (4) 5 (9) 9 (3) 3 (1) 5 (0) 8 (4) 1 (7) 5 (7)

Time 27 2 (0) 1 (0) 0 (1) 1 (2) 1 (0) 0 (1) 0 (0) 2 (1) 0 (0) 0 (4)

Total 224 28 (5) 17 (6) 5 (30) 34 (33) 28 (19) 16 (5) 21 (4) 26 (15) 4 (16) 18 (31)

Precision - 85% 74% 14% 51% 60% 76% 84% 63% 20% 37%

Recall - 13% 8% 2% 15% 13% 7% 9% 12% 2% 8%

A bold number represents it achieves highest performance. X (Y): X is the number of correct patches, Y is the number of

incorrect plausible patches. L2S-Hanabi, ACS and Nopol are listed first because they are designed for conditional statement

bugs. The remaining APR techniques are sort by their publication year.

Comparison on Conditional Statement Bugs. Table 12 exhibits the repair results of L2S-Hanabi
and other nine APR techniques. Compared with these APR techniques, L2S-Hanabi fixes 22 out of

the 144 defects, which achieves the largest number of bugs fixed and the highest recall. Moreover,

within all the 27 plausible patches, L2S-Hanabi only generates five incorrect patches, achieving the

highest precision. Compared with the two techniques aiming to fix conditional statement bugs,

L2S-Hanabi outperforms ACS and Nopol both in recall and precision. We can conclude that in

terms of fixing conditional statement bugs, L2S-Hanabi outperforms the existing APR techniques.

Comparison on All Bugs. Table 13 shows the results from different techniques on all the 224 defects

of Defects4J. Note that sometimes the developers’ patch does not modify or insert a conditional

statement, but is equivalent to a patch that uses an if statement. For example, in Math-35, the

developers’ patch changes the target of a method call to amethod that contains an addition boundary

check, and an APR technique can create a patch that directly inserts the boundary check. Thus, in

Table 13, both L2S-Hanabi and ACS fix more bugs than Table 12.

From the table, we can see that though L2S-Hanabi is not designed for repairing general types of

bugs, L2S-Hanabi still achieves the highest precision and the second highest recall. L2S-Hanabi

generates six patches less than TBar, losing 2% of recall, but its precision is 30% higher than that of

TBar. The results shows L2S-Hanabi keeps a high precision and a relative high recall compared

with the existing approaches.

Moreover, we compare the sets of correctly repaired bugs by different approaches, and find that

six bugs repaired by L2S-Hanabi are not repaired by any existing technique.

5.5.6 RQ9: Influence of each repair template. To analyze the contribution of the three templates, we

classified all the generated patches by repair template, shown in Table 14. As we can see, Template

1, Template 2 and Template 3 fix 46.9%, 37.5% and 15.6% of the bugs, respectively. Please note

that the evaluation of ACS, Template 2 only repairs 2 bugs (11.8% of all repaired bugs), which are

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.

L2S: a Framework for Synthesizing the Most Probable Program under a Specification 1:37

Table 14. Influence of each repair template

Template Correct Incorrect Total
Template 1 15 (46.9%) 0 (0%) 15 (39.5%)

Template 2 12 (37.5%) 6 (100%) 18 (47.4%)

Template 3 5 (15.6%) 0 (0%) 5 (13.2%)

Total 32 6 38

X (Y): X is the number of patches, Y is its percentage in the same column.

drastically fewer than those repaired by L2S-Hanabi. The result suggests modifying an existing

expression is probably more difficult than generating a missed boundary check, and requires an

advanced model to handle.

Please recall that Template 3 is newly added and does not exist in ACS. To compare only the

synthesis component with ACS, we further calculate how many bugs the first two templates repairs

on the 143 conditional bugs and the 224 bugs in Defects4J. The two templates repair 17 bugs with 5

false positives on the 143 conditional bugs (precision: 77%, recall: 12%), and repair 23 bugs with 5

false positives on the 224 bugs of Defects4J (precision: 82%, recall: 10%), significantly outperforming

ACS on both the precision and the recall.

Moreover, referring to the results of TBar and SimFix in Table 12 and Table 13, we can find that

although the two approaches achieve high recall on the general bugs of Defects4J, their recall and

precision sharply degrade on fixing conditional bugs. Especially the precision of the two approaches

is reduced by nearly 20%. This suggests that repairing conditional statement is more error-prone

and is hard to achieve a high precision while keeping a high recall.

5.6 Discussion on the Repair Capability of L2S-Hanabi
To understand why L2S-Hanabi fails to repair some conditional statement bugs, we randomly

sampled 30 conditional bugs that L2S-Hanabi fails to repair, and analyze the reason why L2S-

Hanabi fails to repair the bug. There are mainly four reasons.

• Failure to localize: The fault localization technique fails to localize the faulty location, or

fail to rank the faulty location to a high position. Bugs in this category require better fault

localization approaches to repair. 1 (3%) out of 30 bugs belongs to this case.

• Unique conditional expressions: Some bugs require to synthesize an expression that is beyond

the space of expressions mined from the training set, e.g., calling a rare API that has never

been used in the training set. Bugs in this category may be repaired by some forms of

abstraction, e.g., generating only the types of the API call rather than a concrete API call. 5

(17%) out of 30 bugs belong to this case.

• Beyond the repair templates: Though some bugs require changing only a conditional statement,

the change is beyond what our current template supports. For example, inserting an if
statement to wrap some other statements, or inserting an if statement in a loop with a break
statement. Bugs in this category may be repaired by introducing more templates. 8 (27%) out

of 30 bugs belong to this case.

• Beyond conditional statements: Some bugs require not only changing a conditional statement,

but also some other statements. Such bugs are beyond the scope of L2S-Hanabi and require

other mechanism to repair. 10 (33%) out of 30 bugs belong to this case.

• Beyond the repair attempts limitation: Although the patches of some bugs are inside the search

space, L2S-Hanabi cannot generate the correct expression within top 200. These bugs require

better probability estimation to repair. 4 (13%) out of 30 bugs belong to this case.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:38 Yingfei Xiong and Bo Wang

6 RELATEDWORK
6.1 Program Generation from Context
Many approaches have been proposed to generate different kinds of programs, such as imperative

programs [5, 15, 23, 36, 50, 52, 57, 72], lambda expressions [15, 50, 69], string manipulations [14, 45],

and regular expressions [31], from various contexts, such as natural language description [15, 23,

31, 36, 50, 57, 69, 72], input-output examples [14, 45], and surrounding code [5, 52].

The main difference among L2S and these approaches is that these approaches do not take a

specification as input, and only aim to find the most probable program, while L2S aims to find the

most probable program that meets a specification, and uses static analysis to prune off programs that

are not type-safe or semantically correct. Besides, there are other differences: (1) these approaches

follow natural orders such as left to right or top-down grammar expansion, while L2S supports

to use expansion rules to define different expansion order; (2) while existing approaches use a

fixed search algorithm, usually beam search, L2S allows using different path-finding algorithms

by treating the synthesis problem as a path-finding problem; (3) our paper also gives the proof

that the probability can be computed from the probabilities of choosing production rules and the

probabilities of choosing expansion points can be ignored.

6.2 Classic Program Synthesis
Classic program synthesis [20] takes a specification as input, and returns a program that meets the

specification. Different from classic program synthesis, L2S solves the program estimation problem,

which aims to find the most probable program that meets the specification.

Essentially, L2S can be viewed as an enumerative program synthesis, where the probabilities are

used to guide the order of the program to be enumerated. It is common for enumerative synthesis

to use lightweight deductive analysis to prune off program space [8, 20]. The static analysis for

pruning off infeasible partial programs in L2S is a general form of lightweight deductive pruning

that is compatible with the probability and the expansion rules.

In particular, Lee et al. [34] proposed an approach that uses a probabilistic model to accelerate

program synthesis in parallel with our work [67]. Their approach uses A* search by performing a

static analysis on the probabilistic model to produce a heuristic function computing the probability

upper-bound of the remaining program. Though their goal is different from us, this work is

complementary to L2S as it provides an approach for automatically generating a heuristic function

for A* search. On the other hand, L2S provides expansion rules to control the expansion order and

uses a static analysis on grammar rules to prune off infeasible partial programs. However, their

approach of generating a heuristic function does not directly apply to L2S-Hanabi because the static

analysis on the probabilistic model requires to enumerate all possible contexts and only works on

simple models. It remains as future work to understand how to combine the two approaches.

Another related work, MaxFlash [25], uses a probabilistic model to accelerate FlashFill-style

deductive program synthesis [47]. Different from enumerative program synthesis, FlashFill-style

deductive program synthesis requires witness functions to decompose a problem into subproblems,

and is only applicable to problems where witness functions are available. Furthermore, since the

goal of MaxFlash is to accelerate program synthesis rather than finding the most probable program

under a partial specification, it allows only a limited form of probabilistic model, the top-down

prediction model. In a top-down prediction model, the choice of a rule can only depend on its

ancestors but not siblings. In constrast, in L2S the rule can depend on the whole generated partial

program, including both its ancestors and siblings.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.

L2S: a Framework for Synthesizing the Most Probable Program under a Specification 1:39

6.3 Approaches to Program Estimation
In parallel with our work [67], some researchers also studied the program estimation problem [8, 10,

30], which is known as maximal multi-layer specification synthesis [10] or multi-model synthesis [8]

in respective literatures. Compared with these approaches, our framework is the first to propose

the theory of expansion rules and use expansion rules to control the order of search. Besides this

major difference, we also compare other differences in details as follows.

Kalyan et al. [30] proposed to combine dynamic programming with a neural network, where the

neural network predicts the most probable subproblems to explore based on the specification of the

current problem, such that the result program is more likely to be desirable. Compared with L2S, (1)

their approach requires the probability calculation has the structure of dynamic programming: the

most probable program can be composed from the most probable subprograms, and thus is difficult

to apply to problems where the context is not a decomposable specification, e.g., a natural language

description or surrounding code; (2) their approach cannot guarantee to find the most optimal

program, where L2S with a suitable search algorithm could guarantee that; (3) their approach uses

witness functions to divide a problem into subproblems, which on the one hand requires the users

to provide the witness functions, and on the other hand could potentially achieve faster speed by

reusing the solutions to subproblems.

Chen et al. [10] view the problem of program estimation as a weighted MAXSMT problem, where

the specification of the problem gives hard constraints and a statistical model gives weighted soft

constraints about the desired combination of the symbols. For example, a soft constraint can be

“‘+’ is a child of ‘-’ with a weight 100”. A MAXSMT solver tries to find a program that satisfies all

hard constraints and the subset of soft constraints that gives the maximal weight. Compared with

L2S, it is not clear how to interpret the weights of soft constraints probabilistically, and thus this

approach does not ensure the returned program has the highest probability, while L2S can ensure

this by using an exact algorithm.

Chen et al. [8] proposed an approach that generates a regular expression from both input-output

examples and a natural language description. Their approach first uses a statistical model to predict

a likely skeleton of a program based on the natural language description, and then uses program

synthesis to fill the missing parts in the skeleton to form a complete program. Compared with L2S,

the statistical prediction and the program synthesis are completely separated in their approach, and

thus their approach does not ensure that the returned program has the highest probability, either.

6.4 Statistical Program Repair
Typical program repair approaches [17] first localize a faulty code snippet with a fault localization

approach, then outline a patch space by grammar rules or edit templates, and finally synthesize a new

code snippet to replace the buggy one. The patch synthesis component is a key to repair performance.

Since tests are partial specifications [49], existing program repair techniques have employed

statistical models to help synthesize patches with higher probabilities. Early approaches [41, 56]

use binary models that returns a probability for a patch, apply the model to each patch in the space,

and sort these patches based on their probabilities. Since the probability of each patch needs to

be calculated, this method only allows very simple models. For example, Elixir [56] employs the

logistic regression algorithm to ensure fast inference.

ACS [68] is a program repair approach for repairing buggy conditional expressions. It first

localizes to a potentially faulty conditional expressions or a potentially missing boundary check,

and then synthesizes a new condition to replace the old one or insert a boundary check. In particular,

its synthesis component synthesizes a probable condition by two ranking methods: ranking the

variables to be checked and ranking the predicates to be used on the variable. As a result, ACS

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:40 Yingfei Xiong and Bo Wang

achieves significantly better precision than existing approaches. We are inspired by the fact that

ACS first chooses a variable and then a predicate, and propose expansion rules to generalize

different orders for expanding a program. L2S-Hanabi also follows the ACS framework and adopts

the two main templates used in ACS. The main difference is the replacement of the synthesis

component with L2S, with a minor addition of a new template inspired by ACS. On the other hand,

L2S is significantly different from the synthesis component of ACS. L2S is a general framework

for the program estimation problem and has been applied to both program repair (this paper) and

program generation [59, 60], while the synthesis component of ACS is only designed for conditional

expressions. L2S uses expansions rules to describe possible ways of decomposing programs into

choices and L2S-Hanabi uses a bottom-up rule set that decomposes a condition into two or more

choices. On the other hand, ACS only decomposes a condition into two choices. L2S ensures to find

the most probable conditions when an exact search algorithm is used while ACS concerns only

the ranks of variables and predicates and does not guarantee the probability of the synthesized

condition. L2S allows using different search algorithms while ACS uses a greedy algorithm. Finally,

L2S introduces an efficient pruning method based on abstract interpretation while ACS does not

perform any pruning.

Recently, a series of research attempts [11, 21, 35, 42, 61, 65] have employed neural networks to

predict a patch. These approaches takes a localized suspicious line and its surrounding code as input,

and predicts a new line to replace the original line as a patch. Compared with L2S-Hanabi, there are

several major differences: (1) these approaches first predict a patch and then validates its feasibility

by compilation and testing, and do not try to prune off type-incorrect patches as L2S-Hanabi

does; (2) these approaches either treat the patches as a sequence of tokens [11, 21, 42, 61, 65] or

treat the patches as a sequence of grammar rules [35], while L2S-Hanabi uses expansion rules to

control the order of generation; (3) these approaches are trained over a set of existing patches while

L2S-Hanabi is trained over existing source code. As our evaluation shows, L2S-Hanabi outperforms

these existing approaches in repairing conditional statement bugs. Nevertheless, neural network

could learn rich features to better characterize the conditional probability, and may be integrated

in L2S in future research.

Finally, several research attempts [4, 26, 38, 53] try to cluster existing patches and abstract a

repair template from each cluster. These studies are orthogonal to our work as the extracted repair

template could be integrated into the grammar to better guide the generation of the patches.

7 THREATS TO VALIDITY
External validity. The evaluation of L2S-Cond demonstrates that the components in L2S all have

significant influence to the overall performance. This conclusion is drawn from one application

and thus should be interpreted as “the components are important for some applications” but not

“all applications”. For example, for a weakly typed language the type constraint function may not

be very useful. Also, though L2S-Hanabi shows consistent performance on two datasets, Defects4J

and Bugs.jar, evaluating on more dataset could further evaluate the generalizability of L2S-Hanabi.

Internal validity. The main threat to internal validity is that the implementation of L2S-Cond and

L2S-Hanabi may be wrong. However, since it is unlikely accidental fault would lead to correctly

synthesized programs, the performance of L2S-Cond and L2S-Hanabi could only be higher if the

implementation were wrong.

Construct validity. Themain threat to construct validity is that wemanually assess the correctness

of a patch following the common practice of existing works [7, 24, 27, 43, 55, 64, 66, 68], but the

manual analysis may introduce errors [33]. To mitigate this threat, we followed the advice of the

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.

L2S: a Framework for Synthesizing the Most Probable Program under a Specification 1:41

existing studies [33, 71], and further evaluated the correctness of the patches on the enhanced test

suites generated by EVOSUITE [16]. Furthermore, all the results are open for publicly judgement.

8 CONCLUSION
In this paper we have presented a framework, L2S, for the program estimation problem. L2S

treats the program estimation problem as a path-finding problem, uses expansion rules to lay

out the search space, prunes infeasible paths early based on abstract interpretation, estimates the

probabilities of the program by estimating the probabilities of each choice, and adopts existing

search algorithms to solve the problem. The evaluation demonstrates that the components in L2S

are all important in solving the program estimation problem, and instantiating L2S could form a

useful program repair approach. So far we only instantiate L2S for repairing conditional statements

as well as program generation from natural language description [59, 60]. Future work could apply

L2S to more applications such as repairing more types of bugs or programming by example.

ACKNOWLEDGMENTS
We thank RuiWang from Beijing Jiaotong University for her careful proofreading. This work is spon-

sored in part by the National Key Research and Development Program of China No. 2019YFE0198100,

National Natural Science Foundation of China under Grant No. 61922003.

REFERENCES
[1] Rui Abreu, Peter Zoeteweij, and Arjan J. C. van Gemund. 2006. An Evaluation of Similarity Coefficients for Software

Fault Localization (PRDC). IEEE Computer Society,Washington, DC, USA, 39–46. https://doi.org/10.1109/PRDC.2006.18

[2] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. 2006. Compilers: Principles, Techniques, and Tools, 2nd
Edition.

[3] Rajeev Alur, Rastislav Bodik, Garvit Juniwal, Milo MK Martin, Mukund Raghothaman, Sanjit A Seshia, Rishabh Singh,

Armando Solar-Lezama, Emina Torlak, and Abhishek Udupa. 2013. Syntax-guided synthesis. In 2013 Formal Methods
in Computer-Aided Design. IEEE, 1–8.

[4] Johannes Bader, Andrew Scott, Michael Pradel, and Satish Chandra. 2019. Getafix: Learning to fix bugs automatically.

Proceedings of the ACM on Programming Languages 3, OOPSLA (2019), 1–27.

[5] Pavol Bielik, Veselin Raychev, and Martin T. Vechev. 2016. PHOG: Probabilistic Model for Code. In ICML. 2933–2942.
[6] Cameron B Browne, Edward Powley, Daniel Whitehouse, Simon M Lucas, Peter I Cowling, Philipp Rohlfshagen,

Stephen Tavener, Diego Perez, Spyridon Samothrakis, and Simon Colton. 2012. A survey of monte carlo tree search

methods. IEEE Transactions on Computational Intelligence and AI in games 4, 1 (2012), 1–43.
[7] Liushan Chen, Yu Pei, and Carlo A. Furia. 2017. Contract-based program repair without the contracts. In ASE.

https://doi.org/10.1109/ASE.2017.8115674

[8] Qiaochu Chen, Xinyu Wang, Xi Ye, Greg Durrett, and Isil Dillig. 2020. Multi-Modal Synthesis of Regular Expressions.

In PLDI.
[9] Tianqi Chen and Carlos Guestrin. 2016. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd acm sigkdd

international conference on knowledge discovery and data mining. ACM, 785–794.

[10] Yanju Chen, Ruben Martins, and Yu Feng. 2019. Maximal Multi-layer Specification Synthesis. In Proceedings of the 2019
27th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE 2019). ACM, 602–612.

[11] Zimin Chen, Steve James Kommrusch, Michele Tufano, Louis-Noël Pouchet, Denys Poshyvanyk, andMartin Monperrus.

2019. Sequencer: Sequence-to-sequence learning for end-to-end program repair. IEEE Transactions on Software
Engineering (2019).

[12] Patrick Cousot and Radhia Cousot. 1977. Abstract interpretation: a unified lattice model for static analysis of programs

by construction or approximation of fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN symposium on Principles
of programming languages. 238–252.

[13] Hans Peter Deutsch. 2002. Principle Component Analysis. Palgrave Macmillan UK.

[14] Jacob Devlin, Jonathan Uesato, Surya Bhupatiraju, Rishabh Singh, Abdel-rahman Mohamed, and Pushmeet Kohli. 2017.

RobustFill: Neural Program Learning under Noisy I/O. In Proceedings of the 34th International Conference on Machine
Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017 (Proceedings of Machine Learning Research), Doina
Precup and Yee Whye Teh (Eds.), Vol. 70. PMLR, 990–998. http://proceedings.mlr.press/v70/devlin17a.html

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.

https://doi.org/10.1109/PRDC.2006.18
https://doi.org/10.1109/ASE.2017.8115674
http://proceedings.mlr.press/v70/devlin17a.html

1:42 Yingfei Xiong and Bo Wang

[15] Li Dong and Mirella Lapata. 2016. Language to Logical Form with Neural Attention. In Proceedings of the 54th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Vol. 1. 33–43.

[16] Gordon Fraser and Andrea Arcuri. 2011. Evosuite: automatic test suite generation for object-oriented software. In

ESEC/FSE. ACM, 416–419.

[17] Luca Gazzola, Daniela Micucci, and Leonardo Mariani. 2017. Automatic Software Repair: A Survey. IEEE Transactions
on Software Engineering PP, 99 (2017), 1–1. https://doi.org/10.1109/TSE.2017.2755013

[18] Sumit Gulwani. 2016. Programming by Examples: Applications, Algorithms, and Ambiguity Resolution. In IJCAR.
9–14.

[19] Sumit Gulwani and Prateek Jain. 2017. Programming by Examples: PL meets ML. In APLAS.
[20] Sumit Gulwani, Oleksandr Polozov, and Rishabh Singh. 2017. Program Synthesis. Foundations and Trends in Program-

ming Languages 4, 1-2 (2017), 1–119.
[21] Rahul Gupta, Soham Pal, Aditya Kanade, and Shirish Shevade. 2017. DeepFix: Fixing Common C Language Errors by

Deep Learning. In AAAI.
[22] Peter E Hart, Nils J Nilsson, and Bertram Raphael. 1968. A formal basis for the heuristic determination of minimum

cost paths. IEEE transactions on Systems Science and Cybernetics 4, 2 (1968), 100–107.
[23] Shirley Anugrah Hayati, Raphael Olivier, Pravalika Avvaru, Pengcheng Yin, Anthony Tomasic, and Graham Neubig.

2018. Retrieval-Based Neural Code Generation. In Proceedings of the 2018 Conference on Empirical Methods in Natural
Language Processing, Brussels, Belgium, October 31 - November 4, 2018, Ellen Riloff, David Chiang, Julia Hockenmaier,

and Jun’ichi Tsujii (Eds.). Association for Computational Linguistics, 925–930. https://doi.org/10.18653/v1/d18-1111

[24] Jinru Hua, Mengshi Zhang, Kaiyuan Wang, and Sarfraz Khurshid. 2018. Towards Practical Program Repair with

On-demand Candidate Generation. In ICSE.
[25] Ruyi Ji, Yican Sun, Yingfei Xiong, and Zhenjiang Hu. 2020. Guiding dynamic programing via structural probability

for accelerating programming by example. Proc. ACM Program. Lang. 4, OOPSLA (2020), 224:1–224:29. https:

//doi.org/10.1145/3428292

[26] Jiajun Jiang, Luyao Ren, Yingfei Xiong, and Lingming Zhang. 2019. Inferring program transformations from singular

examples via big code. In 2019 34th IEEE/ACM International Conference on Automated Software Engineering (ASE). IEEE,
255–266.

[27] Jiajun Jiang, Yingfei Xiong, Hongyu Zhang, Qing Gao, and Xiangqun Chen. 2018. Shaping Program Repair Space with

Existing Patches and Similar Code. In ISSTA.
[28] James A. Jones, Mary Jean Harrold, and John Stasko. 2002. Visualization of Test Information to Assist Fault Localization.

In ICSE.
[29] René Just, Darioush Jalali, and Michael D Ernst. 2014. Defects4J: A database of existing faults to enable controlled

testing studies for Java programs. In ISSTA. 437–440.
[30] Ashwin Kalyan, Abhishek Mohta, Oleksandr Polozov, Dhruv Batra, Prateek Jain, and Sumit Gulwani. 2018. Neural-

Guided Deductive Search for Real-Time Program Synthesis from Examples. In 6th International Conference on Learning
Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings. OpenReview.net.
https://openreview.net/forum?id=rywDjg-RW

[31] Nate Kushman and Regina Barzilay. 2013. Using semantic unification to generate regular expressions from natural

language. In Proceedings of the 2013 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies. 826–836.

[32] Xuan-Bach D Le, David Lo, and Claire Le Goues. 2016. History Driven Program Repair. In SANER. 213–224. https:

//doi.org/10.1109/SANER.2016.76

[33] Xuan-Bach D. Le, Lingfeng Bao, David Lo, Xin Xia, Shanping Li, and Corina S. Pasareanu. 2019. On reliability of

patch correctness assessment. In Proceedings of the 41st International Conference on Software Engineering, ICSE 2019,
Montreal, QC, Canada, May 25-31, 2019, Joanne M. Atlee, Tevfik Bultan, and Jon Whittle (Eds.). IEEE / ACM, 524–535.

https://doi.org/10.1109/ICSE.2019.00064

[34] Woosuk Lee, Kihong Heo, Rajeev Alur, and Mayur Naik. 2018. Accelerating search-based program synthesis using

learned probabilistic models. In Proceedings of the 39th ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI 2018, Philadelphia, PA, USA, June 18-22, 2018, Jeffrey S. Foster and Dan Grossman (Eds.).

ACM, 436–449. https://doi.org/10.1145/3192366.3192410

[35] Yi Li, Shaohua Wang, and Tien N Nguyen. 2020. DLfix: Context-based code transformation learning for automated

program repair. In Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering. 602–614.
[36] Wang Ling, Edward Grefenstette, Karl Moritz Hermann, Tomáš Kočiskỳ, Andrew Senior, Fumin Wang, and Phil

Blunsom. 2016. Latent predictor networks for code generation. arXiv preprint arXiv:1603.06744 (2016).
[37] Kui Liu, Anil Koyuncu, Dongsun Kim, and Tegawendé F Bissyandé. 2019. Tbar: Revisiting template-based automated

program repair. In Proceedings of the 28th ACM SIGSOFT International Symposium on Software Testing and Analysis.
31–42.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.

https://doi.org/10.1109/TSE.2017.2755013
https://doi.org/10.18653/v1/d18-1111
https://doi.org/10.1145/3428292
https://doi.org/10.1145/3428292
https://openreview.net/forum?id=rywDjg-RW
https://doi.org/10.1109/SANER.2016.76
https://doi.org/10.1109/SANER.2016.76
https://doi.org/10.1109/ICSE.2019.00064
https://doi.org/10.1145/3192366.3192410

L2S: a Framework for Synthesizing the Most Probable Program under a Specification 1:43

[38] Fan Long, Peter Amidon, and Martin Rinard. 2017. Automatic Inference of Code Transforms for Patch Generation. In

ESEC/FSE. 727–739. https://doi.org/10.1145/3106237.3106253

[39] Fan Long and Martin Rinard. 2015. Staged Program Repair with Condition Synthesis. In ESEC/FSE.
[40] Fan Long and Martin Rinard. 2016. An Analysis of the Search Spaces for Generate and Validate Patch Generation

Systems. In ICSE. 702–713. https://doi.org/10.1145/2884781.2884872

[41] Fan Long and Martin Rinard. 2016. Automatic patch generation by learning correct code. In Proceedings of the 43rd
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. 298–312. https://doi.org/10.1145/

2837614.2837617

[42] Thibaud Lutellier, Hung Viet Pham, Lawrence Pang, Yitong Li, Moshi Wei, and Lin Tan. 2020. CoCoNuT: Combining

context-aware neural translation models using ensemble for program repair. In Proceedings of the 29th ACM SIGSOFT
International Symposium on Software Testing and Analysis. 101–114.

[43] Matias Martinez, Thomas Durieux, Romain Sommerard, Jifeng Xuan, and Martin Monperrus. 2017. Automatic repair

of real bugs in java: a large-scale experiment on the defects4j dataset. Empirical Software Engineering 22, 4 (01 Aug

2017), 1936–1964.

[44] Mark F. Medress, Franklin S. Cooper, James W. Forgie, C. C. Green, Dennis H. Klatt, Michael H. O’Malley, Edward P.

Neuburg, Allen Newell, Raj Reddy, H. Barry Ritea, J. E. Shoup-Hummel, Donald E. Walker, and William A. Woods.

1977. Speech Understanding Systems. Artif. Intell. 9, 3 (1977), 307–316. https://doi.org/10.1016/0004-3702(77)90026-1

[45] Aditya Krishna Menon, Omer Tamuz, Sumit Gulwani, Butler W. Lampson, and Adam Kalai. 2013. A Machine Learning

Framework for Programming by Example. In Proceedings of the 30th International Conference on Machine Learning,
ICML 2013, Atlanta, GA, USA, 16-21 June 2013 (JMLR Workshop and Conference Proceedings), Vol. 28. JMLR.org, 187–195.

http://proceedings.mlr.press/v28/menon13.html

[46] Anh Tuan Nguyen, Tung Thanh Nguyen, Hoan Anh Nguyen, Ahmed Tamrawi, Hung Viet Nguyen, Jafar M. Al-Kofahi,

and Tien N. Nguyen. 2012. Graph-based pattern-oriented, context-sensitive source code completion. In ICSE. 69–79.
[47] Oleksandr Polozov and Sumit Gulwani. 2015. FlashMeta: a framework for inductive program synthesis. In Proceedings of

the 2015 ACM SIGPLAN International Conference on Object-Oriented Programming, Systems, Languages, and Applications,
OOPSLA 2015, part of SPLASH 2015, Pittsburgh, PA, USA, October 25-30, 2015. 107–126. https://doi.org/10.1145/2814270.

2814310

[48] Yuhua Qi, Xiaoguang Mao, Yan Lei, Ziying Dai, and Chengsong Wang. 2014. The Strength of Random Search on

Automated Program Repair. In ICSE. 254–265. https://doi.org/10.1145/2568225.2568254

[49] Zichao Qi, Fan Long, Sara Achour, and Martin Rinard. 2015. An Analysis of Patch Plausibility and Correctness for

Generate-and-validate Patch Generation Systems (ISSTA). 24–36.
[50] Maxim Rabinovich, Mitchell Stern, and Dan Klein. 2017. Abstract Syntax Networks for Code Generation and Semantic

Parsing. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers). 1139–1149.

[51] Mukund Raghothaman, Yi Wei, and Youssef Hamadi. 2016. SWIM: synthesizing what i mean: code search and idiomatic

snippet synthesis. In ICSE. 357–367.
[52] Veselin Raychev, Martin T. Vechev, and Eran Yahav. 2014. Code completion with statistical language models. In ACM

SIGPLAN Conference on Programming Language Design and Implementation, PLDI ’14, Edinburgh, United Kingdom - June
09 - 11, 2014, Michael F. P. O’Boyle and Keshav Pingali (Eds.). ACM, 419–428. https://doi.org/10.1145/2594291.2594321

[53] Reudismam Rolim, Gustavo Soares, Loris D’Antoni, Oleksandr Polozov, Sumit Gulwani, Rohit Gheyi, Ryo Suzuki, and

Björn Hartmann. 2017. Learning syntactic program transformations from examples. In ICSE. 404–415.
[54] Ripon Saha, Yingjun Lyu, Wing Lam, Hiroaki Yoshida, and Mukul Prasad. 2018. Bugs. jar: a large-scale, diverse dataset

of real-world java bugs. In 2018 IEEE/ACM 15th International Conference on Mining Software Repositories (MSR). IEEE,
10–13.

[55] Ripon K. Saha, Yingjun Lyu, Hiroaki Yoshida, and Mukul R. Prasad. 2017. ELIXIR: Effective Object Oriented Program

Repair. In ASE. IEEE Press. http://dl.acm.org/citation.cfm?id=3155562.3155643

[56] Ripon K Saha, Yingjun Lyu, Hiroaki Yoshida, and Mukul R Prasad. 2017. ELIXIR: effective object oriented program

repair. In Proceedings of the 32nd IEEE/ACM International Conference on Automated Software Engineering. IEEE Press,

648–659.

[57] Chengxun Shu and Hongyu Zhang. 2017. Neural Programming by Example. In AAAI. AAAI Press, 1539–1545.
[58] Victor Sobreira, Thomas Durieux, Fernanda Madeiral, Martin Monperrus, and Marcelo de Almeida Maia. 2018. Dissec-

tion of a bug dataset: Anatomy of 395 patches from Defects4J. In SANER.
[59] Zeyu Sun, Qihao Zhu, Lili Mou, Yingfei Xiong, Ge Li, and Lu Zhang. 2019. A Grammar-Based Structural CNN Decoder

for Code Generation. In Thirty-Third AAAI Conference on Artificial Intelligence.
[60] Zeyu Sun, Qihao Zhu, Yingfei Xiong, Yican Sun, Lili Mou, and Lu Zhang. 2019. TreeGen: A Tree-Based Transformer

Architecture for Code Generation. In Thirty-Third AAAI Conference on Artificial Intelligence.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.

https://doi.org/10.1145/3106237.3106253
https://doi.org/10.1145/2884781.2884872
https://doi.org/10.1145/2837614.2837617
https://doi.org/10.1145/2837614.2837617
https://doi.org/10.1016/0004-3702(77)90026-1
http://proceedings.mlr.press/v28/menon13.html
https://doi.org/10.1145/2814270.2814310
https://doi.org/10.1145/2814270.2814310
https://doi.org/10.1145/2568225.2568254
https://doi.org/10.1145/2594291.2594321
http://dl.acm.org/citation.cfm?id=3155562.3155643

1:44 Yingfei Xiong and Bo Wang

[61] Michele Tufano, Cody Watson, Gabriele Bavota, Massimiliano Di Penta, Martin White, and Denys Poshyvanyk. 2019.

An empirical study on learning bug-fixing patches in the wild via neural machine translation. ACM Transactions on
Software Engineering and Methodology (TOSEM) 28, 4 (2019), 1–29.

[62] Song Wang, Taiyue Liu, and Lin Tan. 2016. Automatically learning semantic features for defect prediction. In ICSE.
297–308.

[63] Westley Weimer, ThanhVu Nguyen, Claire Le Goues, and Stephanie Forrest. 2009. Automatically finding patches using

genetic programming. In ICSE. 364–374. https://doi.org/10.1109/ICSE.2009.5070536

[64] Ming Wen, Junjie Chen, Rongxin Wu, Dan Hao, and Shing-Chi Cheung. 2018. Context-Aware Patch Generation for

Better Automated Program Repair. In ICSE.
[65] Martin White, Michele Tufano, Matias Martinez, Martin Monperrus, and Denys Poshyvanyk. 2019. Sorting and

transforming program repair ingredients via deep learning code similarities. In 2019 IEEE 26th International Conference
on Software Analysis, Evolution and Reengineering (SANER). IEEE, 479–490.

[66] Qi Xin and Steven P. Reiss. 2017. Leveraging Syntax-related Code for Automated Program Repair (ASE). http:

//dl.acm.org/citation.cfm?id=3155562.3155644

[67] Yingfei Xiong, BoWang, Guirong Fu, and Linfei Zang. 2018. Learning to Synthesize. In International Genetic Improvement
Workshop. https://doi.org/10.1145/3194810.3194816

[68] Yingfei Xiong, Jie Wang, Runfa Yan, Jiachen Zhang, Shi Han, Gang Huang, and Lu Zhang. 2017. Precise Condition

Synthesis for Program Repair. In ICSE. https://doi.org/10.1109/ICSE.2017.45

[69] Kun Xu, Lingfei Wu, ZhiguoWang, Mo Yu, Liwei Chen, and Vadim Sheinin. 2018. Exploiting Rich Syntactic Information

for Semantic Parsing with Graph-to-Sequence Model. In Proceedings of the 2018 Conference on Empirical Methods
in Natural Language Processing, Brussels, Belgium, October 31 - November 4, 2018, Ellen Riloff, David Chiang, Julia

Hockenmaier, and Jun’ichi Tsujii (Eds.). Association for Computational Linguistics, 918–924. https://doi.org/10.18653/

v1/d18-1110

[70] Jifeng Xuan, Matias Martinez, Favio Demarco, Maxime Clément, Sebastian Lamelas, Thomas Durieux, Daniel Le Berre,

and Martin Monperrus. 2017. Nopol: Automatic Repair of Conditional Statement Bugs in Java Programs. TSE (2017).

[71] He Ye, Matias Martinez, and Martin Monperrus. 2021. Automated patch assessment for program repair at scale.

Empirical Software Engineering 26, 2 (2021), 1–38.

[72] Pengcheng Yin and Graham Neubig. 2017. A Syntactic Neural Model for General-Purpose Code Generation. In

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers).
440–450.

[73] Xiangyu Zhang, Neelam Gupta, and Rajiv Gupta. 2006. Locating faults through automated predicate switching. In

ICSE. 272–281.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.

https://doi.org/10.1109/ICSE.2009.5070536
http://dl.acm.org/citation.cfm?id=3155562.3155644
http://dl.acm.org/citation.cfm?id=3155562.3155644
https://doi.org/10.1145/3194810.3194816
https://doi.org/10.1109/ICSE.2017.45
https://doi.org/10.18653/v1/d18-1110
https://doi.org/10.18653/v1/d18-1110

L2S: a Framework for Synthesizing the Most Probable Program under a Specification 1:45

APPENDIX: A LIST OF THE EXTRACTED FEATURES

Table 15. Context features

Name Type Description
filename String The enclosing file name

tdname String The enclosing class name

mtdname String The enclosing method name

mtdmod Numerical The modifier information of the enclosing method

mtdln Numerical The number of lines of the enclosing method

locnum Numerical The number of accessible local variables

paranum Numerical The number of the parameters of the method

fldnum Numerical The number of fields of the class

allloc String The string of concatenating the name of every accessible variable

allloctp String The string of concatenating the type of every accessible variable

locintnm Numerical The number of integer variables

locfltnm Numerical The number of float point variables

locarrnm Numerical The number of array variables

allfld String The string of concatenating the name of every field

allfldtp String The string of concatenating the type of every field

inloop Boolean Whether the location is inside a loop

bodyctl Label The control flow information inside the block of current location

befsyn String The string of concatenating control flow points before current location

bdsyn String The string of concatenating control flow points inside the block body of current location

afsyn String The string of concatenating control flow points inside the block body of current location

bes N Label The N ’th control flow point before current location (0 ≤ N ≤ 5).

bds N Label The N ’th control flow point inside the block of current location (0 ≤ N ≤ 3).

afs N Label The N ’th control flow point after the block of current location (0 ≤ N ≤ 3).

lv N Label The N ’th nearest variable from current location (0 ≤ N ≤ 3).

pstmt N String The N ’th nearest line before current location (0 ≤ N ≤ 1).

nstmt N String The N ’th nearest line after current location (0 ≤ N ≤ 1).

befcd String The nearest if condition before current location.

befpred String The E literal of the nearest if condition before current location.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:46 Yingfei Xiong and Bo Wang

Table 16. Program features for V

Name Type Description
varname String The name of the variable.

vartype String The type of the variable.

vnmlen Numerical The length of the name of the variable.

shortvn Boolean Whether the variable name is a short name having no meaning.

vnmwds Numerical The number of words divided by camel-case in the name.

ltt N Label The last N ’th letter in the name (0 ≤ N ≤ 2).

wd N Label The N ’th word by camel-case in the name (0 ≤ N ≤ 2).

isint Boolean Whether the variable type is integer.

isflt Boolean Whether the variable type is float point.

isarr Boolean Whether the variable type is array.

iscoll Boolean Whether the variable type is a sub-type of Java Collection.

ispmtarr Boolean Whether the variable type is primitive.

prmtandspl Boolean Whether the features shortvn and ispmtarr are both true.

twdl Label The last word divided by camel-case in the variable type.

lastassign Label The type of the nearest assignment of the variable.

assop Label The operation in the nearest assignment of the variable.

assmtd Label The method invocation in the nearest assignment of the variable.

assnm Label The variable name in the expression of the nearest assignment of the variable.

assnum Numerical The assignment time of the variable before the location.

dis Numerical The distance between the assignment and the location.

disl10 Boolean Whether the assignment is near, i.e., dis ≤ 10.

disl20 Boolean Whether the assignment is not far, i.e., dis ≤ 20.

disg20 Boolean Whether the assignment is far, i.e., dis ≥ 20.

preassnum Numerical The time to be assigned of the variable before the location.

isparam Boolean Whether the variable is a parameter of the method.

isfld Boolean Whether the variable is a field of the class.

isfnl Boolean Whether the variable has the final modifier.

isidxer Boolean Whether the variable is an array index.

bodyuse Boolean Whether the variable is used inside the body of the current if statement.

casted Boolean Whether the variable type-casted before current location.

castedtp Label The type that the variable to be casted before current location.

outuse Boolean Whether the variable is used outside the body of the current if statement.

incondnum Numerical The time the variable used in condition in the current method.

filecondnum Numerical The time the variable used in condition in the current file.

totcondnum Numerical The time the variable used in condition in the project.

lastpre String The nearest predicate using the variable.

docexcp Label The exception associated with the variable in Javadoc.

docop Label The exception operation associated with the variable in Javadoc.

doczero Boolean Whether the exception predicate in Javadoc has 0.

docone Boolean Whether the exception predicate in Javadoc has 1.

docnon Boolean Whether the exception predicate in Javadoc has null.
docrange Boolean Whether the exception predicate in Javadoc limits a range.

docincode Boolean Whether the variable appears in the code fragment of Javadoc.

Table 17. Position features for V

Name Type Description
argused Boolean Whether the variable position is an argument of a method invocation.

tpfit Boolean Whether the variable type fit the current position of the test.
occpostime Numerical The occurrence time of the variable in current partial program.

used Boolean Whether the variable is used in current partial program.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.

L2S: a Framework for Synthesizing the Most Probable Program under a Specification 1:47

Table 18. Program features for E

Name Type Description
pred String The string literal of an E.
posnum Numerical The number of positions to be expanded.

roottp Label The AST node type of the root of an E.
ariop Label The last arithmetic operator in the preorder traversal of an AST of an E.
hight Numerical The AST height of an E.
mtd Label The name of the last method invoked in the preorder traversal of an E AST.

instcof Boolean Whether the E contains instanceof.
num N Numerical The N ’th number appears in an E (0 ≤ N ≤ 1).

hasnull Boolean Whether the E contains null.

Table 19. Position features for L

Name Type Description
isroot Boolean Whether the L is the AST root of a partial program.

parenttp Label The AST node type of the root.

siblingtp Label The AST node type of the sibling node.

location Label The location of the node in the parent node.

depth Numerical The distance from the node to the root.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.

	Abstract
	1 Introduction
	2 Motivating Example and Approach Overview
	2.1 Motivating Example
	2.2 Calculating the conditional probability
	2.3 Generating the Program with Maximum Probability
	2.4 Ensuring the satisfaction of the specification
	2.5 Other Expansion Orders

	3 Approach Details
	3.1 Expansion Rules
	3.2 Probability
	3.3 Path Finding Problem
	3.4 Pruning off Infeasible Partial Programs

	4 L2S-Cond
	4.1 Expansion rules
	4.2 Machine-Learning Methods
	4.3 Search Algorithm
	4.4 Abstract Constraint Functions
	4.5 Evaluation of L2S-Cond

	5 L2S-Hanabi
	5.1 Workflow
	5.2 Fault Localization
	5.3 Patch Generation
	5.4 Patch Validation
	5.5 Evaluation of L2S-Hanabi
	5.6 Discussion on the Repair Capability of L2S-Hanabi

	6 Related Work
	6.1 Program Generation from Context
	6.2 Classic Program Synthesis
	6.3 Approaches to Program Estimation
	6.4 Statistical Program Repair

	7 Threats to Validity
	8 Conclusion
	Acknowledgments
	References

