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Range Fixes: Interactive Error Resolution for
Software Configuration

Yingfei Xiong, Hansheng Zhang, Arnaud Hubaux, Steven She, Jie Wang, and Krzysztof Czarnecki

Abstract—To prevent ill-formed configurations, highly configurable software often allows defining constraints over the available
options. As these constraints can be complex, fixing a configuration that violates one or more constraints can be challenging.
Although several fix-generation approaches exist, their applicability is limited because (1) they typically generate only one fix or a
very long fix list, difficult for the user to identify the desirable fix; and (2) they do not fully support non-Boolean constraints, which
contain arithmetic, inequality, and string operators.
This paper proposes a novel concept, range fix, for software configuration. A range fix specifies the options to change and the
ranges of values for these options. We also design an algorithm that automatically generates range fixes for a violated constraint.
We have evaluated our approach with three different strategies for handling constraint interactions, on data from nine open source
projects over two configuration platforms. The evaluation shows that our notion of range fix leads to mostly simple yet complete
sets of fixes, and our algorithm is able to generate fixes within one second for configuration systems with a few thousands options
and constraints.
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1 INTRODUCTION

Configuration is a common task faced by software de-
velopers. Modern operating systems, embedded soft-
ware, and large enterprise systems often expose con-
figurability to handle variations in user and platform
requirements. Given a configuration space consisting
of a set of options and constraints over the options, the
user produces a configuration by deciding a proper
value for each option, ensuring all constraints are
satisfied.

For example, Linux kernel can be configured to run
on different hardware systems and be equipped with
different software modules. To configure a kernel, the
user typically selects the CPU architecture (e.g., x86 or
ARM), the type of file system (e.g., ext4 or JFS), and
other options. Various constraints exist on the options.
For example, there is an option that allows the kernel
to make use of the “CMPXCHG” instruction, which is only
available when x86 architecture is selected and 386
family is not selected.

To support the configuration process, large software
systems often come with dedicated configuration sys-
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tems, such as Linux Kconfig [1] and eCos CDL [2].
These configuration systems often provide a spec-
ification language, where the configuration options
and the constraints over the options are explicitly
specified. The configuration system then translates
the specification into an interactive configuration in-
terfaces to allow users to specify values for the op-
tions. When a constraint is violated, the configuration
system will report an error which must be resolved
before the configuration becomes operational. Thus,
an important constituent of the configuration process
is the resolution of errors.

However, resolving an error in large configurable
systems is not easy. First, it can be difficult to fig-
ure out how an error occurs. Modern configuration
systems often introduce hidden constraints, which
are specified in the configuration system but are
not explicitly presented to the user [3] and can be
easily overlooked. For example, in Linux, a child
option1 may inherit the dependencies of its parent
options, and these inherited dependencies are usually
not directly presented to the user. Second, it can be
difficult to fix the error. Constraints in modern con-
figurable systems can be very complex. User-defined
constraints often interplay with the hidden constraints
[3] introduced by the configuration system, forming
very large constraints. One constraint we found in
eCos [4]—an embedded operating system—contains
55 variable references and 35 constants, connected by
66 logical, arithmetic, and string operators. Further-
more, constraints often interact with each other. A
solution satisfying one constraint may violate other

1. In Linux Kconfig, the options are organized as a tree.
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constraints. It is difficult to locate all potentially in-
teracting constraints and consider all constraints to-
gether. Third, even if we have figured out a solution,
it is still cumbersome to make the actual changes.
Modern configurable systems can have large number
of options, e.g., the Linux kernel has 6320 options
[3], and the options referred in one constraint are
not necessarily shown to the user next to each other.
As a result, the user has to navigate across a large
number of options, which is a challenging and time-
consuming task. The difficulty of error resolution is
also confirmed by empirical studies. In our previous
survey with 97 Linux users and 9 eCos users, both
groups report that error resolution is a major chal-
lenge in configuring the respective system [5].

To overcome the difficulty of error resolution, re-
searchers and tool vendors have proposed various
approaches. One class of approaches is to automat-
ically generate concrete changes to the options (called
a concrete fix) in the faulty configuration to resolve the
error. Examples in this class are the eCos configurator
[2] and White et al.’s automatic diagnosis [6]. How-
ever, there is usually more than one way to fix the
error, and a single automatically generated concrete
fix may not fulfill the user’s requirements. Empirical
studies on the eCos configurator confirm this: more
than 75% users have encountered situations where the
generated fix is not useful [5], and similar complaints
can also be found on the mail list [3].

Another possibility is to give a complete list of all
possible concrete fixes to allow the user to choose
from. However, modern configurable systems often
contain non-Boolean options such as numbers and
strings [3], [7], to which a very large space of values
can be assigned. As reported by Passos et al. [7],
the 116 configuration models in the codebase of eCos
contain between 1159 and 1312 options, where 53%-
56% of the options are non-Boolean options, including
23%-26% integer or floating-point numbers, and 28%-
32% strings. Furthermore, among the 916 to 1269
constraints per model, 750 to 1095 constraints per
model contain non-Boolean operators, such as >, +,
or substr. When non-Boolean options and constraints
are present, the fix list is usually very long, if not
infinite. It would be infeasible for the user to pick
a desirable fix from a very long list, not to mention
how to generate such a list.

In this paper we approach the error resolution
problem from a different angle. Instead of giving
concrete fixes, we characterize the solution space of
all possible fixes in a compact form, and let the user
choose the most appropriate fix. More concretely, our
contributions are threefold:
• Range fixes. We propose a novel concept, range

fix (Section 3). Unlike a concrete fix, a range fix
tells the user what options should be changed
and in what range the value of each option can
be chosen. As a result, a set of concrete fixes

can be represented by one range fix, and the
list of concrete fixes can be compacted into a
much shorter and intentional list of range fixes,
allowing the user to scan and choose from. Fur-
thermore, we discuss the desired properties of
range fixes, which formalize the requirements of
the fix generation problem.

• Fix generation algorithm. We design an algo-
rithm that generates range fixes automatically
and ensures the desired properties of the gener-
ated fixes (Section 4). Our algorithm is inspired
by the theory of diagnosis [8], [9] that obtains
diagnoses from unsatisfiable cores calculated by
constraint solvers. In addition, we also discuss
how constraint interactions should be handled in
our framework (Section 5).

• Evaluation. We have implemented our algorithm
on eCos CDL and Linux Kconfig (Section 6)
and evaluated the approach on 310 constraint
violations from nine open source projects using
eCos and Linux (Section 7). Our notion of range
fix leads to mostly simple yet complete sets of
fixes, and our algorithm is able to generate fixes
within one second for configuration systems with
a few thousands options and constraints. We also
compare three strategies for handling constraint
interactions.

In the rest of the paper, we first motivate and
outline our approach in Section 2. After introducing
the main contributions, we discuss threats to validity
in Section 8, limitations and future work in Section 9,
and the related work in Section 10. We conclude the
paper in Section 11.

An earlier version of this work appeared at ICSE’12
[10]. Compared to the conference version, this ver-
sion is significantly extended and improved. First,
the previous approach ensures only three properties
of range fixes, while the fourth desirable property,
“minimality of fix units”, is only discussed but not
supported in the conference version. In this version,
a novel minimization step is added and evaluated,
which ensures minimality of fix units. Second, the
core algorithm of generating diagnosis is completely
replaced by a new algorithm which is much simpler
and has better overall performance. A detailed com-
parison between the two algorithms is also given.
Third, in the previous version, the approach is only
evaluated on eCos, while in this version, we evaluate
the approach on both eCos and Linux. Fourth, all
theorems and lemmas are presented with proofs in
this version. Fifth, the related work is updated to
include the newest progress in this field. Finally, the
text has been revised for better clarity and readability.

2 MOTIVATING EXAMPLE AND SOLUTION
OVERVIEW

Problem. We now motivate our work with an
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Fig. 1. The eCos Configurator
(Option “Pre-Allocation Size” has a requires property. The con-
straint declared in this property is violated, resulting in an error
reported in the upper-right corner.)

Fig. 2. Option “Startup”
(The option is selected on the left and its properties are shown
on the right. It is disabled because the active-if constraint is not
satisfied.)

adapted example which utilizes the eCos configurator
[2] to configure an object pool. Figure 1 shows a set of
options for configuring an object pool. The left panel
shows the set of options that can be changed by the
user. The lower-right panel shows the properties of
the currently selected option. Particularly, the flavor
property indicates whether the option is a Boolean
option or a data option. A Boolean option can be
either selected or unselected; a data option can be
assigned an integer or a string value. In Figure 1, “Pre-
Allocation Size” is a data option; “Use Pre-Allocation”
is a Boolean option. Under the hood, all the options,
the properties, and other information are defined
by a configuration model described in a modeling
language—CDL [11].

Besides the flavor, each option may also declare
constraints using requires property or active-if prop-
erty. When a requires constraint is violated, an error is
reported in the upper-right panel. In Figure 1, option
“Pre-Allocation Size” declares a requires constraint
requiring its value be smaller than or equal to “Object
Pool Size”, and an error is reported because the con-
straint is violated. When an active-if constraint is vio-
lated, the option is disabled in the GUI and its value
is considered as zero. Figure 2 shows the properties of
the “Startup” option. This option declares that at most
half of the object pool can be pre-allocated. Since this
constraint is violated, the “Startup” option is disabled
and the user cannot change its value.

Though behaving differently, both requires and
active-if constraints are essentially the same: they both
declare constraints on the configuration space, and the
user will have to figure out ways to satisfy them dur-
ing the configuration process—when the user needs to

Fig. 3. Option “Object Pool Size”
(This option is calculated based on the formula specified under
“Calculated” property.)

fix a configuration error or change an inactive option.
Satisfying a constraint is often not a straightforward

task. To illustrate this, let us take a look at the error on
“Pre-Allocation Size” in Figure 1. In order to fix this
error, we need to look up the definition of “Object
Pool Size”. In Figure 3, we see that “Object Pool Size”
declares a calculated property, meaning that the value
of the option is determined by the declared expression
and cannot be modified by the user. As a result, the
constraint declared on “Pre-Allocation Size” is, in fact,
the following.
Pre_Allocation_Size <=

Buffer_Size * 1024 / Object_Size

Furthermore, according to the CDL semantics,
when an option is inactive, the constraints it declares
are not considered by the error checking system.
An option is inactive when its active-if constraint
is violated or its parent option is deselected. “Pre-
Allocation Size” has a parent, yielding the following
complete constraint:
Use_Pre_Allocation -> (Pre_Allocation_Size <=

Buffer_Size * 1024 / Object_Size)

By analyzing the constraint, we realize that we may fix
the error by one of the following changes: decreasing
“Pre-Allocation Size”, or increasing “Buffer Size”, or
decreasing “Object Size”, or, more simply, disabling
the pre-allocation function. Now we could choose one
of these possibilities and navigate to the respective
option to make the change.

This example illustrates the three difficulties in
the introduction. The hidden constraints are easily
overlooked, and thus it is not easy to figure out all
root causes of the error. When mixed with hidden
constraints, a simple constraint becomes complex,
and it could be difficult to analyze the constraint.
Finally, even when the user has figured out a solution,
the user has to navigate to the options to make
the changes. This becomes difficult when model size
grows.

Solution. Our approach automatically generates a
list of range fixes to help satisfy a constraint. For the
error in Figure 1, we will generate the following list
of alternative fixes.
• [Use_Pre_Allocation := false]

• [Pre_Allocation_Size: Pre_Allocation_Size <=

8]

• [Buffer_Size: Buffer_Size >= 5]
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Fig. 4. Executing a range fix
(The user sets the value of “Pre-Allocation Size” with a floating
label indicating its range.)

• [Object_Size: Object_Size <= 409.6]

Each range fix consists of two parts: the option to
be changed and a constraint over the options showing
the range of values. The first fix is also a concrete
assignment, and will be automatically applied when
selected. The other fixes are ranges. If the user selects,
for example, the second fix, the configurator will
highlight option “Pre-Allocation Size”, prompt the
range, and ask the user to select a value in the range,
as shown in Figure 4.

Range fixes resolve the three difficulties by au-
tomating most of the tasks. The hidden constraints are
automatically taken into account and the constraints
are automatically analyzed. The navigation is also
performed automatically when applying a fix. The
user has to only choose a fix and decide a value within
the range of the fix.

Until now we have considered only one requires
constraint (though potentially augmented with multi-
ple hidden constraints) in the configuration system. In
an eCos configuration model, usually there are many
requires constraints, each defining a class of errors.
These constraints may interact with each other, where
fixes for one constraint may violate another constraint,
thereby introducing new errors. We shall discuss the
problem of one constraint first (called single-constraint
violation), and discuss problem of multiple interacting
constraints (called multi-constraint violation) in Sec-
tion 5.

3 DEFINING RANGE FIXES

Basic Definitions. Our definitions are built upon
the insight [3], [4], [12] that common configuration
systems can be represented by a set of variables
(options) and a set of constraints. The constraints are
described in a constraint language, in the form of
quantifier-free predicate logic. We use Φ to denote a
constraint language and Φ(V ) to denote all constraints
expressible in the constraint language over the vari-
able set V .

In particular, we consider the situation where a
configuration error occurs, i.e., a constraint violation
exists. Formally, a (single-)constraint violation consists
of a tuple (V, e, c), where V is a set of typed variables;
the current configuration e is a function assigning a

type-correct value to each variable in V ; and c ∈ Φ(V )
is a constraint over V violated by e. A fix generation
problem for a violation (V, e, c) is to find a set of range
fixes to help users produce a new configuration e′

such that c is satisfied, denoted as e′ |= c. Note that in
a configurable system there could also be multiple in-
terrelated constraints, and we consider such situations
in Section 5.

Consider the following example of a constraint
violation:

V : {m : Bool, a : Int, b : Int}
e : {m = true, a = 6, b = 5}
c : (m→ a > 10) ∧ (¬m→ b > 10) ∧ (a < b)

(1)
The range fixes we have seen so far change only

one variable, but more complex fixes are sometimes
inevitable. For example, we cannot solve violation
(1) by changing only one variable. Several alternative
fixes are possible:
• [m := false, b : b > 10]
• [(a, b) : a > 10 ∧ a < b]

The first fix contains two parts separated by “,”, each
changing a variable. We call each part a fix unit. The
second fix is more complex. This fix contains only one
fix unit, but the range of this fix unit is defined over
two variables. When the fix is executed, the user has
to choose a value for each variable within the range.

Taking the above forms into consideration, we can
define a range fix. A range fix r for a violation (V, e, c)
is a set of fix units. A fix unit can be either an
assignment unit or a range unit. An assignment unit has
the form of “var := val” where var ∈ V is a variable
and val is a value conforming to the type of var. A
range unit has the form of “U : cstrt”, where U ⊆ V
is a set of variables and cstrt ∈ Φ(U) is a satisfiable
constraint over U specifying the new ranges of the
variables. A technical requirement is that the variables
in fix units should be disjoint, otherwise two units
may assign two different values to one variable.

For any fix unit u ∈ r, we use u.V to denote the
variables to be changed by this unit and use u.c to
denote the constraint of the unit. More specifically, for
an assignment unit “var := val”, u.V denotes {var}
and u.c denotes var = val; for a range unit “U : cstrt”,
u.V denotes U and u.c denotes cstrt. We further use
r.V to denote the union of u.V and use r.c to denote
the conjunction of u.c, for all u ∈ r. For example, let
r be the range fix [m := false, b : b > 10], then r.v =
{m, b} and r.c is m = false ∧ b > 10.

Applying range fix r of violation (V, e, c) to e will
produce a new configuration interactively. We denote
all possible configurations that can be produced by
applying r to e as r . e, where r . e = {e′ | e′ |=
r.c ∧ ∀v∈V (v /∈ r.V → e′(v) = e(v))}
Desired Properties. A trivial way to generate a
fix from a violation is to produce a range unit
where the variables to change are all variables in
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the constraint and the range of these variables is the
constraint itself. For example, the fix for violation
(1) could be [(m, a, b) : (m → a > 10) ∧ (¬m
→ b > 10) ∧ (a < b)]. However, such a fix provides
no more information than the original constraint. In
this subsection, we discuss the desired properties of
range fixes.

Suppose that r is a range fix for a violation (V, e, c).
The first desired property is that a range fix should be
correct: all configurations that can be produced from
the fix must satisfy the constraint.

Property 1 (Correctness). ∀e′ ∈ (r . e), e′ |= c

Second, correct range fixes over the same set of
variables are often highly overlapping. For example,
[m := false, b : b > 11] is included in [m :=
false, b : b > 10], though both are correct. To give
users all possible choices, we would like to present
the maximal range of the variables.

Property 2 (Maximality of ranges). There exists no fix
r′ for (V, e, c) such that r′ is correct, r′.V = r.V and
(r . e) ⊂ (r′ . e)

Third, even with the above two properties, the
number of possible fixes may still be large. Thus, we
further rely on a heuristic rule to reduce the number of
fixes: a fix should change a minimal set of variables.
The reason is that each value currently assigned to
a variable is a configuration decision made by the
user, and a fix should not unnecessarily break user
decisions. For example, [m := false, b : b > 10] is
preferable to [m := false, b : b > 10, a : a = 9]
because the latter unnecessarily changes a, which does
not contribute to the satisfaction of the constraints.

Property 3 (Minimality of variables). There exists no
fix r′ for (V, e, c) such that r′ is correct and r′.V ⊂ r.V .

As a heuristic rule, minimality of variables some-
times excludes possible changes that resolve a vio-
lation. For example, given a constraint i > j and a
configuration {i = 5, j = 10}, we can find a possible
fix [i := 6, j := 5], but this fix is excluded because
we can satisfy the constraint by only changing i or
j. As a result, it is important to evaluate whether
the excluded changes are really needed by users. In
our evaluation described in Section 7, the excluded
changes are never adopted by the user.

Another possible way to define the minimality of
variables is to consider concrete changes implied by
the range fixes, and require the generated fix list to
contain exactly all minimal concrete changes. Mini-
mality is defined by considering both the variables
and the new values, e.g., [i := 5, j := 6] is not a
minimal change when [i := 5] is present, but is a
minimal change when only [i := 11] is present. In
this way we can ensure that no possible change is
excluded. However, we discard this idea because it
can lead to complex or confusing fixes. For the above

example, the fix list that contains all minimal concrete
changes would be as follows.
• [i : i > 10]
• [j : j < 5]
• [(i, j) : i <= 10 ∧ j >= 5 ∧ i > j]

The last fix is even more complex than the original
constraint. Such a fix list would hardly be useful to
the user.

Fourth, after deciding the range over the variables,
we would like to represent the range in the simplest
way possible. One way to simplify the range is to
present the range for each variable individually when
possible. Thus, another desired property is that a fix
unit should change as few variables as possible. In
other words, no fix unit can be divided into smaller
equivalent fix units.

Property 4 (Minimality of (fix) units). For any u ∈
r, there does not exist u1, u2, where u1.V ∩ u2.V = ∅,
u1.V ∪ u2.V = u.V , and u1.c ∧ u2.c ≡ u.c.

Armed with these properties of range fixes, we
can define the desired properties of a list of fixes.
Basically, we would expect that a list is complete,
contains no duplicated fixes, and all fixes in a list are
desired. Since the same constraint can be represented
in different ways, we need to consider the semantic
equivalence of fixes. Two fixes r and r′ for violation
(V, e, c) are semantically equivalent if (r . e) = (r′ . e),
otherwise they are semantically different.

Property 5 (Well-definedness of fix lists). Given a
constraint violation (V, e, c), a list of fixes L is well-defined
iff
[Minimality] any two fixes in L are semantically different,
[Correctness] each fix in L satisfies Property 1, 2, 3 and 4,

and
[Completeness] any fix that satisfies Property 1, 2, 3 and

4 is semantically equivalent to a fix in L.

Thus, a fix generation problem is to find a well-
defined list of fixes for a given constraint violation
(V, e, c).

4 GENERATING RANGE FIXES

In Section 3 we claimed five desired properties. To
achieve them, our generation algorithm consists of
three stages. (i) We find all minimal sets of variables
that need to be changed. For example, in violation (1),
a minimal set of variables to change is D = {m, b}.
(ii) For each such set of variables, we replace any
unchanged variable in c by its current value, obtaining
a maximal and correct range of the variables. In the
example, we replace a by 6 and get (m → 6 >
10) ∧ (¬m → b > 10) ∧ (6 < b). (iii) We simplify the
range to get a set of minimal fix units. In the example
we will get [m := false, b : b > 10]. Intuitively,
stage (i) ensures Property 3 for each fix, as well as
the minimality and the completeness of the fix list.
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Stage (ii) ensures Property 1 and Property 2 for each
fix. Stage (iii) ensures Property 4 for each fix.

Next we explain the stages in detail. Stage (ii) is
trivial and does not demand further elaboration. We
now concentrate on stages (i) and (iii).

4.1 From Constraints and Configuration to Vari-
able Sets

Most constraint solvers have the ability of finding
unsatisfiable cores. Our approach builds upon this
ability. Given a set of unsatisfiable constraints, an
unsatisfiable core is a subset of the constraints that is
still unsatisfiable. An unsatisfiable core is said to be
minimal if all its proper subsets are satisfiable. Many
constraint solvers further allow the constraints to be
split into soft constraints and hard constraints, and
seek unsatisfiable cores only within soft constraints.

Our approach first represents a violation as a set
of constraints. Given a constraint violation (V, e, c),
we treat the configuration e as soft constraints on
the variables and constraint c as a hard constraint.
Since c is unsatisfied by e, the whole constraint sets
must be contradictory and unsatisfiable. For example,
violation (1) can be represented by the following
constraint set, which is unsatisfiable.

Hard constraint (c):
[0] (m→ a > 10) ∧ (¬m→ b > 10) ∧ (a < b)

Soft constraints (e):
[1] m = true

[2] a = 6
[3] b = 5

To find what variables should be changed to re-
solve the violation, we need to find a subset of soft
constraints that, when removed from the constraint
set, restores the satisfiability of the whole set. In our
example, we could remove subsets {1, 3} or {2, 3},
which correspond to two variable sets {m, b} and
{a, b}. Following Reiter [8], we call such a subset a
diagnosis. A diagnosis is minimal iff none of its subsets
is a diagnosis. In this stage we need to find all minimal
diagnoses.

To get all minimal diagnoses, we rely on unsatis-
fiable cores. To restore satisfiability, a diagnosis must
eliminate all unsatisfiable cores in the constraint set,
and thus it must contain at least one constraint from
each minimal unsatisfiable core. Furthermore, a min-
imal diagnosis should not contain extra constraint,
so every constraint in a minimal diagnosis must be
contained in at least one minimal unsatisfiable core.
In our example, the minimal unsatisfiable cores are
{1, 2}, and {3}. A minimal diagnosis, say {1, 3}, con-
tains one constraint from each core and no extra
constraint.

As a result, we can pick one constraint from each
minimal unsatisfiable core to form a diagnosis, and
since every constraint in a minimal diagnosis must be

contained in a minimal unsatisfiable core, diagnoses
constructed in this way contain all minimal diagnoses,
plus non-minimal ones. We just need to identify the
minimal ones from all diagnoses.

However, modern constraint solvers do not have
the interface of returning all minimal unsatisfiable
cores. First, they only return one unsatisfiable core at
a time, and do not return the full list. Second, though
for most of the time the unsatisfiable cores returned
are minimal, minimality is not guaranteed.

To solve the second problem, we introduce a min-
imization step for each unsatisfiable core returned,
as shown in Algorithm 1. In this step, we try to
remove each constraint from an unsatisfiable core. If
we remove a constraint from a core and the core is still
unsatisfiable, we proceed with the new core because
it is smaller. In the end we will have a core where
removing any of its constraints makes it satisfiable.
Because the subset of a satisfiable constraint set is
still satisfiable, all proper subsets are satisfiable. By
definition, this is a minimal unsatisfiable core. This
algorithm will be called iteratively to get the needed
unsatisfiable cores.

Algorithm 1 Minimize an unsatisfiable core
Input: C, an unsatisfiable core

1: for each constraint c in C do
2: [ICS]∗ check if C\c is satisfiable
3: if C\c is unsatisfiable then
4: C ← C\c
5: end if
6: end for
7: return C

* “[ICS]” indicates that we need to invoke the constraint solver.

To solve the first problem, we build the diagnoses
incrementally. First we invoke Algorithm 1 to get
an unsatisfiable core, then we pick one constraint
from the core, and remove that constraint from the
set. Then we invoke the constraint solver again and
retrieve another constraint. We repeat this until there
is no unsatisfiable core, and the constraints we have
picked form a diagnosis. By iterating all possible
combinations from this process, we can ensure to
get all minimal diagnoses, but we cannot ensure all
diagnoses we get are minimal, and thus we just need
to compare the cores against each other and eliminate
all non-minimal diagnoses. In our running example,
we may first get an unsatisfiable core {1, 2}, and
then we pick 1 and invoke the constraint solver for
{2, 3}. The solver returns {3}. We pick this constraint
and invoke the constraint solver for {2}. This time
the constraint solver returns no core, and we get the
diagnosis {1, 3}.

However, invoking the constraint solver is a costly
operation and we would like to do it as infrequently
as possible. This idea leads to Algorithm 2. In Al-
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gorithm 2, we construct all diagnoses together in
set E. E is initialized with a set that contains an
empty diagnosis (line 1), which allows to check for
unsatisfiable cores in C alone (line 4). Every time
a new unsatisfiable core is returned, we extend all
partial diagnoses that do not overlap with the new
core (line 11-19). We also drop all diagnoses that are
not minimal when extending a diagnosis (line 14-15).

Algorithm 2 Find minimal diagnoses
Input: C: the (unsatisfiable) constraint set
Data: E: a set of partial diagnoses
Data: R: a set of completed diagnoses

1: E← {∅} //Note that ∅ is an empty diagnosis
2: while E 6= {} do
3: E0 ← a random diagnosis in E
4: [ICS] find an unsatisfiable core in (C\E0)
5: if there is no unsatisfiable core then
6: E← E\E0

7: R← R ∪ {E0}
8: else
9: X ← the unsatisfiable core

10: minimize X using Algorithm 1
11: for each E in E where E ∩X = ∅ do
12: for each x in X do
13: E′ ← E ∪ {x}
14: if @E′′ ∈ (E\E) ∪R, E′′ ⊆ E′ then
15: E← E ∪ {E′}
16: end if
17: end for
18: E← E\E
19: end for
20: end if
21: end while
22: return R

Lemma 1. If all invocations to the constraint solver are
successful, the set of diagnoses produced by Algorithm 2
contains all minimal diagnoses.

Proof: First, the algorithm terminates because in
each iteration, if no set is moved from E to R, at least
one set in E will grow larger, and there is an upper
bound of the growth, C.

Second, each set in R is a diagnosis because we add
E to R only when C\E is satisfiable (no unsatisfiable
core).

Third, every minimal diagnosis is included in R.
We show this by proving that at the end of each
iteration, every minimal diagnosis is either in R or
has a subset in E. Since E is initialized with a non-
empty set, there is at least one iteration. Since in the
end E is empty, we know every minimal diagnosis
is included in R. Consider the minimal diagnosis D.
Initially we have the empty set in E, so D has a
subset in E. Let us assume that at the beginning of
an iteration D has a subset E in E. In this iteration,
there are three possibilities: 1) E is added to R, and

in this case E = D because D is a minimal diagnosis;
2) E is kept the same, and D still has a subset in E;
3) E is removed from E at line 18. In the last case,
D ∩X must be non-empty because D is a diagnosis.
Let c be an arbitrary constraint in D ∩X . As a result,
E ∪ {c} is either added to E at line 15 or there is a
subset of E ∪ {c} in E\E ∪R, which in terms ensure
that D is either in R or has a subset in E.

Fourth, each diagnosis in R is minimal. This is
because at each iteration, every minimal diagnosis or
one of its subsets is contained in R or E, any non-
minimal diagnosis will not be added in E.

It is worth noting that the correctness of Algo-
rithm 2 does not depend on whether the unsatisfiable
core, X , is minimal. In other words, Algorithm 2
works correctly even if we remove line 10 from the
algorithm. However, based on our test, though line 10
incurs a slight runtime overhead, it could significantly
boost the performance when the constraint solver
does not return a minimal unsatisfiable core, as a non-
minimal unsatisfiable core may noticeably increase the
search space afterward. As a result, we keep line 10
in our implementation and evaluation.

In our previous work, we reused the Greiner’s
algorithm [9] developed for the theory of diagnosis
[8] to find the diagnoses. In the evaluation section
we shall see that our new algorithm provides overall
better performance than Greiner’s algorithm.

4.2 From Variable Sets to Fixes
Equipped with diagnoses, we can replace the vari-
ables not in these diagnoses with their configuration
values in c (stage (ii)). We denote this modified con-
straint as cr. The purpose of stage (iii) is to convert cr
into a fix r.

We perform this conversion in three steps. In step
1, we heuristically convert cr into a conjunction of
smaller constraints, called part clauses, where two
different part clauses have disjoint sets of variables.
For instance, (m→ 6 > 10)∧ (¬m→ b > 10)∧ (6 < b),
the cr from our running example, is converted into
two clauses {¬m, b > 10}. In step 2, to meet Prop-
erty 4, we also need to ensure that the part clauses
are minimal, i.e., it cannot be further divided into
smaller part clauses. We employ a novel algorithm
that uses a constraint solver to check whether the
part clauses are minimal, and divide them into smaller
ones if they are not. In step 3, we convert each part
clause into a fix unit. In our example we shall get
[m := false, b : b > 10].

In step 1, we employ a set of heuristic rules to
convert a constraint into part clauses. First, if the con-
straints contain any operators convertible to proposi-
tional operators, we convert them into propositional
operators. For example, eCos constraints contain the
conditional operator “?:” such as (m ? a : b) > 10.
We convert it into propositional operators: (¬m∨ a >
10) ∧ (m ∨ b > 10).
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Second, we convert the constraint into CNF. In our
example, with diagnosis {m, b}, we have (m → 6 >
10) ∧ (¬m → b > 10) ∧ (6 < b), which gives three
clauses in CNF: {¬m ∨ 6 > 10, m ∨ b > 10, 6 < b}.

Third, we apply the following rules to simplify the
CNF repetitively until we reach a fixed point.

Rule 1. Apply constant folding to all clauses.
Rule 2. Apply unit propagation to all clauses, i.e., if

a clause contains only one literal, delete the
negation of this literal from all other clauses.

Rule 3. If clause C1 contains all literals in C2, delete
C1.

Rule 4. If a clause has the form v = c where v
is a variable and c is a constant, replace all
occurrences of v with c.

Rule 5. Two clauses are conjoined into one if they
share variables.

Rule 6. Eliminate operators that are obviously elim-
inable by algebraic laws, such as replacing
a + 0 with a.

Rule 7. If a part clause contains only linear equa-
tions or inequalities with one variable, we
solve the equations and inequality as a sys-
tem.

In our example, applying Rule 1 to the above CNF,
we get {¬m, m ∨ b > 10, 6 < b}. Applying Rule 2 to
the above CNF, we get {¬m, b > 10, 6 < b}. Applying
Rule 5, we get {¬m, b > 10∧6 < b}. Applying Rule 6,
we get {¬m, b > 10}. No further rule can be applied
to this CNF.

In step 2, we employ a novel procedure that uses
a constraint solver to check each part clause to see
whether it can be further divided into smaller part
clauses. This procedure takes as input a constraint
c, two disjoint sets of variables V1 and V2, where
c ∈ Φ(V1 ∪ V2), and tests whether there exist c1 and
c2, where c1 ∈ Φ(V1), c2 ∈ Φ(V2), and c = c1 ∧ c2. The
basic idea of this algorithm is that, when c = c1 ∧ c2,
we can obtain c1 from c by replacing the variables in
V2 with an assignment that make c2 evaluate to true.
To obtain such an assignment of V2, we can obtain an
assignment that satisfies c, because it will also satisfies
c2. The same procedure can be used to obtain c1. The
algorithm is shown in Algorithm 3. We first invoke
the constraint solver to find an assignment of the
variables in c that satisfies c. Next we construct two
constraints, c1 and c2 that only contain variables in
V1 and V2, respectively. This construction is achieved
by replacing the variables that should not appear in
the two constraints by their values in e. Finally, we
check whether c1 ∧ c2 = c hold by checking the
unsatisfiability of its negation. If it holds, we know
c can be divided into c1 and c2, otherwise we return
c itself to indicate c cannot be divided this way.

Lemma 2. If all invocations to the constraint solver
terminate with an answer, Algorithm 3 returns (c1, c2) iff
for the given input V1, V2 and c, there exist such c1 and

Algorithm 3 Divide a fix unit
Input: c, a satisfiable constraint to be divided
Input: V1, the variable set of the first sub constraint
Input: V2, the variable set of the second sub constraint

1: [ICS] e← an assignment that satisfies c
2: c1 ← c[V2\e]∗
3: c2 ← c[V1\e]
4: [ICS] check if c1 ∧ c2 6= c is satisfiable
5: if unsatisfiable then
6: return (c1, c2)
7: else
8: return (c)
9: end if

* c[V1\e] indicates replacing each v ∈ V1 in c with e(v).

c2 that (1) c = c1 ∧ c2, and (2) c1 ∈ Φ(V1) ∧ c2 ∈ Φ(V2).

Proof: The forward direction is straightforward.
we have verified c1 ∧ c2 = c by the constraint solver
and have constructed c1 and c2 by keeping only the
variables in V1 and V2, respectively.

To prove the backward direction, let us suppose c
can be divided into ca and cb that meet the above
conditions. Let e′ be an arbitrary assignment that coin-
cides with e on V2, that is, ∀v ∈ V2. e

′(v) = e(v). Since
e satisfies c, we have cb[V2\e] = true, which leads
to cb[V2\e′] = true. From this we have ca[V1\e′] =
ca[V1\e′]∧ true = ca[V1\e′]∧ cb[V2\e′] = (ca ∧ cb)[(V1 ∪
V2)\e′] = c[(V1 ∪ V2)\e′] = c[V2\e][V1\e′] = c1[V1\e′].
Because e′ effectively covers any assignment to the
set of V1, ca and c1 evaluates the same on all values
in their domain, and thus ca = c1. Similarly, we have
cb = c2. As a result, c1∧c2 = c, and the procedure will
return (c1, c2) which is equal to (ca, cb).

With this procedure, we divide each part clause
into smaller units by checking all combinations of V1

and V2, e.g., for a part clause over {a, b, c}, we check
whether it can be divided into two constraints over
({a, b}, {c}), ({b, c}, {a}), ({a, c}, {b}), respectively. We
repeat this process until no part clause can be fur-
ther divided. This is an inherently inefficient process
because for each unit constraint containing n vari-
ables we need to test Σ

bn/2c
i=1 Ci

n combinations, which
grows exponentially. However, since we have applied
heuristic rules to minimize the part clause in step
1, we seldom need to deal with a large n if the
heuristic rules are effective. In our evaluation, 98.8%
of part clauses after step 1 contains only one variable,
which are already minimal. The rest of clauses usually
contain only two variables, and a very small number
contains three variables.

In step 3, we convert each clause into a fix unit. If
the clause has the form of v, ¬v, or v = c, we convert it
into an assignment unit, otherwise we convert it into
a range unit. In the example, we convert ¬m into an
assignment unit and b > 10 into a range unit and get
[m := false, b : b > 10].
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4.3 Correctness of the Generation Algorithm

Theorem 1. Any fix list produced by the generation
algorithm satisfies Property 5.

Proof: With the lemmas, this theorem is easy to
prove. Here we give a sketch of the proof.
Correctness: Property 1: let c′ be the constraint pro-
duced by stage (ii); since we only perform equivalent
transformation in stage (iii), we have that r.c = c′

and r only changes the variables in c′, and thus any
configuration producible by the fix will satisfy the
original constraint c. Property 2: assuming that there
exists a correct r′ that could produce a configuration
e′ that is not producible by r, we have a contradiction
where e′ |= ¬c because r.c = c′, and thus r′ does not
exist. Property 3: directly from Lemma 1. Property 4:
because we tried to divide each fix unit in all possible
ways by Algorithm 3, we ensure that each fix unit is
minimal.
Minimality: As every diagnosis produced by stage (i)
is minimal, each variable is needed to be changed to
satisfy the constraint. As a result, two fixes produced
from two different diagnoses are semantically differ-
ent.
Completeness: Let us assume there exists a fix r′′ that
satisfies Property 1, 2, 3, and 4 but not in the generated
list. Because of Property 2 and Property 3, r′′.V must
be different from any fix in the list, which contradicts
Lemma 1.

5 CONSTRAINT INTERACTION

So far we have only considered fixes for one con-
straint. However, the constraints in configuration
systems are often interrelated; satisfying one con-
straint might violate another. As a result, we have to
consider multi-constraint violation rather than single-
constraint violation. A multi-constraint violation is a
tuple (V, e, c, C), where V and e are unchanged, c is
the currently violated constraint, and C is the set of
constraints defined in the model and satisfied by e.
The following example shows how a fix satisfying
c can conflict with other constraints in C that were
previously satisfied.

V : {m : Bool, n : Bool, x : Bool, y : Bool, z : Bool}
e : {m 7→ true, n 7→ false, x 7→ false,

y 7→ false, z 7→ false}
c : m ∧ n
C : {c2, c3} where

c2 is n→ (x ∨ y)
c3 is x→ z

(2)
If we generate a fix from (V, e, c), we obtain r = [n :=
true]. However, applying this fix will violate c2.

Note that a multi-constraint violation involves only
one violated constraint. If, for example, an eCos con-
figuration contains multiple errors, we treat each of

them as a multi-constraint violation and fix them one
by one.

Existing work has proposed three different strate-
gies to deal with this problem; each has its own
advantages and disadvantages. We now revisit these
three strategies, and show that they can all be used
with range fix generation by converting a multi-
constraint violation into a single-constraint one. In the
evaluation section we will give a comparison of the
three strategies.

Ignorance. All constraints in C are simply ignored,
and only fixes for (V, e, c) are generated. This strat-
egy is used in fix generation approaches considering
only one constraint [13]. This strategy does not solve
the constraint interaction problem at all. However, it
has its merits: first, the fixes are only related to the
violated constraint, which makes it easier for the user
to comprehend the relation between the fixes and the
constraints; second, this strategy does not suffer from
the problems of incomplete fix list and large fix list,
which exist in the other two strategies and will be
discussed later; third, this strategy requires the least
computation effort and is the easiest to implement.

Elimination. When a fix contains changes that violate
other satisfied constraints, these changes are excluded
from the range of the fix, i.e., any changes with side
effect are “eliminated”. In the example in violation (2),
fix r contains only one change and this change violates
c2. Thus, fix r is eliminated. This strategy is proposed
by Egyed et al. [14] and used in their UML fix
generation tool.

To apply this strategy to range fix generation, we
first find a subset of C that shares variables with c,
then replace the variables not in c with their current
values in e, and conjoin this subset of constraints
with c. For example, to apply the elimination strategy
to violation (2), we first find the constraints sharing
variables with c, which includes only c2, and then
replace x and y in c2 with their current values, getting
c′2 = n → false ∨ false. Then we generate fixes for
(V, e, c ∧ c′2).

Although the elimination strategy prevents the vio-
lation of new constraints, it has two noticeable draw-
backs. First, it excludes many potentially useful solu-
tions. Bringing new errors is often inevitable. Simply
excluding the changes will only provide less help. In
our example, we will get an empty fix set, which
does not provide any solution to the current error.
Second, since we need to deal with the conjunction of
several constraints, the resulting constraint is much
more complex than the original one. Our evaluation
showed that some conjunctions can contain more
than ten constraints. Nevertheless, compared to the
propagation strategy, this increase in complexity is
still small.

Propagation. When a fix violates other constraints,
we modify further variables in the violated constraints
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TABLE 1
Comparison of the three strategies

Ignorance Elimination Propagation
Complexity
of Fix Lists

Simple Simplest Possibly
complex

Execution
Time

Shortest Short Possibly long

Fix Com-
pleteness

Complete (for
one constraint)

Incomplete Complete (for
all constraints)

Introducing
new errors

Possible Never Never

to keep these constraints satisfied. In other words,
the fix is “propagated” through other constraints. For
example, fix r will violate c2, so we also modify
variables x or y to satisfy c2. Then the modification
of x will violate c3, and we also modify z. In the
end, we get two fixes [n := true, x := true, z := true]
and [n := true, y := true]. This approach is used in
the eCos configuration tool [2] and the feature model
diagnosis approach proposed by White et al. [6].

To apply this strategy, we first perform a static
slicing on C to get a set of constraints directly or
indirectly related to c. More concretely, we start from
a set D containing only c. If a constraint c′ shares any
variable with any constraint in D, we add c′ to D. We
keep adding constraints until we reach a fixed point.
Then we conjoin all constraints in D, and generate
fixes for the conjunction. For example, if we want to
apply the propagation strategy to violation (2), we
start with D = {c}; then we add c2 because it shares
n with c; next we add c3 because it shares x with c2.
Now we reach a fixed point. Finally, we generate fixes
for (V, e, c ∧ c2 ∧ c3).

The propagation strategy ensures that no satisfied
constraint is violated and no fix is eliminated. How-
ever, there are two new problems. First, the perfor-
mance cost is the highest among the three strategies.
The constraints in real-world models are highly inter-
related. In large models, the strategy often led to con-
junctions of hundreds of constraints. The complexity
of analyzing such a large conjunction is significantly
higher than analyzing a single constraint. Second,
since many constraints are considered together, this
strategy potentially leads to large fixes (i.e., fixes that
modify a large set of variables), and large number of
fixes, which are not easy to comprehend and apply.

We summarize the differences between the three
strategies in Table 1. In the table, we use italic font
to indicate a potential problem in a strategy.

6 IMPLEMENTATION

We have implemented our approach on eCos CDL
and Linux Kconfig as two command line tools, ECC
Fixer2 and Kconfig Fixer, respectively. Our implemen-
tation contains two frontends and one backend. The

2. Available at: gsd.uwaterloo.ca/eccfixer

frontends interact with the user, and convert eCos
and Kconfig models and configurations into violations
where the constraints in the violations are solvable
by the constraint solver. The backend implements our
approach to generate fixes for the violations. We use
Microsoft Z3 SMT solver [15] in our backend, and it
supports the standard input format of SMT solvers:
SMT-LIB [16]. In the rest of the section we describe
how the two frontends are implemented.

6.1 eCos Implementation
As mentioned before, the eCos system has two forms
of violations to be solved: requires violation and
active-if violation. Our implementation caters for both
types of violations. The user can point an error or an
inactive option, and our tool presents a list of fixes
for the user.

To convert CDL models into SMT-LIB, we carefully
studied the formal semantics of CDL [4], [11] obtained
through reverse engineering from its configurators
and documents. There are mainly two challenges in
the conversion. First, CDL is an untyped language,
while SMT-LIB is a typed language. To convert CDL,
we implement a type inference algorithm to infer the
types of the options based on their uses. When a
unique type cannot be inferred or type conflicts occur,
we manually decide the feature types. Please note that
this typing process is required once for a CDL model,
and is never needed during a configuration process.

The second challenge is dealing with string con-
straints. The satisfiability problem of string constraints
is undecidable in general [17], and general SMT
solvers do not support string constraints [15]. Yet,
string constraints are heavily used in CDL models.
Nevertheless, our previous study on CDL constraints
[7] shows that all string constraints used in these
models implement a set semantics: a string is con-
sidered as a set of substrings separated by spaces,
and string functions are actually set operations. In
particular, is_substr is always used as a set member
test to check if a particular word is contained in a
list of words, and concatenation is only applied to
literals. Based on this observation, we encode each
string as a bit vector, where each bit indicates whether
a particular substring is presented or not. Since in
fix generation we will never need to introduce new
substrings, the size of the bit vector is always finite
and can be determined by collecting all substrings in
the model and the current configuration.

6.2 Linux Implementation
Different from eCos, Linux Kconfig does not have
requires constraints. Instead, Kconfig equips each op-
tion with a function that computes a range for the
current option based on the values of other options,
and the user value is enforced in this range. Further-
more, Kconfig also has the concept of active/inactive
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TABLE 2
eCos Configuration Files

Architecture Project Options Constraints Changes
virtex4 ReconOS 933 330 49
xilinx ReconOS 765 272 53
ea2468 redboot4lpc 658 96 14
aki3068net Talktic 817 195 3
gps4020 PSAS 535 85 23
arcom-viper libcyt 771 189 26

TABLE 3
Linux Configuration Files

Project Kernel
Version

Options Constraints Changes

astlinux 2.6.17 3544 5112 192
CdMa-HeRoC 2.6.29 5565 6887 5
crux-arm 2.6.19 3885 4771 7
padxroom 2.6.32 6188 7734 170

options. As a result, Linux configuration is organized
in a way which never introduces errors, but there are
constraint violations when the user wants to modify a
value outside the range or changes an inactive option.
Our implementation generate fixes for both cases.

Similar to the eCos implementation, we also care-
fully studied the formal semantics of the Kconfig
language through reverse engineering [1]. A key issue
to convert a Kconfig model to SMT-LIB is to convert
the tristate options used in Kconfig. A tristate option
has a value of ’n’, ’m’, or ’y’, which respectively
means ”disabled”, ”modularized” and ”activated”.
Internally, Kconfig converts ’n’, ’m’, or ’y’ to inte-
gers (0, 1, 2) and applies different numeric operators
on them. As a result, we could also convert these
options into integers in SMT-LIB, but this requires
extra constraints for each tristate option to limit its
value in the interval [0, 2]. Our method to solve this
problem is to define an enumeration type which has
three values, and define the operators to simulate the
needed numeric computations on the enumeration.
This method makes expressions more complex, but
leads to a significant reduction of constraints.

In Kconfig, tristate options are often used in mix
with Boolean option, where a Boolean option is con-
sider to have the value ’n’ or ’y’. When tristate options
are converted into enumerations, we need to deal with
the mixed calculation of Booleans and tristates. There
are two methods to solve this problem. One method is
to convert Boolean options into tristate type and add
constraints to disallow value ’m’. Another method
is to add a conversion function for Booleans when
they are used with tristates. The first method will
lead to redundancy of constraints while the second
method makes the conversion and calculation a bit
more complex. We have tested both methods and
decide to use the second method because it requires
less execution time.

7 EVALUATION

7.1 Research Questions

To really know whether the approach works in prac-
tice, several research questions need to be answered
by empirical evaluation:
• RQ1: How efficient is our algorithm?
• RQ2: How complex are the generated fix lists?
• RQ3: How often are the actual final user changes

suggested by our approach? Does our approach
suggest more such changes than existing ap-
proaches?

• RQ4: What are the differences among the three
strategies for multi-constraint violations, namely,
ignorance, elimination, and propagation?

• RQ5: How efficient does the new diagnosis algo-
rithm (Algorithm 2) compare with Greiner et al.’s
algorithm [9] used in our previous work [10]?

• RQ6: How often is the fix unit division procedure
(Algorithm 3) needed? And how much extra time
does it cost?

RQ1, RQ2 and RQ3 examine the general usability of
the proposed approach. RQ3 also checks a potential
problem of Property 3, which excludes theoretically
possible fixes. When the user changes are always
covered by the generated fixes, the excluded fixes are
probably not useful and can be excluded. RQ4 com-
pares the strategies for multi-constraint violations.
RQ5 and RQ6 evaluate the individual usefulness of
the two newly introduced components in our fix
generation approach.

7.2 Data Set and Methodology

To answer the research questions, we need a set of
constraint violations. We obtained the data set by re-
enacting the real-world configuration process from
the configuration histories at open source repositories.
As shown in Table 2 and Table 3, we used six eCos
configuration files from five eCos-based open projects
and four Linux configuration files from four open
source projects based on Linux kernel code. Each eCos
file targets a different hardware architecture (the first
column in Table 2), which leads to a different set of
options and constraints. Each Linux configuration file
uses a different kernel version (the second column in
Table 3), which also leads to a different set of options
and constraints.

We re-enacted the real-world configuration process
by replaying the user changes extracted from the
version histories of the configuration files. We assume
that the user starts from the default configuration
provided by the system for a given architecture, and
added it as the earliest version in the correspond-
ing version history. Then we compared each pair of
consecutive versions to find changes to the options.
Next we replayed these changes to simulate the real
configuration process: we apply the changes one by
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one on the earlier version of the configuration until
we reach the later version, at which point we have
applied all changes. Since we did not know the order
of changes within a revision, we used three orders:
a top-down exploration of the configuration file, a
bottom-up one, and a random one. The rationale for
the first two orders is that expert users sometimes edit
the textual configuration file directly rather than using
the graphical configurator. In this case, they will read
the options in the order that they appear in the file,
or the inverse if they scroll from bottom to top. We
use the entire version history in our experiment.

During the replay of the changes, violations may
occur, and we collected these violations for our ex-
periments. In the eCos case, we collected two kinds
of violations. (i) Errors: when a requires constraint
in eCos is violated. (ii) Activation violations: when an
option in eCos should be changed, but is currently
inactive. In the Linux case, we collected range viola-
tions: when a Kconfig option needs to be changed to
a value outside its range. Any attempt to change an
inactive Kconfig option will also be considered as a
range violation. This is because even if we activate
this option, the expected value may still be outside
its range. To unify the UI concepts, we generated the
fix once for both the activation and the value change.
The activation violations and the range violations
will prevent the replay of the current change. After
recording the violation, we defer this change until
we reach a point that applying this change causes
no violation. Because in the final configuration there
is no violation, such a point must exist. Note that
the differences among the three types of violations lie
only in the user interface level. Conceptually they are
all violations consisting of constraints, variables, and
assignments.

Interestingly, the default configurations of eCos
models already contains errors. We also added these
errors into our data sets for generating fixes. We
assume the user will fix these errors before starting
the configuration process. However, since we do not
know how the user would respond to these fixes, we
just pick the fix proposed by the eCos configurator
(which proposes one concrete fix for one error), and
used the resolved configurations as the first version
in the above replay process. On the other hand, most
stored revisions of the configuration files contain no
error. We found only one error in one stored revision,
which is never fixed as the revision is the latest one
in the version history.

Table 4 and Table 5 show the number of violations
we collected using the above process. Because dif-
ferent eCos architectures may use shared packages,
there are duplicated violations in the eCos case. After
removing the duplications, we have a total of 117
multi-constraint violations (including 68 errors from
the defaults, 27 errors from the user changes and 22
activation violations) from the eCos configuration files

TABLE 4
eCos Constraint violations

Architecture Errors in defaults Errors in changes Activating
virtex4 56 5 15
xilinx 48 1 2
ea2468 8 8 1
aki3068net 26 3 0
gps4020 12 10 4
arcom-viper 26 0 0

TABLE 5
Linux Constraint violations

Project Range Violations
astlinux 83
CdMa-HeRoC 2
crux-arm 2
padxroom 106

and 193 single-constraint violations from the Linux
configuration files. There are only single-constraint
violations in the Linux configuration files because,
as stated before, there is no user-visible notion of
“constraints” in Kconfig. The Kconfig configurator
will always consider all constraints together, and the
individual constraints we derived from Kconfig se-
mantics are not known to the user. As a result, it is not
sensible to fix for one constraint, and we always have
to consider the conjunction of all constraints, which
results in a single-constraint violation. Note that this
design effectively enforces the propagation strategy in
Linux.

After we obtained the data set, we generated range
fixes for all the violations. For multi-constraint viola-
tions, we generated fixes using all the three strategies
to answer RQ4. To answer RQ1, we invoke our algo-
rithm 100 times and calculate the average time. We
also kill the fix generation process if it takes more
than 20 seconds. We chose 20 seconds because this
is known to be the maximum time a user can wait
for an interactive tool under a wait cursor [18]. To
answer RQ3, we also invoked the built-in fix generator
of the eCos configurator on the 27 errors from user
changes. The errors from the defaults were not con-
sidered because we do not have the user changes to
compare with. The other two types of violations were
not compared because they are not supported by the
eCos configurator. To answer RQ5, we also generate
fixes using Greiner et al.’s algorithm. To answer RQ6,
we also generate fixes with the step of Algorithm 3
removed.

The experiments were executed on computer with
Intel Core i3-2120 CPU and 6 GB memory.

7.3 Results

We shall present the results on eCos data using
only the propagation strategy except for RQ4. This
is because 1) the fix generation on the Linux data
is effectively equivalent to the propagation strategy,
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and 2) as will be shown later, propagation strategy is
relatively the best strategy among the three.

RQ1: RQ1 focuses on the efficiency of the algorithm.
To answer this research question, we record the time
used to generate fixes for each violation, and kill the
fix generation process if it takes more than 20 seconds.
The fix generator returns within 20 seconds on all
eCos violations and 126 Linux violations, in total
80% of all violations. The concrete generation time is
presented as density graphs in Figure 5 and Figure 6.
The maximum generation time for an eCos violation
is 234ms, completely within the acceptance range of
interactive tools. However, the Linux violations have
much longer generation time. There are 67 violations
for which our algorithm does not generate a fix within
20 seconds, constituting 20% of all violations and
34% of Linux violations. This is because the Linux
models are much larger, and require much more time
to process. As a matter of fact, the 67 violations all
belong to the padxroom model, which is the largest
model in our data set. However, even for this largest
model (cf. Table 3), our approach generates fixes for 22
violations within one second. On the other hand, our
approach works quite well on middle-size models.
For example, our approach generates fixes within one
second for 96% violations of the astlinux model, which
is a fairly large model.

To understand where the bottleneck lies, we further
investigate the executions of our algorithm for five
timed-out violations. The investigation showed that
all executions were still within stage (i) at the end of
20 seconds. This indicates that at least we need a more
efficient method for generating diagnoses.

RQ2: RQ2 focuses on the complexity of the gener-
ated fixes. To answer RQ2, we first calculated two
basic measures over the 243 violations that have fixes
generated: the distribution of the number of fixes per
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violation (see Figure 7 and Figure 8) and the distri-
bution of the number of variables changed by each
fix (see Figure 9 and Figure 10). From these figures
we see that most fix lists were short and most fixes
changed a small number of variables. More concretely,
94% of the fix lists contain at most five fixes and 87%
of the fixes change less than five variables. There was
also an activation violation that did not produce any
fix. A deeper investigation of this violation revealed
that the option is not supported by the current hard-
ware architecture, and cannot be activated without
introducing new configuration errors. The extracted
changes actually lead to an unsolved configuration
error in the subsequent version.

It is still unclear how the combination of fix number
and fix size affect the size of a fix list, and how
the large fixes and long lists are distributed in the
violations. To understand this, we measured the size
of a fix list. The size of a fix list is defined as the sum
of the number of variables in each fix. The result is
shown in Figure 11 and Figure 12. From the figure we
can see that the propagation strategy did lead to large
fix lists. The largest involves 58 variables, which is
not easily readable. However, the long lists and large
fixes tend to appear only on a relatively few number
of violations, and the majority of the fix lists are still
small: 90% of the violations have fix lists with no more
than 10 variables.

We also measured the number of variables per unit.
The vast majority of the fix units contain only one
variable. Among all the fixes generated, there are only
7 fix units each with more than one variable, 6 with
2 variables each and one with three variables. This
shows that fix units are mostly simple, and complex
units such as the one in the second fix of our running
example are rare.

Overall, the fixes for the Linux models are simpler.
This is probably because Linux models have simpler
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constraints, which do not involve complex arithmetic
or string operations [3].

RQ3: RQ3 focuses on the coverage of the generated
fixes over user changes. To answer RQ3, we evaluated
how often the final user changes are covered by
our fixes. Given an error or activation violation, we
examined the change history to identify a subsequent
configuration that corrected the problem, and then we
checked if the values in the corrected configuration
fell within one of the ranges proposed by our gener-
ated fixes.

For the Linux violations, all violations have subse-
quent user changes, and the generated fixes cover all
of them (100%).

For the eCos violations, out of all 49 violations
from user changes, a total of 47 had corrections in
subsequent revisions. The fixes generated by our tool
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covered 46 of these violations (98%). An investiga-
tion into the remaining violation showed that the
erroneous option discussed in RQ2 was responsible
for that discrepancy. Since the propagation strategy
ensures to introduce no new error, the re-enacted user
change was not proposed as a fix.

These results suggest that Property 3 is a good
heuristic in practice that does not exclude useful
changes needed by the user.

For comparison with the fix generator built into the
eCos configurator, we consider the 26 out of 27 errors
from user changes. The last one is not considered
because it has no subsequent correction. The eCos
configurator was able to handle 19 of the 26 errors,
giving a coverage of 73%. Comparatively, our tool
covered all 26 errors.
RQ4: RQ4 focuses on the differences of the three
strategies for multi-constraint violations. To answer
this research question, we examine the lines in Table 1
one by one. The first line suggests that the prop-
agation strategy potentially produces large fix lists.
At this stage, we would like to know if the other
two strategies actually produce simpler fixes. We
compared the size of fix lists generated by the three
strategies in Figure 13. The elimination and ignorance
strategies completely avoided large fix lists, with the
largest fix list containing four variables in total. The
elimination strategy changed even fewer variables
because some of the larger fixes were eliminated.

We also compared the generation time of the three
strategies. For all violations, the average generation
time for the propagation strategy was 57ms, while
the elimination strategy was 29ms and the ignorance
strategy was 28ms. Since the overall generation time
is small, it does not make a big difference in tooling,
at least for the eCos violations.

Next, we want to understand to what extent the
elimination strategy affects completeness. In all 117
violations, the elimination strategy generated no fix
for 17 violations. This is significantly more than ig-
norance and propagation, which had zero and one
violation with no fix, respectively. We also measured
the coverage of user changes using the elimination
strategy. In the 47 violations, only 27 were covered,
giving a coverage of 57%. This is even lower than
the eCos configurator, which generates only one fix,
showing that a lot of useful fixes were eliminated by
this strategy.

Finally, we want to understand how often the ig-
norance strategy brings new errors. We compared the
fix list of the ignorance strategy with the fix list of the
elimination strategy. If a fix does not appear in the list
of elimination strategy, it must bring new errors. As a
result, 32% of the fixes generated by the ignorance
strategy brought new errors, and those fixes were
generated from 44% of the constraint violations. This
shows that the constraints in practice are usually inter-
related and the ignorance strategy potentially causes
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Fig. 14. Comparison of Algorithm 2 and Griner et al.’s
algorithm

new errors in many cases.
RQ5: RQ5 focuses on the efficiency of Algorithm 2.
To measure its efficiency, we calculate the difference
between our algorithm (NEW) and Greiner et al.’s
algorithm (GSW), i.e., difference = [generation time
using NEW] - [generation time using GSW]. The result
is presented as a density graph in Figure 14. The
average generation times between the two algorithms
are quite close, with 539ms using NEW and 588ms
using GSW. However, while in the majority of the
cases NEW is less than 100ms slower than GSW, GSW
is significantly slower than NEW in the rest of the
cases. In the worst case, GSW uses 6752ms more time
than NEW, and is 4 times as slow as NEW. On the
other hand, in the best case where GSW outperforms
NEW, GSW is 170ms faster than NEW, which is only
15% faster. We argue that in interactive tools NEW
will give overall better performance because a time
difference of a few hundred milliseconds is hardly
noticeable, and a time difference of a few seconds
is quite obvious and annoying. Further considering
NEW is much simpler than GSW (GSW builds a
directed acyclic graph and employs a set of non-trivial
operations such as node reusing, closing, and prun-
ing), we believe NEW is a better diagnosis algorithm
for range fix generation.
RQ6: RQ6 focuses on the necessity and efficiency of
Algorithm 3. While fixing the violations, the heuristic
rules in step 1, stage (iii) produce 1287 part clauses,
where 16 unit clauses contain more than one variables
and need to be checked and furthered divided with
Algorithm 3. These clauses contain 2 or 3 variables

(in average 2.06 variables). By applying Algorithm 3,
9 clauses are split into smaller units, resulting in an in-
crease of 9 clauses and a new average of 1.32 variables
in the 16 part clauses. Furthermore, the execution time
of Algorithm 3 is very short: the average execution
time per part clause is only 15ms. We believe the
short execution time is mainly contributed by the
heuristic rules. After applying the heuristic rules, each
part clause is already very simple, and is easy for
the constraint solver to analyze. Also, Z3 supports
incremental constraint solving, which further reduces
the execution time. This result shows that Algorithm 3
does play a useful role in the fix generation, and its
added runtime cost is negligible.

8 THREATS TO VALIDITY

The main threat to external validity is that our evalua-
tion is a simulation rather than an actual configuration
process. We addressed this threat by using real-world
configuration history rather than random simulation.
We also replayed the changes in different orders,
and used different configuration files from different
systems and different open source projects, in the
hope that our simulation would have a high chance
to cover the real world configuration processes.

Another threat is that our results on Linux and
eCos configurations may not be generalizable to other
configuration systems. However, as shown by Berger
et al. [19], Linux and eCos are the most complex ones
among different kinds of configuration systems. Linux
is the largest among several systems that use Kconfig,
while eCos has the most complex constraints, espe-
cially the non-Boolean constraints. As a result, our
approach would probably have a better performance
on other systems as they are less complex than those
used in our evaluation.

A threat to internal validity is that our translation
from the configuration models into logic constraints
could be incorrect. To address this threat, we have
carefully studied the formal semantics of the config-
uration languages [1], [4], [11]. In particular, we have
developed two formal semantics for the CDL lan-
guage, one from the variability modeling perspective,
and one from the configurator perspective. We have
carefully inspected and compared both against each
other and tested them on examples with respect to
the eCos configurator.

9 LIMITATIONS AND FUTURE WORK

Undocumented Constraints. Our approach requires
the constraints and options to be explicitly specified
in the configuration system. Yet in practice many
constraints are implicitly enforced by the system im-
plementation but not explicitly specified in the con-
figuration system. We call such unspecified, but actu-
ally existing constraints as undocumented constraints.
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Please note the difference between undocumented
constraints and hidden constraints mentioned in Sec-
tion 1, where hidden constraints are specified but
not explicitly presented to the user. Undocumented
constraints are one of the major reasons for config-
uration failures [20]. Fortunately, some recently pro-
posed approaches [21], [22] enable the inference of
these undocumented constraints from the source code.
These approaches can be possibly combined with our
approach to enable the analysis of undocumented
constraints.

User Constraints. Besides the constraints imposed by
the system, for each configuration, there may be user
constraints relating to the goal of the particular con-
figuration. For example, in the example of object pool
configuration, a particular user constraint could be
to accommodate at least 500 objects. User constraints
can be incorporated into our approach as long as the
user constraints can be expressed as quantifier-free
predicate logic. However, there are cases where user
constraints cannot be easily converted into predicate
logic. First, user constraints often come with different
priorities. For example, a user configuring a Linux
kernel may have the goal “the system consumes less
than half of the physical memory, on condition that a
network connection is operational.” In this case, the
constraint on memory is secondary to the constraint
on network. Second, user constraints may come in
the form of optimization problems. For example, a
user constraint may be “the system consumes as
little memory as possible”. To support these cases,
configuration approaches based on constraint hierar-
chies [23] and multi-objective optimization [24] may
be combined with our approach. This is one of the
future directions that could be explored to enhance
this work.

Complex Configuration Systems. Our approach can
be applied to a configuration system if (1) there are
a fixed number of variables in the system, (2) there
are a fixed number of constraints in the system, and
(3) the constraints can be presented in quantifier-free
predicate logic, and can be reasoned in a constraint
solver. The two configuration systems used in our
experiments, also reported as the most complex ones
among different kinds of configuration systems [19],
fall into this category. However, we also realize that
there are experimental configuration systems that do
not fall into this category. For example, in the Clafer
language [25], an experimental modeling language,
the options (known as clafers) can be dynamically
added or removed, and constraints are specified in
first-order logic. A possible way to model such a
system into our approach is to set an upper bound on
the options to be inserted in one fix, and pre-allocate
variables for future possible insertions. This is a future
direction to be explored.

User Study. Our evaluation quantitatively measures

several aspects of the proposed approach, including
the efficiency of the algorithm, the complexity of the
generated fixes, and the coverage of user fixes. Al-
though these quantifications measure several aspects
relating to the usability of our approach, it cannot
cover all aspects. In particular, although a fix list
containing fewer variables is probably easier to read,
it is not necessarily true in all cases: the constraints
characterizing the range of variables may be difficult
to interpret, or the fix list may contain meaningless
fixes according to undocumented domain knowledge.
To fully understand the usability of the proposed
approach, more studies involving real users need to
be performed. This is one of the future directions.

10 RELATED WORK
The idea of automatic fix generation is not new.
Different approaches have been proposed to fix dif-
ferent types of software artifacts. Two typical types
of artifacts are software models and programs. The
approaches on software models are close to ours. Nen-
twich et al. [13] propose an approach that generates
abstract fixes from first-order logic rules. Their fixes
are abstract because they only specify the variables to
change and trust the user to choose a correct value.
In contrast, our approach also gives the range of
values for a variable. Furthermore, their approach
only supports “=” and “6=” as predicates and, thereby,
cannot handle models like eCos. Scheffczyk et al. [26]
enhance Nentwich et al.’s approach by generating
concrete fixes. However, this approach requires man-
ually writing fix generation procedures for each use
of a predicate in every constraint. As configuration
systems often contain hundreds or thousands of con-
straints, manually writing generation procedures is
not feasible. Egyed et al. [14] propose to write such
procedures for each type of variable rather than each
constraint to reduce the amount of code written and
apply this idea to UML fix generation. Yet, in con-
figuration systems, the number of variables is often
larger than the number of constraints. The actual
reduction of code is thus not clear. Also, their ap-
proach generates only fixes that change one variable
at a time, and does not support changing multiple
variables together. Steimann and Ulke [27] propose to
use constraint solvers to generate fixes. Different from
us, their approach enumerates all concrete fixes one
by one, and does not try to characterize the solution
space.

The problem of fixing programs have been ap-
proached from different angles, and the one closest
to us is explored by Jose et al. [28]. This approach
employs a similar diagnosis algorithm to localize
faults in imperative programs, by considering each
statement as a retractable constraint. However, this
approach cannot generate fixes for the localized faults,
except for very special cases. Also, they propose at
most one fix each time rather than a complete list.
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Fix generation approaches for configurations also
exist. The eCos configurator [2] has an internal fix
generator, producing fixes upon request or on-the-
fly when the user makes changes. White et al. [6]
propose an approach to generate fixes that resolve all
errors in one step. Compared with our work, both
related approaches produce one concrete fix rather
than a complete list of range fixes. Furthermore, they
have very limited support of non-Boolean constraints.
White et al.’s approach does not handle non-Boolean
constraints at all, while eCos configurator supports
only non-Boolean constraints in a simple form: v ⊕ c
where v is a variable, c is a constant, and⊕ is an equal-
ity or inequality operator. A particular sub-domain
of software configuration is package management,
where automatic approaches [29], [30] are proposed
to determine how to install a new package as well
as its dependencies. These approaches [29], [30] try
to also find minimal solutions, but, in contrast to
our approach, do not attempt to find complete sets
of minimal solutions. Some other approaches [31],
[32] consider the relation between a software system
and its configurations, trying to localize problematic
options when the system fails. Compared with them,
our approach focuses on the configuration subsystem
itself, and generate precise and complete fixes rather
than identifying potentially problematic options. Fur-
thermore, our approach still has the problem of large
fixes. Wang et al. [33] try to address this problem
by using dynamic priorities, and change only the
options that are more likely to be changed by the
user. Finally, a recent approach [34] addresses the
problem of generating complete and optimal fixes for
all errors in a Boolean feature model, and the feature
model is partitioned to confine the number of fixes
and accelerate the generation. Compared with this
approach, our approach supports non-Boolean feature
models, and generates fixes on a per-error basis to
ensure the conciseness of the fix lists.

Another set of approaches maintain the consis-
tency of a configuration. Valid domains computation
[35], [36] is an approach that propagates decisions
automatically. Initially all options are set to an un-
known state. When the user assigns a value to an
option, it is recorded as a decision, and all other
options whose values are determined by this decision
are automatically set. In this way, no error can be
introduced. Janota et al. [37] propose an approach
to complete a partial configuration by automatically
setting the unknown options in a safe way. However,
both approaches require that the configuration starts
with variables in the unknown state. Software con-
figuration in real world is often “reconfiguration” [3],
i.e., the user starts with a default configuration, and
then makes change to it. In reconfiguration cases, vari-
ables have assigned concrete values rather than the
unknown state. Furthermore, the related approaches
are designed for small finite domains, and it is not

clear whether they are scalable to large domains such
as integers.

Several approaches have been proposed to test
and debug the construction of configuration models
themselves. Trinidad et al. [38] use Reiter’s theory of
diagnosis [8] to detect several types of deficiencies in
FODA feature models. Wang et al. [23] automatically
fix deficiencies based on the priority assigned to con-
straints. These approaches target the construction of
configuration models and cannot be easily migrated
to the configuration process.

Others automatically fix errors without user in-
tervention. Demsky and Rinard [39] propose an ap-
proach to fix runtime data structure errors accord-
ing to the constraint on the data structure. Mani et
al. [40] use the hidden constraints in a transforma-
tion program to fix input model faults. Xiong et al.
[41] propose a language to construct an error-fixing
program consistently and concisely. Compared with
our approach, these approaches also infer fixes from
constraints, but they only need to generate one fix
that is automatically applied. Completeness is not
considered by these approaches.

Interval propagation [42] is a technique to obtain
the interval domain of each variable in a set of con-
straints without removing any value that is consis-
tent with the constraints. Though interval constraint
propagation has a similar form to range fixes, this
technique cannot be easily used to obtain range fixes
for the following reasons. (1) The intervals that we
obtain from interval propagation can be larger than
the precise range of variables, and it is difficult to sat-
isfy Property 1 using interval propagation. (2) Interval
propagation cannot support the case where several
variables have to be involved in one fix unit.

Different diagnosis algorithms have been proposed
[43]–[46]. Some algorithms aim at different applica-
tions. For example, QUICKXPLAIN [43] incorporates
user preferences to locate a diagnosis with a high pref-
erence. Felfernig et al. [44] modify HS-DAG [8], [9] to
work with knowledge bases. Some other algorithms
focus on finding diagnoses (called correction subsets
in those approaches) without relying on the ability
of finding unsatisfiable cores but employing various
heuristics to cut off the search space. In particular,
several new algorithms [45], [46] in this line are
developed in parallel with our work. As a result, it
would be interesting to compare the performance of
our algorithm with these algorithms. We implemented
the algorithm CLD [45] which is reported to be the
fastest on SAT dataset, and tested this algorithm
on the largest Linux model, padxroom, in the same
experiment setup as explained in Section 7. On this
model, our algorithm returns a fix list within 20 sec-
onds for 36.79% of the violations. On the other hand,
CLD returns diagnoses within 20 seconds for 35.92%
of the violations. The performances of CLD and ours
are very close in this small experiment. A possible
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explanation is that modern SMT solvers have already
exploited heuristics similar to those used in CLD to
generate unsatisfiable cores, and relying on unsatisfi-
able cores could achieve a similar performance boost
to using these heuristics.

11 CONCLUSION

Range fixes provide alternative solutions to con-
straint violations in software configuration. For single-
constraint violations, they are correct, minimal in the
number of variables per fix and per unit, maximal
in their ranges, and complete. Range fixes can be
generated efficiently on models with a few thousands
of options and constraints.

We also evaluated three different strategies for han-
dling the interaction of constraints (multi-constraint
violations): ignorance, elimination, and propagation.
No single strategy is absolutely better than the others,
but on our data set, the propagation strategy provides
the most complete fix lists without introducing new
errors, and the fix sizes and generation times are
within acceptable ranges. However, if more complex
situations are encountered, elimination or ignorance
can provide simpler fix lists and faster generation
time, at the expense of completeness or the guarantee
not to introduce new errors.

Traditional use of constraint solvers in software en-
gineering research is to convert software engineering
problems directly into constraint solving problems.
Our design of Algorithm 2 and Algorithm 3 sug-
gests that, given the computational power of modern
solvers, there is more potential to be exploited in these
solvers in future. We may call them interactively, or
explore their abilities of generating model instances
and unsatisfiable cores, to solve a potentially larger
class of software engineering problems.
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