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for Accelerating Compiler Testing
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Abstract—Compilers are one of the most fundamental software systems. Compiler testing is important for assuring the quality of
compilers. Due to the crucial role of compilers, they have to be well tested. Therefore, automated compiler testing techniques (those
based on randomly generated programs) tend to run a large number of test programs (which are test inputs of compilers). The cost for
compilation and execution for these test programs is significant. These techniques can take a long period of testing time to detect a
relatively small number of compiler bugs. That may cause many practical problems, e.g., bringing a lot of costs including time costs and
financial costs, and delaying the development/release cycle. Recently, some approaches have been proposed to accelerate compiler
testing by executing test programs that are more likely to trigger compiler bugs earlier according to some criteria. However, these
approaches ignore an important aspect in compiler testing: different test programs may have similar test capabilities (i.e., testing similar
functionalities of a compiler, even detecting the same compiler bug), which may largely discount their acceleration effectiveness if the
test programs with similar test capabilities are executed all the time. Test coverage is a proper approximation to help distinguish them,
but collecting coverage dynamically is infeasible in compiler testing since most test programs are generated on the fly by automatic
test-generation tools like Csmith. In this paper, we propose the first method to predict test coverage statically for compilers, and then
propose to prioritize test programs by clustering them according to the predicted coverage information. The novel approach to
accelerating compiler testing through coverage prediction is called COP (short for COverage Prediction). Our evaluation on GCC and
LLVM demonstrates that COP significantly accelerates compiler testing, achieving an average of 51.01% speedup in test execution
time on an existing dataset including three old release versions of the compilers and achieving an average of 68.74% speedup on a
new dataset including 12 latest release versions. Moreover, COP outperforms the state-of-the-art acceleration approach significantly by
improving 17.16%∼82.51% speedups in different settings on average.

Index Terms—Compiler Testing, Test Prioritization, Machine Learning
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1 INTRODUCTION

I T is well known that compilers are one of the most funda-
mental software systems and are crucial to the success of

software-intensive projects. Compiler testing is an effective
way to assure the quality of compilers [1], [2]. Many com-
piler testing techniques have been proposed to automate
compiler testing [1], [3], [4]. Due to the crucial role of
compilers, they have to be well tested. Therefore, automated
compiler testing techniques (those based on randomly gen-
erated programs by automatic test-generation tools like
Csmith [3]) tend to run a large number of test programs. The
cost for compilation and execution for these test programs
is significant. These techniques can take a long period of
testing time to detect a relatively small number of compiler
bugs. For example, in the existing work [3], testing 1,000,000
randomly generated C programs by Csmith with 5 compiler
configurations took about 1.5 weeks on 20 machines in the
Utah Emulab testbed. Each machine had one quad-core
Intel Xeon E5530 processor running at 2.4 GHz. That is,
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roughly 302 minutes are required to test 1000 programs
generated by Csmith on one computer. Also, our industry
partners point out emphatically the efficiency problem of
compiler testing, since it causes many practical problems,
e.g., bringing a lot of costs including time and financial
costs, which are often unaffordable to companies, especially
small ones, and delaying the development/release cycle.
Therefore, accelerating compiler testing is necessary.

To accelerate compiler testing, some approaches have
been proposed in recent years [5], [6], [7]. These approaches
utilize some criteria to prioritize test programs, so that test
programs that are more likely to trigger compiler bugs are
executed earlier. For example, the state-of-the-art approach,
named LET [6], prioritizes test programs based on their bug-
revealing probabilities per unit time predicted by historical
bug information. However, all these acceleration approaches
do not consider an important aspect in compiler testing,
which is that different test programs may have similar test
capabilities, i.e., testing similar functionalities of a compiler,
even detecting the same compiler bug. For example, as
reported in the existing work [8], during the testing for a
GCC compiler, there are nearly 4,000 failing test programs
but they just trigger 46 unique bugs. If the test programs
with similar test capabilities are executed all the time, it
may largely discount the acceleration effectiveness of these
approaches.

It is scarcely possible to know which test programs have
similar test capabilities before testing. The only possible
direction is to find a proper approximation to distinguish
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them. Test coverage (e.g., statement, method, and file cov-
erage) is one of the most widely-used methods to measure
test effectiveness, and it can be acquired in advance at the
regression scenario. Also, it has been widely adopted by
researchers and practitioners to improve software testing
process [9], [10], [11], [12]. For example, during the process
of regression test-suite reduction [13], [14], test coverage is
widely used to measure the redundancy of tests. Therefore,
test coverage may be used as a proper approximation to help
identify which test programs have similar test capabilities.
Intuitively, if the coverage information of test programs is
very different, they tend to have different test capabilities.

Traditionally, coverage information is obtained by instru-
menting programs at a series of locations (e.g., at the entry
and exit points of methods) and executing the instrumented
programs. The traditional method tends to be infeasible
for compilers. This is because most test programs used in
compiler testing are generated on the fly by automatic test-
generation tools like Csmith, and thus the coverage informa-
tion of these test programs is not available in advance. Also,
due to their size and complexity, the process of collecting
coverage is time-consuming, and the volume of the coverage
information is also very large, which incurs overhead in
storage and maintenance.

To acquire test coverage in advance, we propose the
first method to predict test coverage statically for com-
pilers (without executing the test programs). Based on
the predicted coverage information, we propose to utilize
clustering to distinguish test programs with different test
capabilities, to accelerate compiler testing. That is, in this
paper we propose a novel approach to accelerating compiler
testing through coverage prediction. We call this approach
COP1 (short for COverage Prediction). More specifically,
COP first learns a coverage prediction model based on
the historical coverage information and test program data.
The key insight is that test programs with some specific
language features, operation features, and structure features
are more likely to cover some specific code regions of a
compiler. Then, COP utilizes the learnt model to predict
the coverage of each compiler module (e.g., source file or
method) for each new test program. Next, based on the
predicted coverage information, COP clusters test programs
into different groups, and different groups are more likely
to have different test capabilities. Finally, COP prioritizes
test programs by enumerating each group to select test
programs based on the bug-revealing probability per unit
time of each test program, which is predicted by LET.

To evaluate the acceleration effectiveness of COP, we
use two widely-used C compilers, i.e., GCC and LLVM, as
subjects following the existing work on compiler testing [1],
[3], [4], [5], [6]. In particular, We use the constructed dataset
in the existing work [6], which is convenient to compare
with the state-of-the-art approach LET. Since this dataset
contains only old release versions of GCC and LLVM, we
further construct a new dataset including 12 latest release
versions of GCC and LLVM to sufficiently evaluate the
acceleration effectiveness of COP. Our experimental results

1. An original meaning of COP is a police officer who finds criminals
by utilizing some trace information. Similarly, our approach, COP,
also utilizes trace information (i.e., coverage information) to accelerate
compiler bug detection.

demonstrate that COP accelerates compiler testing in 93.97%
cases and achieves an average of 51.01% speedup in test
execution time on the existing dataset including three old
release versions of the compilers, and achieves an average
of 68.74% speedup on the dataset of latest release versions.
Compared with LET, the state-of-the-art approach to ac-
celerating compiler testing [6], COP outperforms it signif-
icantly by improving 17.16% ∼82.51% speedups in different
settings on average. Furthermore, we also investigate the
accuracy of COP on predicting coverage using GCC and
LLVM. Our experimental results confirm the effectiveness
of COP on coverage prediction: it achieves extremely small
mean absolute errors, i.e., only 0.034∼0.051 when predicting
coverage within the same version and 0.052∼0.116 when
predicting coverage across the versions2.

Our novelty can be summarized into three parts: identi-
fying features, predicting coverage, applying predicted cov-
erage to accelerate compiler testing. First, we define three
categories of features that can characterize the coverage
information through the understanding of existing compiler
bugs and the characteristics of compiler inputs. Second, we
propose the first method to predict coverage statically for
compilers based on the historical coverage information and
test-program features. Third, we propose a novel approach,
COP, to accelerating compiler testing based on the pre-
dicted coverage information. Furthermore, we conduct an
extensive experimental study confirming the effectiveness
of COP, which significantly outperforms the state-of-the-art
approach (LET) for accelerating compiler testing. It is also a
contribution of this paper.

2 BACKGROUND

2.1 Compiler Testing Techniques
To guarantee the quality of compilers, many compiler test-
ing techniques have been proposed in the literature. Chen
et al. [1] conducted an empirical study to compare three
mainstream compiler testing techniques. Here we introduce
these techniques as follows. More related work about
compiler testing techniques can be found in Section 8.1.

Randomized differential testing (RDT) [15] is a widely-
used compiler testing technique in practice [3], [16]. RDT
detects compiler bugs by using two or more compara-
ble compilers that implement the same specification. More
specifically, if using the same test programs as the inputs
of these comparable compilers, they should produce the
same results. Otherwise, compiler bugs are detected by
RDT. When the number of comparable compilers is larger
than 2, RDT can determine which compiler contains the
bugs through voting. The overview of RDT is shown in
Figure 1(a), where C1, C2, . . . , Cn represents n compara-
ble compilers, O1, O2, . . . , On represents the corresponding
outputs produced by these compilers given a test program
P and P ’s input I .

Different optimization levels (DOL) [1] is a variant of
RDT. Different with RDT, DOL detects compiler bugs by us-
ing different optimization levels of a compiler. That is, when

2. The mean absolute error is the mean value of absolute differences
between predicted values and true values. The range of mean absolute
error is between zero and one, since each value is the covered fraction
of a compiler module as presented in Section 3.
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using different optimization levels of a compiler to compile
and execute the same test programs, they should produce
the same results. Otherwise, compiler bugs are detected
by DOL. The overview of DOL is shown in Figure 1(b),
where L1, L2, . . . , Ln represents n optimization levels of the
compiler C , O1, O2, . . . , On represents the corresponding
outputs produced by these optimization levels given a test
program P and P ’s input I .

Equivalence modulo inputs (EMI) [4], [17], [18] is also
an effective compiler testing technique. EMI first generates
some equivalent variants under a set of test inputs for
any given test program, and then detects compiler bugs by
comparing the results produced by the pair of the original
test program and its variants. If they produce different
results, compiler bugs are detected by EMI. The overview of
EMI is shown in Figure 1(c), where V1, V2, . . . , Vn represents
n equivalent variants with the original test program P
under the set of P ’s input I , O1, O2, . . . , On represents the
corresponding outputs of variants produced by the compiler
C , and Op represents the output of P produced by C .

2.2 Compiler Testing Acceleration

To accelerate compiler testing, some approaches have been
proposed recently [5], [6], including TB−G and LET.

TB−G, the first compiler testing acceleration approach, is
a text-vector based test-program prioritization approach [5].
It regards each test program as text, and extracts the tokens
reflecting bug-relevant characteristics in order to transform
each test program into a text-vector. In particular, the bug-
relevant characteristics contain statement characteristics,
type and modifier characteristics, and operator character-
istics. After getting a set of text-vectors, TB−G normalizes
the values of elements in vectors into an interval between
zero and one. Finally, TB−G calculates the distance between
normalized text-vectors and the origin vector (0, 0, . . . , 0) to
prioritize test programs. More specifically, TB−G prioritizes
test programs based on the descending order of distances.

LET is the state-of-the-art compiler testing acceleration
approach [6]. It prioritizes test programs based on the his-
torical bug information. More specifically, LET consists of a
learning process and a scheduling process. In the learning
process, LET first identifies bug-revealing features from test
programs, and then preprocesses features of the training
set, including feature selection and normalization. Next,
LET builds a capability model, which is used to predict
the bug-revealing probability for each new test program,
and also builds a time model, which is used to predict the
execution time of each new test program. In the schedul-
ing process, LET uses the two models to predict the bug-
revealing probability and execution time for each new test
program, and then prioritizes test programs based on the
descending order of their bug-revealing probabilities per
unit time. Since the existing study [6] has demonstrated that
LET performs significantly better than TB−G, in this paper
we regard LET as the comparative acceleration approach.

Traditional test prioritization approaches are also dis-
cussed in the existing work [6]. However, these traditional
test prioritization approaches either have bad effectiveness
or cannot be applied to accelerate compiler testing. For ex-
ample, the existing work [6] evaluated the adaptive random

prioritization. It selects the test input that has the maximal
distance to the set of already selected test inputs [19]. When
adopting it to accelerate compiler testing, we treat test pro-
grams as test inputs, and calculate the distance between test
programs using their edit distance. The evaluation shows
that adaptive random prioritization has bad effectiveness
in accelerating compiler testing due to extremely long time
spent on prioritization.

2.3 Clustering
Clustering is a task to divide the data points into a number
of groups such that data points in the same groups are
more similar to those in other groups [20], [21]. In other
words, its aim is to segregate groups with similar properties
and assign them into clusters. Over decades’ developments,
there are a lot of clustering algorithms, which follow various
rules to define the similarity among data points, including
connectivity models, centroid models, distribution models,
and density Models [20]. In our approach, we use clustering
to divide test programs into many groups, and different
groups are more likely to have different test capabilities.
Since we cannot know the number of groups before testing,
the clustering algorithms that need to predefine the number
of clusters cannot be applied to our problem. In particular,
we use the X-means algorithm [22] in our approach. The
X-means algorithm is a fast algorithm that estimates the
number of clusters in K-means [23]. More specifically, it
starts by setting the number of clusters to be equal to the
lower bound of the given range, and continues to add
centroids where they are needed until the upper bound is
reached. During the process, the centroid sets achieving the
best results are the final outputs.

3 APPROACH

COP consists of three steps: predicting coverage for test
programs (see Section 3.1), clustering test programs (see
Section 3.2), and prioritizing test programs (see Section 3.3).

3.1 Predicting Coverage
Predicting coverage is to predict the covered fraction of
each compiler module (e.g., source file or method) by a test
program. This can be regarded as a multi-output regression
problem, where each label refers to the covered fraction
of each compiler module. Similar to the typical process of
machine learning, the step of predicting coverage contains
identifying features, labeling, building a prediction model,
and predicting and aligning coverage.

3.1.1 Identifying Features
The key insight of predicting coverage is that test programs
with some specific language features, operation features,
and structure features are more likely to cover some specific
code regions of compiler modules. If we can correctly iden-
tify these features from test programs, we should be able to
predict the covered fraction of each compiler module by a
test program before running it.

It is possible for us to identify features from test pro-
grams to predict coverage for compilers. For example, for
the compiler modules in the front end, which is responsible
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Fig. 1. Overview of three mainstream compiler testing techniques

to verify syntax and semantics, it is easy to predict their cov-
ered fractions. This is because some specific basic language
features tend to directly reflect the covered fractions of these
compiler modules. Similarly, for the compiler modules in
the middle end and back end, which are responsible to
conduct analysis, optimizations, and transformations on the
different levels of code respectively, the existence of some
language elements, and some specific operations and struc-
tures in a test program reflect whether some code regions
of compiler modules in the two ends may be covered to
some degree. For example, if multi-nested “for” loops exist
in a test program, the code regions of loop optimizations are
more likely to be covered by the test program.

More formally, the features used in COP are divided
into three categories. The first category of features, language
features, are concerned with whether the basic language ele-
ments exist in a test program. Language features are defined
as three sets: LANGUAGE = STMT ∪ EXPR ∪ VAR,
where STMT is the set of all statement types, EXPR is
the set of all expression types, VAR is the set of all variable
types in C language. Note that if a basic language element
occurs at least one time, the value of the feature is set to one,
otherwise it is set to zero.

The second category of features, operation features, are
concerned with whether the basic operations exist in a test
program and how complex operations are used. The basic
operation features are the set of all operation types in C
languages. The complex operation features include that:

• Taking address features, e.g., the number of times the
address of a variable is taken.

• Comparing pointer features, e.g., the number of times
a pointer is compared with the address of another
variable or another pointer.

• Reading/writing features, e.g., the number of times a
volatile/non-volatile variable is read/written.

• Pointing features, e.g., the number of pointers pointing
to pointers/scalars/structs.

• Dereferencing pointer features, i.e., the times of a
pointer is dereferenced on LHS/RHS.

• Jumping features, i.e., the times of forward jumps and
backward jumps.

Note that, for basic operation features, if a basic operation
occurs at least one time, the value of the feature is set to one,
otherwise it is set to zero.

The third category of features, structure features, are
concerned with the time of the occurrence of certain struc-

tures, and the depth of certain structures. More specifically,
structure features include that:

• Block depth features, i.e., the max depth of blocks and
the number of blocks with some specific depth.

• Struct depth features, i.e., the max depth of structs and
the number of structs with some specific depth.

• Expression depth features, i.e., the max depth of expres-
sions and the number of expressions with some specific
depth.

• Bitfield of structs features, i.e., the number of structs
with non-zero, zero, const, violate, full bitfields.

Our feature set is designed through a systematic explo-
ration of the C syntax and the Csmith design. The language
features and basic operation features cover all syntactic
types in C. The complex operation features and structure
features are reused from Csmith. These features are consid-
ered bug-relevant and are collected during the generation
process of Csmith. Reusing these features also shortens the
process, i.e., we do not have to collect these features again
on the input programs.

3.1.2 Labeling
In our multi-output regression problem, we collect the cov-
ered fraction of each compiler module as each label. That
is, the value of each label is a real number between zero
and one. Since some compiler modules have quite similar
covered code regions for almost all test programs (e.g., some
compiler modules in the parser), the predicted results for
these labels are meaningless, and thus we remove them from
the label set. That is, we do not need to predict coverage
for these compiler modules in our approach, since they
cannot help distinguish test programs with different test
capabilities. Here we set that if there are more than 99%
test programs whose absolute differences of coverage on a
compiler module with the medium coverage of the set of
test programs are less than 5%, we remove this compiler
module from the label set.

3.1.3 Building a Prediction Model
We collect a set of training test programs generated by
Csmith, and features and labels of each test program3. Based
on the set of training instances (including features and la-
bels), we first normalize features to adjust values measured

3. As the training test programs are generated by Csmith, we directly
extract the values of features (including the three types of features) from
each test program during the test-generation process of Csmith.
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on different scales to a common scale. Since the features
are either numeric type or boolean type (i.e., 0 or 1), COP
normalizes each value of these features into the interval [0,
1] using min-max normalization [24], [25]. Suppose the set
of training instances is denoted as T = {t1, t2, . . . , tm} and
the set of features is denoted as F = {f1, f2, . . . , fs}, we use
a variable xij to represent the value of the feature fj for the
test program ti before normalization and use a variable x∗ij
to represent the value of the feature fj for the test program
ti after normalization (1 ≤ i ≤ m and 1 ≤ j ≤ s). The
normalization formula is as follows:

x∗ij =
xij −min({xkj |1 ≤ k ≤ m})

max({xkj |1 ≤ k ≤ m})−min({xkj |1 ≤ k ≤ m})
After normalization, we then adopt the gradient boost-

ing for regression [26] to build a prediction model for
our multi-output regression problem. It builds an additive
model in a forward stage-wise fashion, and it allows for
the optimization of arbitrary differentiable loss functions. In
each stage a regression tree is fit on the negative gradient of
the given loss function. Its effectiveness to solve regression
problems has been demonstrated by the existing work [26].

3.1.4 Predicting and Aligning Coverage
To predict coverage for each new test program, we also
extract features for each of them. Then, based on the learnt
prediction model, COP predicts the covered fraction of each
remaining compiler module for each new test program.

Since COP is not limited to predict coverage for the
same version of a compiler as the version used to collect
labels, there may exist the label alignment problem when
the version used to train a prediction model is different from
the version to be predicted. The label alignment problem is
that the labels collected on the two versions are not totally
the same, due to the existence of newly added compiler
modules and out-of-date compiler modules between ver-
sions. To solve the label alignment problem after prediction,
we match compiler modules between versions based on
the names of compiler modules, e.g., file names or method
names. If the name of a compiler module stays the same
between the two versions, the compiler module is regarded
as a “matched” module. Otherwise, it is regarded as a
“non-matched” module. In particular, we remove all “non-
matched” modules to align coverage.

3.2 Clustering Test Programs
After acquiring the coverage information of new test pro-
grams, COP clusters them into different groups based on
their predicted coverage information, and different groups
are more likely to have different test capabilities. More
specifically, COP uses the X-means clustering algorithm
with Manhattan distance [22] for clustering, which does not
require to predefine the number of clusters and estimates
the number of clusters quickly by making a local decision
after each run of K-means.

3.3 Prioritizing Test Programs
Since the test programs in different groups tend to have
different test capabilities, COP prioritizes new test programs

Algorithm 1: Prioritizing Test Programs

1 Function Prioritize (group)
2 while ∃k∈1. . . N group[k] is not empty do
3 Selected← [ ]
4 for j ← 1 to N by 1 do
5 if group[j] is not empty then
6 Max[j]←max(group[j])
7 Selected←Selected∪{Max[j]}
8 group[j]←group[j]-{Max[j]}
9 end

10 end
11 Rank.add(Sort(Selected))
12 end
13 Procedure Main()
14 Rank← [ ]
15 for j ← 1 to N by 1 do
16 high[j]←{x∈ g[j] | x> ψ}
17 low[j]←g[j]-high[j]
18 end
19 Prioritize(high)
20 Prioritize(low)

considering the clustering results. Before prioritization, COP
first utilizes LET to acquire the bug-revealing probability per
unit time for each new test program. Then, during prioritiza-
tion, COP enumerates each group to select the test program
with the largest bug-revealing probability per unit time in
each group and ranks them, until all the test programs are
selected. In particular, if bug-revealing probabilities per unit
time of test programs are smaller than a threshold, denoted
as ψ, COP does not select them until all test programs
whose bug-revealing probabilities per unit time are larger
than ψ are selected. The reason is that the test program with
extremely small bug-revealing probabilities per unit time is
unlikely to trigger compiler bugs.

Algorithm 1 formally depicts our prioritization strat-
egy. Given a set of new test programs T =
{t1, t2, . . . , tM}, which is clustered into the following
groups {g1, g2, . . . , gN}, Algorithm 1 outputs an execution
order of these test programs, which is recorded by a list
Rank. In this algorithm, Lines 13 to 20 present the main
procedure of our prioritization strategy. Lines 15 to 18 sepa-
rate each group into two groups: high and low. The former
contains the test programs whose bug-revealing probability
per unit time are larger than ψ, while the latter contains the
remaining test programs. Lines 19 to 20 prioritize the test
programs in high and low by calling function Prioritize, re-
spectively. In the Prioritize function, Line 2 judges whether
all test programs in group have been prioritized. Lines 3 to
10 selects the test program with the largest bug-revealing
probability per unit time from each non-empty group, and
then removes it from the group. Line 11 sorts these selected
test programs and records them into Rank.

4 EXPERIMENTAL STUDY DESIGN

In this study, we address the following two research ques-
tions.

• RQ1: Does COP accelerate C compiler testing?
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TABLE 1
Subject statistics

Subject LOC #File #Method Usage
GCC-4.3.0 405,415 333 47,354 RQ1&RQ2
GCC-4.4.0 460,989 352 21,833 RQ2
GCC-4.4.3 461,688 352 21,894 RQ1
GCC-4.5.0 492,561 372 23,767 RQ2
GCC-4.6.0 525,010 390 25,168 RQ2
GCC-6.1.0 538,413 516 33,247 RQ1
GCC-6.2.0 538,368 516 33,250 RQ1
GCC-6.3.0 538,933 516 33,308 RQ1
GCC-6.4.0 539,279 516 33,318 RQ1
GCC-7.1.0 595,610 541 35,062 RQ1
GCC-7.2.0 595,824 541 35,073 RQ1
GCC-7.3.0 596,022 541 35,109 RQ1
LLVM-2.6 387,493 1,158 33,356 RQ1&RQ2
LLVM-2.7 462,188 1,350 37,682 RQ1&RQ2
LLVM-2.8 528,727 1,499 42,872 RQ2
LLVM-4.0.0 366,271 1,272 271,805 RQ1
LLVM-4.0.1 364,126 1,272 271,865 RQ1
LLVM-5.0.0 387,721 1,365 287,654 RQ1
LLVM-5.0.1 387,787 1,365 287,664 RQ1
LLVM-6.0.0 415,732 1,422 301,692 RQ1

• RQ2: How does COP perform in terms of predicting
coverage for C compilers?

We first evaluate whether COP can accelerate compiler
testing, which is the ultimate goal of COP. Afterwards,
we then investigate the accuracy of COP on predicting
coverage.

4.1 Subjects and Test Programs

In this study, we use the two most widely-used C compilers,
i.e., GCC and LLVM for the x86 64-Linux platform, which
cover almost all C compilers used in the study of C compiler
testing [1], [3], [4], [5], [16], [27]. More specifically, we use the
constructed dataset (i.e., GCC-4.4.3, LLVM-2.6, and LLVM-
2.7) in the existing work [6] to evaluate the effectiveness of
COP on accelerating compiler testing, which is convenient
to compare with the state-of-the-art acceleration approach
LET. Since this dataset contains only old release versions of
compilers, we further construct a new dataset that includes
12 latest release versions of GCC and LLVM (i.e., 7 GCC
latest release versions, i.e., GCC-6.1.0, GCC-6.2.0, GCC-6.3.0,
GCC-6.4.0, GCC-7.1.0, GCC-7.2.0, and GCC-7.3.0, and 5
LLVM latest release versions, i.e., LLVM-4.0.0, LLVM-4.0.1,
LLVM-5.0.0, LLVM-5.0.1, and LLVM-6.0.0) to sufficiently
investigate the effectiveness of COP. Furthermore, based
on the dataset [6], we also additionally use more release
versions of GCC and LLVM including GCC-4.3.0, GCC-4.4.0,
GCC-4.5.0, GCC-4.6.0, and LLVM-2.8 to sufficiently evaluate
the effectiveness of COP on predicting coverage.

Table 1 shows the statistical information of subjects. In
this table, the first column presents the used compiler and
each used specific release version; Columns 2-4 present the
number of lines of code, the number of files, and the number
of methods in each used release version of each compiler,
respectively. In particular, these data refer to those used to
be collected coverage in our study. For GCC, we collect
coverage for all “.c” and “.h” files, while for LLVM, we
collect coverage for all “.cpp” and “.h” since the part for
compiling C programs of GCC is implemented using C

while LLVM is implemented using C++. The last column
presents the usage of each subject, i.e., used in RQ1 or RQ2.

The test programs used in our study are C programs
randomly generated by Csmith [3], which is widely used
in the literature of C compiler testing [1], [4], [5]. Each C
program generated by Csmith is valid and does not require
external inputs. The output of each generated program is the
checksum of the non-pointer global variables of the program
at the end of program execution. In particular, we generate
2,000 test programs using Csmith for GCC and LLVM as the
training set for COP, respectively.

4.2 Implementations
In this study, we set each compiler module as each source
file, considering the balance between efficiency and ef-
fectiveness. That is, COP accelerates compiler testing by
predicting file coverage. In particular, we use Gcov4 to
collect file coverage in this study. Besides, the used gradient
boosting for regression in COP is implemented in the scikit-
learn5, which is a simple and efficient tool for data mining
and data analysis in python. The used X-means clustering
algorithm is implemented in Weka 3.6.12 [28], which is a
popular environment for data mining in Java. We use the
gradient boosting for regression by setting n estimators =
200, max depth = 5, and learning rate = 0.01, and use
the X-means clustering algorithm by setting the minimum
number of clusters to 5, the maximum number of clusters
to 50, and the maximum number of overall iterations to 10.
The parameter values are decided by a preliminary study
that we conduct on a small dataset. Other parameters in
these two algorithms are set to the default values provided
by scikit-learn and Weka, respectively. For the prioritization
strategy presented in Section 3.3, we set ψ to the bug-
revealing probability per unit time of the test program that
are ranked at the 2/3 position in the ranking list of test
programs.

4.3 Independent Variables
We consider the following three independent variables.

4.3.1 Application Scenarios
COP has two application scenarios, i.e., same-version sce-
nario and cross-version scenario.

Same-version scenario means that COP trains a predic-
tion model based on a version of a compiler, and then accel-
erates testing of the same version by using the prediction
model to predict test coverage on this version. To evaluate
COP in this application scenario, for the dataset [6] we use
GCC-4.4.3, LLVM-2.6, and LLVM-2.7 to train the prediction
model and use the model to accelerate testing of GCC-4.4.3,
LLVM-2.6, and LLVM-2.7, respectively. We denote them
as GCC-4.4.3→GCC4.4.3, LLVM-2.6→LLVM2.6, and LLVM-
2.7→LLVM2.7. Besides, we also evaluate the effectiveness of
COP on the new dataset including 12 latest release versions
of GCC and LLVM in this application scenario.

Cross-version scenario means that COP trains a predic-
tion model based on a version of a compiler, and accelerates

4. http://ltp.sourceforge.net/coverage/gcov.php.
5. http://scikit-learn.org/stable/
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testing of a later version of the compiler by using the pre-
diction model to predict test coverage on the later version
of the compiler. To evaluate the acceleration effectiveness of
COP in this application scenario, for the dataset [6] we use
GCC-4.3.0 and LLVM-2.6 to train a prediction model and
use the model to accelerate testing of GCC-4.4.3 and LLVM-
2.7, respectively. Since Clang is not integrated into LLVM
before LLVM-2.6, we cannot use COP to accelerate testing
of LLVM-2.6 in this application scenario. We denote them as
GCC-4.3.0→GCC4.4.3 and LLVM-2.6→LLVM2.7.

Furthermore, we also additionally use more release
versions of GCC and LLVM so as to sufficiently evalu-
ate the accuracy of COP on predicting coverage. There-
fore, in the same-version application scenario, we also use
GCC-4.3.0, GCC-4.4.0, GCC-4.5.0, GCC-4.6.0, and LLVM-
2.8 to train a prediction model, and use the predic-
tion model to predict coverage on GCC-4.3.0, GCC-4.4.0,
GCC-4.5.0, GCC-4.6.0, and LLVM-2.8, respectively. We de-
note them as GCC-4.3.0→GCC4.3.0, GCC-4.4.0→GCC4.4.0,
GCC-4.5.0→GCC4.5.0, GCC-4.6.0→GCC4.6.0, and LLVM-
2.8→LLVM-2.8. In the cross-version application scenario,
we add GCC-4.3.0→GCC4.4.0, GCC-4.4.0→GCC4.5.0, GCC-
4.5.0→GCC4.6.0, and LLVM-2.7→LLVM-2.8.

4.3.2 Compiler Testing Techniques
In this study, we consider two compiler testing techniques
to accelerate following the existing work [6], i.e., Different
Optimization Level (DOL) [1] and Equivalence Modulo
Inputs (EMI) [4]. Since both RDT and DOL are differential-
testing based compiler testing techniques as presented in
Section 2.1, following the existing work [6] we use DOL as
the representative in this paper.

DOL detects compiler bugs by comparing the results
produced by the same test program with different optimiza-
tion levels (i.e., -O0, -O1, -Os, -O2 and -O3) [1]. Given an
execution order decided by an acceleration approach, we
compile and execute test programs under different opti-
mization levels, and determine whether the test program
triggers a bug by comparing their results.

EMI detects compiler bugs by generating some equiv-
alent variants for any given test program and comparing
the results produced by the original test program and
its variants6 [4]. Given an execution order decided by an
acceleration approach, we generate eight variants for each
original test program by randomly deleting its unexecuted
statements same as the EMI work [4], and then compile and
execute each pair of a test program and its variants under
the same optimization level (i.e., -O0, -O1, -Os, -O2 and -O3).
Finally, we compare the corresponding results to determine
whether a bug is detected by them.

4.3.3 Compared Approaches
In the study, to evaluate the acceleration effectiveness of
COP, we have the following compared approaches.

Random order (RO), is taken as the baseline in this
study. RO randomly determines an execution order of new
test programs, demonstrating the effectiveness of compiler
testing without any acceleration approaches.

6. In fact, EMI has three instantiations, namely Orion [4], Athena [17],
and Hermes [18]. In our paper, EMI refers to Orion.

LET [6], is the state-of-the-art acceleration approach. It
predicts bug-revealing probability and execution time for
each new test program based on historical bug information,
and then prioritizes new test programs based on their bug-
revealing probabilities per unit time.

Besides, to investigate the accuracy of COP on predicting
coverage, we also have a baseline, i.e., random guess (RG),
for coverage prediction. More specifically, RG randomly
guesses the covered fraction of each predicted source file
by a test program, i.e., a real number between zero and one.

4.4 Dependent Variables
To measure the effectiveness of acceleration approaches,
following the existing work [6], we use the time spent on
detecting r bugs, where 1 ≤ r ≤ u and u is the total
number of bugs detected when executing all test programs
in this study. Smaller is better. All these acceleration ap-
proaches, i.e., LET and COP, take extra time on scheduling
test programs, and thus the time spent on detecting r bugs
also includes the scheduling time. For example, the extra
time of COP on scheduling test programs includes the time
spent on predicting coverage, clustering and prioritizing test
programs.

Based on it, we further use Formula 1 to calculate the
corresponding speedup on detecting r bugs, where TRO(r)
refers to the time spent on detecting r bugs without any
accelerating approaches and TACC(r) refers to the time
spent on detecting r bugs with one acceleration approach.
Larger is better.

Speedup(r) =
TRO(r)− TACC(r)

TRO(r)
(1)

Besides, we also investigate the accuracy of COP on
predicting coverage. Here we adopt the commonly-used
metrics in the multi-output regression problem, i.e., ex-
plained variance score [29], mean absolute error [30], and
R2 score [31].

The explained variance score (EV) measures the propor-
tion to which a mathematical model accounts for the vari-
ation of a given data set. Supposed that ŷ is the predicted
target output, y is the corresponding true target output, and
V ar refers to the variance, the explained variance score is
computed following Formula 2. Larger is better.

Expected variance(y, ŷ) = 1− V ar(y − ŷ)

V ar(y)
(2)

The mean absolute error (MAE) refers to the mean value
of absolute differences between predicted values and true
values. Supposed that ŷi is the predicted value of the ith
output, yi is the corresponding true value, and n refers to
the number of outputs (i.e., labels), the mean absolute error
is computed following Formula 3. Smaller is better.

MAE(y, ŷ) =

∑n
i=1 |yi − ŷi|

n
(3)

The R2 score is a measure of how well future samples
are likely to be predicted by the model, which is computed
following Formula 4, where y =

∑n
i=1 yi

n . Larger is better.
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R2(y, ŷ) = 1−
∑n

i=1 (yi − ŷi)2∑n
i=1 (yi − yi)2

(4)

4.5 Process
For compilers in the dataset [6], we use the same 100,000 test
programs as the existing work [6], which serve as the new
test programs to be prioritized. That is, we have a set of new
test programs before applying any prioritization approach.

First, we apply RO to the test programs and feed the
prioritized test programs to the two compiler testing tech-
niques, respectively. During the process, we record the exe-
cution time of each test program and which test programs
trigger which bugs, then calculate the time spent on detect-
ing each bug. The results of RO demonstrate the compiler
testing results without using any accelerating approaches.
To reduce the influence of random selection, we apply RO
10 times and calculate the average results.

Next, we apply COP and LET to each compiler under test
in the two application scenarios by using the two compiler
testing techniques, respectively. During this process, we also
calculate the time spent on detecting each bug.

When evaluating the effectiveness of COP on the new
dataset of 12 latest release versions of GCC and LLVM,
we follow the similar process with the above, but we use
different test programs since there is no test-program data
of the new dataset. Here we use the DOL technique as the
one to accelerate.

Furthermore, to evaluate the accuracy of COP on pre-
dicting coverage, we use 10-fold cross validation to assess
the effectiveness of COP based on 2,000 test programs in
the training set. More specifically, during each fold cross
validation, we apply COP to 1,800 test programs to train a
prediction model on a version of a compiler, and then use
the learnt model to predict coverage of each of remaining
200 test programs on a version (i.e., the same version or a
later version) of the same compiler. Based on the predicted
coverage and real coverage, we calculate the explained
variance score, mean absolute error, and R2 score on each
fold cross validation, and calculate the corresponding mean
values of these metrics on 10-fold cross validation.

Similarly, we apply RG to predict coverage of each test
program. Note that in order to compare RG and COP, for RG
we also split 2,000 test programs into 10 folds as the same
as 10-fold cross validation for COP, and then calculate the
values of metrics correspondingly. To reduce the influence
of randomness, we apply RG 10 times and calculate the
average results.

5 RESULTS AND ANALYSIS

5.1 Acceleration Effectiveness
Table 2 shows the acceleration results of COP and LET in
terms of time spent on detecting bugs for the dataset [6]7.
In this table, Column “Scenarios” presents the application
scenarios, and the subject before an arrow is used to train a
prediction model and the subject after an arrow is used to be

7. We do not use the bugs of LLVM-2.7 detected by DOL, because the
number of detected bug is only one, which does not have any statistical
significance.

TABLE 2
Time spent on bug detection (* 104 seconds)

Scenarios Bug DOL EMI
RO ∆LET ∆COP RO ∆LET ∆COP

GCC-4.3.0
→

GCC-4.4.3

1 0.02 0.02 0.10 0.29 0.64 -0.02
2 0.32 -0.07 -0.13 0.78 1.78 0.92
3 0.89 -0.56 -0.40 1.43 1.45 0.28
4 1.90 -1.12 -1.36 2.98 0.58 -1.20
5 2.36 -1.17 -1.23 5.13 0.67 -1.22
6 2.93 -1.51 -0.73 9.35 -3.55 -1.96
7 3.96 -2.48 -1.62 12.21 -1.24 -2.43
8 4.82 -1.84 -1.86 14.66 -3.05 0.10
9 6.31 -2.15 -2.65 19.35 -0.88 -2.10

10 7.58 -3.07 -3.66 23.25 -3.90 -5.48
11 9.67 -5.15 -5.38 27.26 -7.48 -9.48
12 12.11 -6.73 -7.42 29.69 -9.91 -4.86
13 14.73 -6.85 -9.37 36.02 -13.73 -11.14
14 17.47 -6.47 -11.58 40.54 -18.24 -15.32
15 18.92 -4.34 -12.94 48.86 -16.01 -23.64
16 21.08 -5.62 -14.34 53.90 -11.08 -28.68
17 24.37 -4.31 -14.14 58.08 -11.64 -32.86
18 26.39 -4.37 -14.05 61.69 -15.26 -24.47
19 29.63 -4.99 -16.77 76.52 -23.99 -37.60
20 32.08 -6.77 -16.77 78.96 -21.61 -37.51
21 – – – 88.59 -28.98 -46.49
22 – – – 107.05 -34.01 -54.00
23 – – – 115.04 -35.63 -53.11

GCC-4.4.3
→

GCC-4.4.3

1 0.02 0.02 0.08 0.29 0.64 -0.08
2 0.32 -0.07 -0.19 0.78 1.78 -0.47
3 0.89 -0.56 -0.75 1.43 1.45 -0.83
4 1.90 -1.12 -1.46 2.98 0.58 -1.38
5 2.36 -1.17 -1.44 5.13 0.67 0.48
6 2.93 -1.51 -1.26 9.35 -3.55 -3.74
7 3.96 -2.48 -1.93 12.21 -1.24 -6.60
8 4.82 -1.84 -2.31 14.66 -3.05 -9.05
9 6.31 -2.15 -3.43 19.35 -0.88 -13.52

10 7.58 -3.07 -4.70 23.25 -3.90 -16.35
11 9.67 -5.15 -5.51 27.26 -7.48 -17.39
12 12.11 -6.73 -6.99 29.69 -9.91 -19.68
13 14.73 -6.85 -9.61 36.02 -13.73 -20.98
14 17.47 -6.47 -9.27 40.54 -18.24 -19.79
15 18.92 -4.34 -7.85 48.86 -16.01 -26.25
16 21.08 -5.62 -9.27 53.90 -11.08 -20.66
17 24.37 -4.31 -11.54 58.08 -11.64 -17.75
18 26.39 -4.37 -11.34 61.69 -15.26 -21.28
19 29.63 -4.99 -11.79 76.52 -23.99 -36.10
20 32.08 -6.77 -10.13 78.96 -21.61 -35.22
21 – – – 88.59 -28.98 -37.87
22 – – – 107.05 -34.01 -39.33
23 – – – 115.04 -35.63 -44.09

LLVM-2.6
→

LLVM-2.6

1 0.35 -0.06 -0.04 3.32 -0.29 -1.61
2 1.06 -0.73 -0.32 8.56 -3.76 -6.12
3 2.60 -1.54 -1.63 16.08 -11.28 -13.64
4 4.33 -2.87 -3.29 23.25 -3.97 -20.81
5 5.23 -1.63 -3.27 33.23 -13.95 -29.48
6 6.83 -0.01 -3.99 47.86 -23.19 -39.85
7 8.73 1.12 -2.83 56.30 -29.80 -47.42
8 9.97 3.11 1.09 66.83 -27.50 -30.53
9 13.37 -0.06 -0.94 86.07 -38.23 -49.77

10 16.33 -0.53 -3.13 94.70 -43.85 -35.05
11 20.25 -0.84 -5.46 – – –
12 22.87 -2.85 -6.73 – – –
13 25.45 -5.07 -2.19 – – –
14 30.76 -9.60 -6.10 – – –

LLVM-2.7
→

LLVM-2.7

1 – – – 3.19 -0.38 -1.06
2 – – – 22.95 -20.14 -19.05
3 – – – 61.84 -23.14 -46.50

LLVM-2.6
→

LLVM-2.7

1 – – – 3.19 -0.38 -2.55
2 – – – 22.95 -20.14 -22.28
3 – – – 61.84 -23.14 -58.06

accelerated; Column “Bug” presents the number of detected
bugs; Column “RO” presents the average time spent on
detecting the corresponding number of bugs without any
acceleration approaches; Columns “∆LET” and “∆COP”
present the difference of the time spent on detecting the
corresponding number of bugs between using LET/COP
and using RO. If the difference is less than zero, the cor-
responding approach accelerates compiler testing because
the used accelerating approach (LET/COP) spends less time
than RO on detecting the corresponding number of bugs.
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Fig. 2. Speedup distribution of acceleration approaches, COP and LET

TABLE 3
Effectiveness on different compiler testing techniques and different

application scenarios

Summary Techniques Scenarios
DOL EMI Same-version Cross-version

Acc.(%) 94.44 93.55 92.86 95.65
Mean(%) 46.12 54.90 47.60 55.78
p-value 0.000(:) 0.000(:) 0.000(:) 0.000(:)

5.1.1 Overall Effectiveness
Table 2 shows that almost all values (109 in 116) of “∆COP”
are smaller than zero, demonstrating that COP accelerates
compiler testing in 93.97% cases. With the number of de-
tected bugs increasing, the absolute values becomes much
larger. That means that acceleration effectiveness of COP
becomes more obvious as the testing proceeds. For the small
number of values that are larger than zero, they are far
smaller than the absolute values that are smaller than zero.
For example, the largest value of those that are larger than
zero is only 1.09, but the largest absolute value of those
that are smaller than zero is 58.06. This also reflects the
stably great effectiveness of COP on accelerating compiler
testing. In addition, we further analyze the reason why COP
has poor performance for some cases. Most cases of poor
performance are caused by the higher setup time of COP.
Since there are extra costs for COP (e.g., costs of predicting
coverage) in prioritizing test programs, the first few bugs
may be delayed. As time goes by, COP eventually shows
better acceleration.

We further analyze acceleration effectiveness of COP
by its speedup distribution. Figure 2 shows the speedup
distribution of acceleration approaches8, where the left one
shows the speedup distribution of COP. The violin plots
show the density of speedups at different values, and the
box plots show the median and interquartile ranges. From
the speedup distribution of COP, we find that its speedups
are ranging from 7.07% to 97.06%. In particular, the density
of 50% speedup for COP is the largest, and the speedups
of COP are over 50% in about half of cases. Therefore, COP
accelerates compiler testing to a large degree.

Besides, we further analyze the acceleration effective-
ness of COP on different compiler testing techniques and
different application scenarios, whose results are shown in
Table 3. In this table, Row “Acc.(%)” represents the percent-

8. For each r and each setting, we calculate the speedup of COP using
Formula 1. We then analyze these speedups together. Here we do not
show the deceleration cases.

TABLE 4
Statistical analysis between COP and LET

Scenarios
GCC-4.4.3 GCC-4.3.0 LLVM-2.6
→ → →
GCC-4.4.3 GCC-4.4.3 LLVM-2.6

DOL Mean(%) 17.61 20.26 14.26
p-value 0.006(:) 0.001(:) 0.064

EMI Mean(%) 22.45 43.81 55.27
p-value 0.014(:) 0.000(:) 0.022(:)

age of cases where COP accelerates compiler testing; Row
“Mean(%)” represents the mean speedup of COP in each
setting; Row “p-value” represents the p-value of a paired
sample Wilcoxon signed-rank test (at the significance level
0.05) in each setting, which reflects the significance in statis-
tics. The p-values with (:) represent that COP significantly
accelerates compiler testing in corresponding settings. From
this table, we find that COP accelerates compiler testing
in almost all cases, more than 92.86%, no matter which
compiler testing techniques and application scenario are
applied. Furthermore, COP significantly accelerates com-
piler testing for both DOL and EMI on same-version and
cross-version scenarios, whose mean speedups are ranging
from 46.12% to 55.78%. Overall, COP always achieves great
effectiveness for different compiler testing techniques on
different application scenarios.

5.1.2 Comparison with LET

From Table 2, there are 14 cases where LET decelerates
compiler testing while there are only 7 cases where COP
decelerates compiler testing, demonstrating that COP has
more stable acceleration effectiveness than LET. Moreover,
we also find that the absolute values of Column “∆COP”
are larger than those of Column “∆LET” in most cases. That
means that COP achieves better acceleration effectiveness
than LET.

Similarly, we also analyze the speedup distribution of
LET, which is also shown in Figure 2, the right one. From
this figure, we find that the speedups of LET are rang-
ing 0.14% to 87.75%. Both the minimum and maximum
speedups are smaller than those of COP. Moreover, the
density of about 30% speedup for LET is the largest, and the
speedups of LET are over 50% in only 18.63% cases. That
demonstrates that COP outperforms LET on accelerating
compiler testing.

To further learn whether COP significantly outperforms
LET, we perform a paired sample Wilcoxon signed-rank test
(at the significance level 0.05), whose results are shown in
Table 4. In this table, Row “p-value” represent the p-values
of the respective scenarios. The p-values with (:) mean that
COP significantly outperforms LET, and those without (:)
mean that there are no significant difference between COP
and LET. Row “Mean (%)” represents the average speedups
between COP and LET, which are computed by adapting
Formula 1. More specifically, TRO(r) in the adapted for-
mula refers to the time spent on detecting r bugs through
LET and ACC(r) refers to the time spent on detecting r
bugs through COP. Since the number of detected bugs by
EMI on LLVM-2.7 is only three, the small number cannot
be used to perform the paired sample Wilcoxon signed-rank
test, and thus we do not show the results of accelerating
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testing of LLVM-2.7 in this table. In particular, the mean
speedup of “LLVM-2.7→LLVM-2.7” for EMI is 25.28% and
the mean speedup of “LLVM-2.6→LLVM-2.7” for EMI is
82.51%. From Table 4, we find that in most cases (5 in 6)
COP significantly outperforms LET. Moreover, the mean im-
provements of COP over LET are ranging 14.26% to 55.27%
in this table. Therefore, COP does perform significantly
better than LET, the state-of-the-art acceleration approach.

Also, there are some cases where COP performs worse
than LET. We further investigate the reason behind this
phenomenon. On the one hand, most of these cases are also
caused by the higher setup time of COP, since COP also
has more extra costs (e.g., costs of predicting coverage) than
LET. On the other hand, for other cases, this is because the
features used in COP are unrelated to these bugs, which
causes to delay the detection of these bugs. This is as
expected, it is impossible to identify all features related to all
bugs, and any prioritization approach cannot guarantee to
accelerate testing for all bugs. That is, our approach aims to
accelerate compiler testing in general, not for some specific
bugs. A similar case is compiler optimization. A compiler
optimization is designed to optimize compiling and execu-
tion of a program in general, and thus sometimes a compiler
optimization may behave the opposite. In particular, it has
been demonstrated that COP does significantly accelerate
compiler testing in terms of overall effectiveness. In the
future, we will consider adding more features for further
improving our approach.

5.1.3 Acceleration Effectiveness on Latest Release Ver-
sions of GCC and LLVM
We further investigate the acceleration effectiveness of COP
on the dataset of 12 latest release versions of GCC and LLVM
using the DOL technique and the same-version scenario,
whose results are shown in Table 5. In this table, Columns
3-5 present the time spent on bug detection of RO, LET,
and COP; the last two columns present the mean speedup
of COP compared with RO and LET respectively. For the
12 latest release versions, we detect 19 compiler bugs in
total by running the generated test programs9. From Table 5,
overall, COP accelerates the testing of the latest release
versions in 84.21% cases. The mean speedup of COP is
68.74%, outperforming the mean speedup on old versions in
the dataset [6] (i.e., 51.01%). That is, COP still significantly
accelerates compiler testing for latest release versions. Fur-
thermore, COP performs better than LET in 73.68% cases on
the latest release versions, and the mean improvement of
COP over LET is 49.18%. That is, COP still outperforms LET
on latest release versions of GCC and LLVM.

5.1.4 Acceleration Effectiveness on Swarm Testing
In compiler testing, there are various test program gen-
eration methods. It is interesting to investigate whether
COP is able to accelerate compiler testing based on the test
programs generated by different methods. Here we used a
state-of-the-art method, swarm testing [32], as the represen-
tative test program generation method. More specifically,

9. All the bug-triggering test programs for the 19 bugs detected in
the latest release versions in the study can be found at https://github.
com/JunjieChen/COPprograms.

TABLE 5
Effectiveness of COP on latest release versions including time spent on

bug detection (* 104 seconds) and overall speedups

Subjects Bugs RO ∆LET ∆COP ↑RO ↑LET

GCC-6.1.0 1 24.93 -2.73 -19.02

68.74% 49.18%

2 83.26 -24.10 -48.45

GCC-6.1.0
1 13.39 -3.94 -3.97
2 52.29 26.76 25.47
3 70.36 13.51 15.44

GCC-6.3.0 1 48.78 -39.13 -46.19

GCC-6.4.0 1 39.97 -17.05 15.30
2 110.25 -24.87 -51.81

GCC-7.1.0 1 25.47 -22.43 -23.44
2 80.23 -24.79 -33.9

GCC-7.2.0 1 22.26 -14.80 -2.15
2 65.97 20.36 -31.81

GCC-7.3.0 1 61.54 -26.37 -46.76
LLVM-4.0.0 1 57.39 -42.64 -16.25
LLVM-4.0.1 1 46.74 -26.08 -41.55

LLVM-5.0.0 1 21.20 3.21 -14.31
2 62.23 -27.31 -3.73

LLVM-5.0.1 1 34.77 -3.40 -32.82
LLVM-6.0.0 1 49.90 0.46 -49.54

TABLE 6
Effectiveness of COP with swarm testing (including time spent on bug

detection (* 104 seconds) and overall speedups)

Subjects Bugs ROsw ∆LETsw ∆COPsw ↑ROsw ↑LETsw

GCC-4.4.3

1 0.12 -0.07 -0.09

38.37% 14.88%

2 0.24 -0.10 0.03
3 0.58 -0.18 -0.22
4 1.01 -0.61 -0.53
5 4.08 -2.48 -3.07
6 4.21 -0.99 -3.11
7 4.27 -0.99 -2.93
8 4.59 -0.98 -3.21
9 4.66 -0.82 -2.13

10 5.12 -1.12 -2.07
11 7.55 -3.53 -3.88
12 9.22 -0.41 -0.17

LLVM-2.6

1 0.01 0.00 0.04
2 0.06 0.02 0.07
3 0.51 0.00 -0.12
4 1.08 -0.09 -0.41
5 2.71 -1.29 -1.83

swarm testing generates test programs by tuning a set of
flags of Csmith to enable/disable C language features, so as
to detect more bugs during the given period of time [32].

In the study, we first used swarm testing to generate
30,000 test programs for GCC-4.4.3 and LLVM-2.6, respec-
tively. Then, we applied COP to accelerate their testing
in the same-version scenario. Table 6 shows the accelera-
tion effectiveness on swarm testing. In this table, Column
“ROsw” presents the testing effectiveness using the test pro-
grams generated by swarm testing; Column “∆LETsw” and
∆COPsw present the acceleration results of LET and COP
based on the test programs generated by swarm testing.
From this table, using swarm testing, COP still does accel-
erate compiler testing in 82.35% cases except the first few
bugs. Compared with swarm testing, the average speedup
of COP is 38.37%, and compared with LET based on swarm
testing, the average speedup of COP is 14.88%. These results
are similar to those using the test programs generated
by vanilla Csmith. Therefore, the results demonstrate that
COP is able to stably accelerate compiler testing no matter
which test program generation method (swarming testing
or vanilla Csmith) is used. This also reflects that COP is
orthogonal to the test program generation methods.
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TABLE 7
Effectiveness of COP for predicting coverage in the same-version

application scenario

Subjects EV MAE R2

COP RG COP RG COP RG

GCC

4.3.0→4.3.0 0.899 -1.423 0.039 0.309 0.840 -1.497
4.4.0→4.4.0 0.884 -1.672 0.036 0.302 0.859 -1.733
4.5.0→4.5.0 0.897 -1.600 0.034 0.303 0.874 -1.634
4.6.0→4.6.0 0.891 -1.686 0.034 0.300 0.869 -1.722

LLVM
2.6→2.6 0.799 -1.134 0.051 0.325 0.782 -1.162
2.7→2.7 0.790 -1.179 0.050 0.322 0.774 -1.202
2.8→2.8 0.822 -1.172 0.049 0.322 0.807 -1.193

TABLE 8
Effectiveness of COP for predicting coverage in the cross-version

application scenario

Subjects EV MAE R2

COP RG COP RG COP RG

GCC
4.3.0→4.4.0 0.761 -1.529 0.067 0.306 0.747 -1.571
4.4.0→4.5.0 0.749 -1.708 0.073 0.300 0.706 -1.749
4.5.0→4.6.0 0.874 -1.786 0.052 0.297 0.854 -1.825

LLVM 2.6→2.7 0.476 -1.092 0.116 0.327 0.469 -1.116
2.7→2.8 0.535 -1.283 0.100 0.316 0.502 -1.317

5.2 Prediction Effectiveness

Table 7 shows the effectiveness of COP on predicting cov-
erage in the same-version application scenario. From this
table, we find that COP significantly outperforms RG in
terms of all used metrics. In particular, the EV and R2 values
of RG are negative, which means that it is unpredictable
using RG. The MAE values of COP are extremely small (i.e.,
0.034∼0.051), demonstrating its high accuracy on predicting
coverage in the same-version application scenario. More-
over, both EV and R2 of COP are large, demonstrating its
high predictability of coverage in the same-version applica-
tion scenario.

Table 8 shows the effectiveness of COP on predicting
coverage in the cross-version application scenario. From
this table, we also find that COP significantly outperforms
RG no matter which metric is used. The MAE values of
COP are also small (i.e., 0.052∼0.116), demonstrating its
high accuracy on predicting coverage in the cross-version
application scenario. We also find that the MAE values in
the cross-version application scenario are larger than those
in the same-version application scenario. This is reasonable,
because there are evolutions between versions, which incur
inaccuracies in prediction. Similarly, the EV and R2 values
in the cross-version application scenario are smaller than
those in the same-version application scenario. Moreover,
we find that the prediction results for LLVM in the cross-
version application scenario become worse than those for
GCC. The reason is that the changes between versions of
LLVM tend to be larger than those of GCC.

In general, COP indeed effectively predicts coverage no
matter which application scenario is applied. The smaller
the changes between the training version and the predicting
version are, the more accurate the prediction is. That is,
when we train a prediction model based on a version, if
its later versions have small changes with it, we can use
it to predict coverage all the time in order to save the off-
line training costs. As the first attempt to predict coverage
statically for compilers, it shows a promising direction.

6 THREATS TO VALIDITY

•Threats to Internal Validity
The threats to internal validity mainly lie in the imple-

mentations of COP and EMI. To reduce these threats, the
first two authors review all the code. Besides, we adopt
the same tools as the existing work [4] to implement EMI,
including LibTooling Library of Clang10 and Gcov.
•Threats to External Validity

The threats to external validity mainly lie in the subjects
and test programs.

To reduce the threat from subjects, we use the same
dataset as the existing work [6], and also construct a new
dataset that includes 12 latest release versions of GCC and
LLVM to evaluate the acceleration effectiveness of COP.
Also, to evaluate the accuracy of COP on predicting cov-
erage, we additional use more release versions based on the
dataset [6]. In the future, we will use more compilers and
more versions as subjects.

To reduce the threat from test programs, we use test
programs randomly generated by Csmith same as the prior
work [1], [3], [4], [5], [6]. However, these test programs
may be not necessarily representative of C programs gen-
erated by other tools. Nevertheless, the results obtained
from Csmith is practice-relevant. When testing C compilers,
Csmith is the state-of-the-art tool to generate C programs
and is the only tool used in recent compiler testing re-
search [4], [32]. Test generators of other compilers are often
built upon Csmith, such as CLsmith for OpenCL compil-
ers [33]. That is, the evaluation results on Csmith best reflect
the performance of our approach in practice.

The number of test programs may also impact the eval-
uation of COP effectiveness. Actually, COP is independent
of the number of generated test programs. COP accelerates
compiler testing by distinguishing different test programs
with different test capabilities. It will predict the coverage
of each test program and schedule their execution order
in order to improve test efficiency. Therefore, COP can
help accelerate compiler testing when the number of test
programs is low (the test coverage is subject to change)
and when the number of test programs is high (the test
coverage reaches a stable state). In particular, we conduct
a small experiment to check the coverage state including
statement coverage, branch coverage, and function coverage
of the 100,000 test programs used in our study. We find that
all the three kinds of coverage are nearly unchanged with
the number of test programs increasing after about 10,000.
That is, the used test programs in our study actually have
reached a stable coverage state. Therefore, our experimental
results have demonstrated that COP indeed works when
reaching a stable state.
•Threats to Construct Validity

The threats to construct validity mainly lie in how the
results are measured, the setting of ψ, and the used op-
timization level for coverage collection when building the
prediction model.

When measuring acceleration effectiveness, we use Cor-
recting Commits, the state-of-the-art method, to automati-
cally identify duplicated bugs [1]. As Correcting Commits

10. http://clang.llvm.org/docs/LibTooling.html.
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Fig. 3. Impact of ψ for COP on accelerating compiler testing

depends on developers edition, different bugs may be re-
garded as the same one. However, it may not be a big threat
since developers do not tend to fix many bugs in a commit
to guarantee the quality of compilers [1].

For the setting of ψ, to investigate its impact, we further
conduct an experiment to test different thresholds using
GCC-4.4.3. More specifically, we set ψ as the value (i.e., the
bug-revealing probability per unit time of the test program)
at the 1/3, 1/2, and last positions in the ranking list of
test programs respectively. Figure 3 shows the effectiveness
of COP using different values of ψ. Overall, the current
setting of ψ (i.e., the value at the 2/3 position) performs
the best among them, since it usually spends the least time
to find bugs shown in this figure. That demonstrates that
the current setting seems to be the best choice for COP.
We further analyze the reason why other settings perform
worse. We find that, for the value at the last position, many
test programs with extremely small bug-revealing probabil-
ities per unit time are ranked at earlier positions through
clustering. For the values at the 1/2 and 1/3 positions,
many test programs that are able to trigger bugs are ranked
at later positions since their bug-revealing probabilities per
unit time are smaller than the set threshold. That is, there
actually exists a tradeoff, and the value at the 2/3 position
is a good balance.

For the used compiler optimization level for coverage
collection in COP, we used the highest optimization level “-
O3” in our study. Compiler optimization levels can affect
the coverage, thus they may also affect the effectiveness
of our approach COP. To investigate the impact, we fur-
ther conduct an experiment to test different optimization
levels including “-O1” and “-O2” using GCC-4.4.3. The
results are shown in Table 9. From this table, COP always
significantly accelerates compiler testing and significantly
outperforms LET no matter which optimization level is used
for coverage collection. For example, compared with RO,
the average speedups of COP using “-O1”, “-O2”, and “-
O3” are 54.67%, 52.51%, and 48.36%, respectively. Therefore,
COP can achieve stable and good results using different
optimization levels for coverage collection.

7 DISCUSSION

7.1 Why COP Works
Our experimental results have demonstrated the accuracy
of COP on predicting coverage on compilers, but it still has
deviations. Even though it utilizes the predicted coverage

TABLE 9
Impact of different optimization levels on COP

Level -O1 -O2 -O3

COP v.s. RO Mean(%) 54.67 52.51 48.36
p-value 0.000(:) 0.000(:) 0.000(:)

COP v.s. LET Mean(%) 27.68 24.23 17.61
p-value 0.000(:) 0.000(:) 0.006(:)

information that has some deviations, COP still achieves
significant accelerating effectiveness for compiler testing.
On the one hand, it shows the potential of COP; on the
other hand, it is also interesting for us to know the reason
behind it. In this section, we further investigate the rea-
son. In particular, we use GCC-4.3.0 and LLVM-2.6 as the
representatives to analyze the prediction accuracy of each
predicted file. Table 10 and Table 11 present the top-10 files
that are predicted most accurately by COP on GCC-4.3.0 and
LLVM-2.6, respectively. Here “the most accurately” refers
to the smallest values of MAE. In this table, the last three
columns represent the names of files, the values of mean
absolute error, and the description of their functionalities,
respectively. From the two tables, we find that most files
in the top-10 files are quite important and error-prone for
compilers. For example, for GCC in Table 10, four of ten
are tree-optimization-related files, and we can find that
a large number of GCC bugs occurring at tree optimiza-
tion parts from GCC Bugzilla11. Similarly, for LLVM in
Table 11, “X86ISelLowering.cpp” and “SemaExprCXX.cpp”
are reported as the two of top-10 files containing the largest
number of bugs [34]. The highly accurate prediction for such
files facilitates to separate test programs triggering more
different bugs into different groups, so that COP accelerates
compiler testing to a larger extent. Therefore, the reason why
COP achieves great acceleration effectiveness based on the
imperfect predicted coverage information may be that, COP
predicts much more accurate results for the more important
and error-prone files.

7.2 Extension of COP
For COP, there are some possible extensions to improve its
effectiveness. First, the key insight of COP to be able to
predict coverage is that test programs with some specific
features are more likely to cover some specific code regions
of compilers. Currently, COP identifies three categories of
features as Section 3.1.1 presented, including language fea-
tures, operation features, and structure features. In fact,
these features are not all features that can reflect compiler
coverage, and it is also impossible for us to manually
identify all these features. Deep learning provides an oppor-
tunity to automatically identify features from test programs,
one of whose preconditions is requiring big data [35]. For-
tunately, in compiler testing, it is easy to acquire a huge
number of test programs by some test-generation tools like
Csmith. Therefore, in the future, we will use deep learning
to automatically augment features in COP.

Second, when applying COP in the cross-version appli-
cation scenario, it has the label alignment problem due to the
existence of newly added files in the later version and out-
of-date files in the prior version. Here we identify such files

11. https://gcc.gnu.org/bugzilla/.
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TABLE 10
Top-10 files that are predicted most accurately by COP on GCC-4.3.0

Top Name MAE Description
1 prefix.c 0.005 Updating a path, both to canonicalize the directory format and to handle any prefix translation.
2 tree-ssa-ccp.c 0.006 Conducting conditional constant propagation based on the SSA propagation engine.
3 tree-sra.c 0.008 Replacing a non-addressable aggregate with a set of independent variables.
4 tree-vectorizer.c 0.008 Vectorizing loops.
5 ipa.c 0.008 Marking visibility of all functions.
6 gimple-low.c 0.009 Lowering GIMPLE into unstructured form.
7 tree-ssa-copy.c 0.009 Performing const/copy propagation and simple expression replacement.
8 gt-passes.h 0.010 Type information for passes.c.
9 builtins.c 0.010 Dealing with type-related information.
10 double-int.c 0.012 Operations with long integers.

TABLE 11
Top-10 files that are predicted most accurately by COP on LLVM-2.6

Top Name MAE Description
1 DelaySlotFiller.cpp 0.001 Returning a pass that fills in delay slots in Sparc MachineFunctions.
2 Thumb1InstrInfo.h 0.002 Processing instruction information.
3 UnifyFunctionExitNodes.h 0.003 Ensuring that functions have at most one return and one unwind instruction in them.
4 SymbolTableListTraitsImpl.h 0.003 Instantiating explicitly where needed to avoid defining all this code in a widely used header.
5 IdentifierResolver.h 0.004 Using for lexical scoped lookup, based on declaration names.
6 MachineInstr.cpp 0.005 Methods common to all machine instructions.
7 SPUSubtarget.h 0.005 Declaring the Cell SPU-specific subclass of TargetSubtarget.
8 ParsePragma.h 0.005 Defining #pragma handlers for language specific pragmas.
9 X86ISelLowering.cpp 0.005 Defining the interfaces that X86 uses to lower LLVM code into a selection DAG.
10 SemaExprCXX.cpp 0.005 Implementing semantic analysis for C++ expressions.

by matching file names between versions. Currently, COP
removes these newly added files and out-of-date files from
the label set. That is, COP does not consider these files when
distinguishing test programs with different test capabilities.
In fact, some files may be not real newly added files or out-
of-date files, which may be forged by renaming file names,
merging multiple files into a single file, or separating a file
into multiple files, etc. Therefore, we will try to identify such
forgeries and better match these files between versions, so
as to better deal with the label alignment problem in COP.

Third, after clustering, COP prioritizes test programs by
enumerating each group to select the test program with
the largest bug-revealing probability per unit time in each
group. In the future, we will further improve the prioritiza-
tion strategy. For example, we can try to adopt the roulette
wheel selection strategy, which has been widely used in the
genetic algorithm [36]. Instead of enumerating each group to
select test programs, it assigns a probability to each group,
and the group with the larger probability is more likely to
be selected in each selection.

7.3 Applications of COP

COP is not specific to the compiler testing techniques used
in our study, i.e., DOL and EMI. It can be applied to acceler-
ate any compiler testing techniques, because it is orthogonal
with these compiler testing techniques. For example, RDT
is also a widely-used compiler testing technique, which
detects compiler bugs by comparing results produced by
different compilers. To accelerate RDT, we first apply COP
to prioritize test programs, and then run each test program
using RDT based on the prioritization results.

Our evaluation has demonstrated the great effectiveness
of COP on accelerating C compiler testing. Actually, COP
can be generalized to accelerate testing of compilers of other
programming languages (e.g., Java). COP utilizes three

general categories of features: language features, operation
features, and structure features. These features are common
across all programming languages. When applying COP to
other programming languages, for the first category (i.e.,
language features), we can extract them according to the
constructs of the programming languages. For the other two
categories (those features reused from Csmith in C), we can
actually obtain them by analyzing historical compiler bugs
(with the corresponding test programs triggering the bugs).
More specifically, we investigate which operations among
variables and structure properties (e.g., nested loops) in
the test programs caused the corresponding bugs. In the
future, we will try to apply COP to more compilers of other
programming languages.

Besides, COP may be also generalized to accelerate
testing of other software systems, e.g., operator systems,
browsers, and static analyzers. Similar to compilers, the test
inputs of these software systems are test programs, which
provides an opportunity for COP to identify features related
to coverage prediction. That is, COP can be also applied to
predict coverage and then prioritize test programs based on
the predicted coverage information, so as to accelerate their
testing process.

One of the most important parts in COP is coverage
prediction. Our work uses the predicted coverage informa-
tion to accelerate compiler testing. In fact, due to many
drawbacks of collecting coverage dynamically for compil-
ers, a lot of software testing processes are limited, e.g.,
test-suite reduction, test-program generation, and test-suite
construction. However, our coverage prediction method
makes them feasible to a large degree. That is, there are
actually a lot of applications of our coverage prediction
method for compilers. For example, we can utilize the
predicted coverage information to guide the construction
of a test suite. When constructing a test suite, we need
to measure the adequacy of the test suite. Based on the
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existing work [11], test coverage is one of the most widely-
used measurements, but dynamically collecting coverage
for a test suite is extremely time-consuming for compilers.
Therefore, statically predicting test coverage is helpful. As
the first attempt to predict coverage statically, our coverage
prediction method provides a light-weight and accurate
way to acquire module-level coverage (i.e., file-level cov-
erage), which is likely to help guide the construction of a
test suite. Finer-grained coverage (e.g., statement coverage)
may be better for test-suite construction, and thus it would
be interesting to explore if finer-grained coverage can be
predicted and if it can be used to construct a more effective
test suite. This is a future work to be explored.

8 RELATED WORK

8.1 Compiler Testing
Compiler testing is a difficult and essential task due to the
complexity and importance of compilers, and thus it has
attracted extensive attentions from researchers [37], [38],
[39], [40], [41]. Research on compiler testing can be divided
into three main aspects, i.e., test-program generation, test-
oracle construction, and test-execution optimization.

Test programs are the inputs of compilers, which must
strictly meet complex specifications (e.g., the C99 specifica-
tion for C programs). Due to its basic role in compiler test-
ing, a lot of work focuses on test-program generation [42],
[43], [44], [45], [46]. In particular, Boujarwah and Saleh pre-
sented a survey to introduce test-program generation meth-
ods proposed before 1997 [47]. In general, the methods to
generate test programs can be divided into two categories.
The first one is to generate totally new test programs, while
the second one is to generate test programs based on exist-
ing test programs. Most test-program generation methods in
the first category have been introduced by the survey [47].
Besides, Yang et al. [3], [48], [49] proposed and implemented
a tool, called Csmith, to randomly generate C programs
for testing C compilers, which is one of the most widely-
used methods so far. Also, Lidbury et al. [33] developed
a tool called CLsmith, based on Csmith, to generate test
programs for OpenCL compilers. Pałka et al. [50] proposed
to randomly generate lambda terms to test an optimizing
compiler, which mainly addresses the issue of type correct-
ness in the generation. Alipour et al. [51] proposed directed
swarm testing to generate test programs focusing on only
part of a compiler through statistical data analysis on past
testing results. Zhao et al. [52] developed an integrated tool
(JTT), which automatically generates programs in order to
test UniPhier, an embedded C++ compiler. For the second
category of generating test programs, Le et al. [4] proposed
to generate test programs by mutating existing test pro-
grams. More specifically, they generate equivalent variants
with the existing ones by randomly removing unexecuted
code regions from the existing test programs. Also, Le et
al. [17], Sun et al. [18], and Zhang et al. [53] further proposed
more mutation strategies to generate test programs based on
existing test programs. Following the existing work [1], [3],
[5], [6], [17], [27], our work uses the test programs generated
by Csmith to test compilers. Please note that our approach
COP aims to accelerate compiler testing by prioritizing the
original test programs generated by Csmith rather than

generate any new test programs. Therefore, if the original
test programs cannot find any bugs for a compiler, COP
cannot find bugs either. In particular, the most relevant work
to ours in test-program generation is swarm testing [32],
which generates test programs by tuning a set of flags
of Csmith to enable/disable C language features, so as to
detect more bugs during the given period of time. Actually,
COP is orthogonal to swarm testing. Swarm testing tries to
generate more diverse test programs, while COP predicts
the test capabilities of generated test programs and then
prioritizes these generated test programs. Our experimen-
tal results (in Section 5.1.4) have demonstrated that, COP
indeed accelerates swarm testing by taking the generated
test programs through swarm testing as inputs.

Test-oracle construction problem is a long-term chal-
lenge in compiler testing, since developers can hardly deter-
mine whether the actual output of the compiler under test
as expected given a test program. To address the test-oracle
construction problem, McKeeman et al. [15] coined the term
of differential testing, which is a form of random testing. In
particular, differential testing needs two or more compara-
ble compilers and determines whether some compilers have
bugs by comparing the results produced by these compilers.
Based on differential testing, Le et al. [27] proposed to
detect the bugs of link-time optimizers in compilers by
randomized stress-testing. Besides, Le et al. [4] proposed
equivalence modulo inputs (EMI) to address the test-oracle
construction problem. EMI determines whether the com-
piler under test contains bugs by comparing the results
produced by the original test program and its equivalent
variants under given test inputs. In particular, EMI has three
instantiations, Orion [4], Athena [17], and Hermes [18]. Tao
et al. [54] proposed to test compilers by constructing meta-
morphic relations, e.g., the equivalent relation. Donaldson
et al. [40], [55] utilized metamorphic testing to detect the
bugs of graphics compilers by designing a set of semantics-
preserving transformations. Recently, Chen et al. [1] con-
ducted an empirical study to compare the strength of dif-
ferent test oracles, including randomized differential testing
(RDT), a variant of RDT called different optimization levels
(DOL), and EMI. Our work considers two methods of test-
oracle construction, including differential-testing based test-
oracle construction (i.e., DOL) and EMI-based test-oracle
construction (i.e., Orion).

Test-execution optimization refers to optimize the execu-
tion of test programs so as to improve compiler testing, e.g.,
test-suite reduction and test-program prioritization. Woo et
al. [56] proposed to remove redundant test programs from
a test suite by measuring the redundancy of test programs
from the viewpoint of the intermediate representation. Chae
et al. [57] proposed to utilize intermediate-code coverage
to reduce a test suite for testing retargeted C compilers for
embedded systems. Furthermore, Chen et al. [5] proposed
a text-vector based test-program prioritization approach to
accelerating compiler testing. More specifically, their ap-
proach transforms test programs into a set of text-vectors,
and prioritizes them by calculating the distance between
each text-vector and the origin vector (0,0,. . . ,0). Chen et
al. [6] proposed to utilize historical bug information to
predict bug-revealing probabilities per unit time of test
programs, and then prioritize them based on the infor-
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mation to accelerate compiler testing. The proposed test-
suite reduction approaches for compilers [56], [57] cannot
be applied to accelerate compiler testing, because they need
to dynamically collect coverage information, but our work
accelerates compiler testing by statically predicting coverage
information. In this category, our work actually belongs
to the test-program prioritization, but different from the
existing ones, our approach distinguishes whether different
test programs with different test capabilities by predicting
coverage statically, and then prioritizes test programs based
on clustering results to accelerate compiler testing.

8.2 Test Prioritization

During the development of decades, there is a large amount
of research on test prioritization. Following the existing
work [58], [59], research on test prioritization can be mainly
classified into four categories. The first category focuses on
the criteria used in test prioritization such as the widely-
used structure code coverage criterion [60], [61], [62], [63],
[64]. Besides, Elbaum et al. [65] proposed to use the proba-
bility of exposing faults, Mei et al. [66] investigated dataflow
coverage, and Korel et al. [67] used the coverage of system
model instead of code coverage. The second category fo-
cuses on the algorithms used in test prioritization. Rother-
mel et al. [60] proposed greedy algorithms, i.e., the total
and additional algorithms, to prioritize tests, which have
become the most widely-used algorithms in test prioritiza-
tion. Furthermore, researchers viewed test prioritization as a
searching problem and thus proposed many metaheuristics
algorithms [68] to address this problem. Also, Jiang et al. [69]
present the adaptive random strategy. The third category
focuses on the constraints that affect test prioritization,
e.g., time constraints [70]. Some work in this category also
investigated the influence of the constraints, and proposed
prioritization techniques specific to some constraints [71],
[72], [73], [74], [75]. The fourth category focuses on the
empirical studies about test prioritization [60], [70], [74],
[76], [77], [78], [79], including evaluating the effectiveness
of various test prioritization approaches, and investigating
the influence of some factors in test prioritization.

Our work also prioritizes test programs in order to
accelerate compiler testing. The differences between our
work and the existing work on accelerating compiler testing
have been discussed in Section 8.1. In the traditional test
prioritization, the most related work is cluster-based test
prioritization [80], [81], [82]. Yoo et al. [80] proposed to
cluster tests based on the dynamic runtime behaviors of
tests to reduce the cost of human-interactive prioritization.
However, our approach does not belong to the human-
interactive test prioritization. That is, the goal of using clus-
tering in our work is different from that in their work. FU
et al. [82] proposed a cluster-based test prioritization based
on coverage information of tests in historical executions.
More specifically, it clusters tests that have different prop-
erties in the different groups. Similarly, Carlson et al. [81]
conducted a study to investigate whether clustering can
improve test prioritization. It also clusters tests based on
history information. Similar to them, our approach clusters
test programs into groups and different groups are more
likely to have different test capabilities, and then prioritizes

test programs based on the clustering results. However,
different from them, we cannot use coverage information in
historical executions for compiler testing, and thus our work
proposed the first method to predict coverage statically for
compilers, which is also an innovation in our work. Also,
during the prioritization in each cluster, we use the bug-
revealing probability per unit time of each test program
predicted by LET, which is also different from these work.

Besides, our work is also related to machine-learning
based test prioritization, since our approach also uses ma-
chine learning. Chen et al. [83] proposed a predictive test
prioritization technique, which can predict the optimal test
prioritization technique for a specific project based on its
test distribution information. Spieker et al. [84] utilized
reinforcement learning to select and prioritize tests based
on their duration, previous last execution and failure history.
Busjaeger and Xie [85] utilized machine learning to integrate
multiple existing test prioritization approaches so as to
apply test prioritization in industrial environments. Wang
et al. [86] proposed quality-aware test prioritization, which
leveraged code inspection techniques, i.e., a typical statistic
defect prediction model and a typical static bug finder, to
predict fault-proneness of source code, and then applied
coverage-based test prioritization algorithms. Different from
these work, our approach utilizes machine learning to pre-
dict coverage information of new test programs for com-
pilers, and then prioritizes them based on the predicted
coverage information to accelerate compiler testing.

9 CONCLUSION

To accelerate compiler testing, some approaches have been
proposed recently. These approaches prioritize test pro-
grams based on some criteria to execute test programs that
are more likely to trigger compiler bugs earlier. However,
they ignore an important aspect in compiler testing, where
different test programs may have similar test capabilities.
The neglect of this problem may largely discount the effec-
tiveness of the existing acceleration approaches. Intuitively,
if the coverage of test programs is very different, these test
programs tend to have different test capabilities. However, it
is infeasible to collect test coverage dynamically in compiler
testing because test programs are generated on the fly. In this
paper, we propose COP to predict test coverage statically for
compilers, and then prioritize test programs by clustering
them according to the predicted coverage information. Our
experimental results confirm the acceleration effectiveness
of COP, which achieves an average of 51.01% speedup in
test execution time on an existing dataset including three
old release versions of GCC and LLVM, achieves an average
of 68.74% speedup on a new dataset of 12 latest release
versions, and even outperforms the state-of-the-art acceler-
ation approach (i.e., LET) significantly by improving 17.16%
∼82.51% speedups in different settings on average.
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