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Abstract—Long patch validation time is a limiting factor for
automated program repair (APR). Though the duality between
patch validation and mutation testing is recognized, so far
there exists no study of systematically adapting mutation testing
techniques to general-purpose patch validation. To address this
gap, we investigate existing mutation testing techniques and
identify five classes of acceleration techniques that are suitable for
general-purpose patch validation. Among them, mutant schemata
and mutant deduplication have not been adapted to general-
purpose patch validation due to the arbitrary changes that
third-party APR approaches may introduce. This presents two
problems for adaption: 1) the difficulty of implementing the
static equivalence analysis required by the state-of-the-art mutant
deduplication approach; 2) the difficulty of capturing the changes
of patches to the system state at runtime.

To overcome these problems, we propose two novel ap-
proaches: 1) execution scheduling, which detects the equivalence
between patches online, avoiding the static equivalence analysis
and its imprecision; 2) interception-based instrumentation, which
intercepts the changes of patches to the system state, avoiding a
full interpreter and its overhead.

Based on the contributions above, we implement ExpressAPR,
a general-purpose patch validator for Java that integrates all
recognized classes of techniques suitable for patch validation.
Our large-scale evaluation with four APR approaches shows that
ExpressAPR accelerates patch validation by 137.1x over plain
validation or 8.8x over the state-of-the-art approach, making
patch validation no longer the time bottleneck of APR. Patch
validation time for a single bug can be reduced to within a few
minutes on mainstream CPUs.

Index Terms—Automated program repair, patch validation

I. INTRODUCTION

UTOMATED program repair (APR) has attracted much

attention in the recent decade. Many approaches [1, 2,
3, 4,5, 6, 7, 8] have been proposed, and companies like
Bloomberg [9], Meta [10], and Alibaba [11] are already using
APR tools to fix software bugs in nightly builds.
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Though researchers have made significant progress in the
effectiveness of APR, its efficiency has received relatively
limited improvement. Efficiency decides the time needed for
repairing a bug and is an important limiting factor for using
APR in practice. The state-of-the-art APR approaches may
still take hours to repair a bug, and recent program repair
experiments still set the timeout to multiple hours [2, 8, 12].
The response time of current APR tools greatly exceeds users’
patience, as reported by recent studies [12, 13], and signifi-
cantly limits the application scenario of APR approaches.

The execution time of APR is dominated by patch valida-
tion [14, 15]. Most APR approaches are test-based and follow
the generate-and-validate pattern [16]: they first generate a
bunch of patches, and then validate each patch using the test
suite. Executing the test suite can take minutes, and hundreds
of patches can be generated for one fault [17]. To accelerate
APR tools, we need to reduce the patch validation time.

Patch validation has been recognized as a dual of mutation
testing [18]. Mutation testing applies a set of mutation oper-
ators to the program to produce mutants, and then executes
the test suite on each mutant to calculate the mutation score.
Mutation testing is a dual of patch validation as both need to
obtain the test result for each mutant/patch. Given many tech-
niques have been proposed to accelerate mutation testing, they
could potentially be adapted to accelerate patch validation.

Under this duality, multiple existing attempts to accelerate
patch validation can be seen as adapting the corresponding
mutation testing technique [15, 18, 19, 20, 21, 22, 23, 24,
25, 26, 27, 28, 29]. However, all of them adapt only one
or a few techniques. It remains unclear which techniques
can be adapted and what is the combined effect of these
techniques on patch validation. Furthermore, many attempts
are special-purpose, depending on a specific APR approach
and not generalizing to different ones.

To fill this gap, we first systematically investigate the
existing acceleration techniques for mutation testing and an-
alyze their suitability for patch validation. We identify five
classes of suitable techniques, namely, mutant schemata [30],
mutant deduplication [31], test virtualization [32], test prioriti-
zation [33], and parallelization. The remaining techniques are
either covered by these five classes or are unsuitable for the
patch validation of current APR approaches. Among them, the
latter three classes are already used by recent general-purpose
patch validators [15, 22], but mutant schemata and mutant
deduplication have never been adapted to a general-purpose
patch validator, as far as we are aware. Mutant schemata weave
all mutants into one program and avoid redundant compilation
of different mutants; mutant deduplication detects mutants that
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are equivalent to each other, and executes only one mutant
among all equivalent mutants.

Migrating these two techniques to patch validation is not
easy. In mutant testing, mutants are produced from pre-defined
mutation operators, and their impact on the system is under
control. However, in patch validation, the patches are produced
from third-party APR approaches that arbitrarily change the
program. This imposes two problems:

The first problem is that the state-of-the-art mutant
deduplication approach [34] requires a static analysis to
determine the equivalence of the rest of the test executions,
when two patches deviate from the original program. The
precision of this analysis is directly related to the effectiveness
of the technique. It is difficult to implement a precise and
scalable static equivalence analysis given the possible changes
that the patches may cause to the system.

To address this problem, we propose a novel approach:
execution scheduling. Execution scheduling does not re-
quire offline static equivalence analysis, and subsumes mutant
schemata and mutant deduplication. The basic idea is to
detect the equivalence between patches online during patch
execution. Doing so removes the need for static equivalence
analysis, thereby preventing the imprecision of static analysis
from affecting the system’s effectiveness. We also introduce
a novel data structure, the state-transition tree, to record the
dynamic analysis results and reuse them across the execution
of different patches. Furthermore, to perform the detection, we
need to weave all patches into a single program, subsuming
mutant schemata. This approach is compatible with test pri-
oritization, test virtualization, and parallelization, allowing us
to integrate all suitable techniques into one system.

The second problem is that implementing mutant dedu-
plication or execution scheduling requires a component to
capture how a patch changes the system state to analyze
equivalence and replay the change later. Existing mutant
deduplication approaches usually implement an interpreter to
execute the changed code. However, unlike mutation testing
where only a selected set of operators may be changed and
interpreted, a patch may arbitrarily change a statement that
may involve method calls or even system calls. As a result, the
interpreter must support all features in the host programming
language and interact with the original runtime. This not only
requires huge implementation effort but is also technically
difficult as the original runtime may be commercial and
prohibit modification. Furthermore, interpreting a large chunk
of code inevitably incurs a significant overhead, which may
nullify the effectiveness of the technique.

To support the implementation of execution scheduling, we
propose a novel approach for interception-based instrumen-
tation. It executes a patch without an interpreter by instru-
menting code before and after the patch to record the possibly
changed states and revert the changes. In this way, the patch is
executed in the original runtime, avoiding the implementation
cost and the runtime overhead of an interpreter.

However, realizing interception-based instrumentation is not
easy. We highlight our approach in three aspects: 1) A patch
may bring control flow changes via statements like break
and throw. Capturing such changes is difficult because the

instrumented statement may be skipped. We propose a design
process based on the operational semantics of the program-
ming language to reliably capture and replay the control flow
change of a patch. 2) The scope of data changes for a patch is
large, because a patch may call other methods and arbitrarily
modify the memory at any location. The cost of recording all
possible changes may therefore cancel the benefit of mutant
deduplication. So, we analyze the possibly changed locations
in a preparation step and apply equivalence detection only
when the change scope is small enough. 3) A patch may
not compile, and weaving all patches together may make
the whole program uncompilable. We cannot simply detect
an uncompilable patch by compiling it, because the benefit of
mutant schemata will be lost. Instead, we propose the concept
of isolation unit where compilation errors within one unit
would not affect other units. We separate each patch into an
isolation unit and identify all uncompilable patches at once.

Based on the contributions above, we implement Ex-
pressAPR [35], a general-purpose patch validator for Java,
which integrates all suitable techniques for patch validation.
ExpressAPR provides support for Defects4] and Maven, and
allows configuration for other Java projects. We then conduct a
large-scale empirical evaluation that consumes over 17 months
of CPU time to understand its performance on mainstream
APR approaches. The evaluation leads to multiple findings:

o ExpressAPR achieves an acceleration of 137.1x over
plain validation and outperforms the state-of-the-art ap-
proach by 8.8x. Patch validation is now faster than patch
generation for the first time. The time to repair a bug can
be reduced to a few minutes, meeting the expectation of
most developers [12].

o All adapted techniques are effective for patch validation,
each contributing to a significant acceleration.

o While ExpressAPR only works for patches under certain
assumptions (Section VI), it supports over 97% of patches
in our experiment, and it brings correct validation results
for over 99.9% of patches. Therefore, ExpressAPR has a
negligible impact on APR effectiveness.

In summary, the contributions of this paper are twofold:

Technically, we propose two novel approaches to realize
mutation schemata and mutant deduplication, which have
not been adapted to general-purpose patch validation before.
The execution scheduling approach (Section IV) subsumes
mutant schemata and mutant deduplication, avoiding the need
for a static equivalence analysis that can be imprecise. The
interception-based instrumentation approach (Section V) pro-
vides the capture-and-replay component required by execution
scheduling, avoiding the need for a full-featured interpreter
with runtime overhead.

Empirically, we investigate existing techniques for acceler-
ating mutation testing, and identify five classes of techniques
suitable for patch validation (Section III). We systematically
integrate the complete set of techniques (Section VII) and
conduct a large-scale experiment evaluating their performance
(Section VIII), leading to novel findings that can serve as a
solid base for future research (Section IX).
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TABLE I: Average time usage per bug when evaluating Recoder

Phase Step Technique Time
Patch Generation Recoder 0:18:39
- Defects4] 2:36:04

Patch Compilation . e
Patch Validation UniAPR 0:25:34
Test Execution Defects4] 19:53:48
xeed UniAPR 1:16:37

II. MOTIVATION

Efficiency is a critical factor of APR. How long an APR tool
takes to repair a bug determines the scenarios where it can be
used. Noller et al. [12] recently found that half of programmers
cannot wait longer than 30 minutes for an APR tool to produce
a result. They further investigated how existing APR tools
on the C programming language performed within one hour,
revealing that even the best tool could correctly repair only
two bugs in the ManyBugs benchmark. Such performance is
significantly lower than the results reported in their original
papers with a timeout of 10-24 hours.

Due to this unsatisfactory efficiency, it is commonly be-
lieved that the application of APR can only be applied
to offline scenarios where users do not wait for real-time
feedback (e.g., repairing bugs discovered in automatic nightly
builds [12, 13]). If we can reduce the time of program repair
to a few minutes, APR tools can assist users with real-time
feedback, unlocking many more application scenarios (e.g.,
being integrated into IDEs and code editors).

To improve the efficiency of APR tools, we need to un-
derstand how current APR tools spend their time. This paper
focuses on generate-and-validate APR, which is the subject
of mainstream studies. These approaches have two main
phases: in the patch generation phase, they loop through each
suspicious location and generate a set of candidate patches at
each location; in the patch validation phase, they execute the
test suite to check the plausibility of each patch. The patch
validation phase can be further divided into patch compilation
and the test execution for compiled languages.

To understand how much time existing APR tools spend on
different phases, we conducted a pilot study on the state-of-
the-art tools. For patch generation, we selected Recoder [8],
an effective APR approach based on deep learning. For patch
validation, we selected UniAPR [22], a state-of-the-art patch
validator. We took all bugs in the Defects4] 1.2 benchmarks
that Recoder successfully repairs [8]. For each bug, we first
executed the patch generation phase of Recoder with default
parameters, and then used UniAPR to validate them. Since
Defects4] provides a default validator (defects4j compile
&& defects4j test), which is used in many existing APR
tools, we also executed the Defects4]J validator for comparison.

We recorded the average time used in each step, as shown
in Table I. We can see that the patch validation phase is the
time bottleneck, accounting for most of the time (84.57%
for UniAPR and 98.64% for Defects4]) and making the
total repair time much longer than the 30-minute expectation.
Therefore, to improve the efficiency of APR tools, we need to
reduce the patch validation time. Furthermore, both steps in
patch validation cost a significant amount of time even with

c = a + b;

c = metaFunc(a, b);
(a) Program to be mutated

int metaFunc(int x, int y) {

switch (Env.getMutId()) {

case 1: return x - y;

case 2: return x * y;
3

case 3: return x / y;

t 3: !
/ b; }

c=a
(b) Generated mutants

(c) The mutant schemata

Fig. 1: Mutants and mutant schemata created by AOR

the best technique. Therefore, to reduce the patch validation
time, we need to reduce both the patch compilation time and
the test execution time.

III. INVESTIGATING MUTATION TESTING ACCELERATION

We review existing mutation testing literature to systemat-
ically find acceleration techniques applicable to patch valida-
tion. We first collect mutation testing acceleration techniques
by reading through the existing surveys [36, 37, 38], searching
for publications matching the term “mutation testing” after
2019, after which the papers were not covered by the surveys,
and studying the web page collecting existing mutation testing
tools [39]. We then analyze the suitability of each technique
for accelerating patch validation.

Our analysis identifies a set of techniques that are suitable to
be adapted to patch validation. The remaining techniques are
either unsuitable for validating the patch generated by current
APR tools, or covered by the identified set of techniques. In
this section, we present the classification result and briefly
introduce each technique to make the paper self-contained.

A. Techniques Suitable for Patch Validation

1) Mutant Schemata: In mutation testing, each generated
mutant needs to be compiled. Different mutants share most of
their code, which is repetitively compiled. Mutant schemata
[30] is a common technique to avoid repetitive compilation.
Multiple mutants are encoded in a meta-program and then
dynamically selected during runtime, so the shared code is
compiled only once, reducing the redundant compilation.

Figure 1 illustrates an example where the AOR (replace
arithmetic operator) mutation operator is applied to the expres-
sion a+b, as shown in (a). AOR generates multiple mutants by
replacing the plus sign with other operators, as shown in (b).
Normally each mutated program is independently compiled, so
other parts of the code are compiled multiple times. But with
mutant schemata, all mutants at this expression are grouped
into a meta-function that dynamically selects a mutant based
on a runtime flag, as shown in (c). In this way, all mutants
are encoded in one program, and other parts of the code are
compiled only once. Mutant schemata can be generated by
source code (AST) [31] or byte-code [40] transformation.

2) Mutant Deduplication: Since a mutant is created by
mutating only one or a few statements in the original program,
a mutant may be equivalent to the original program or another
mutant. In a group of equivalent mutants, only one of them
needs to be executed, saving the test execution time. Two
types of equivalencies have been considered in existing work.
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The first one is full equivalence, where the two mutants will
produce the same test result on any test. For example, the
statement x+=2; and x+=1+1; are fully equivalent. Given
a group of fully equivalent mutants, only one needs to be
executed on all tests. The second one is test-equivalence,
where the two mutants will produce the same test result on a
specific test. Test-equivalence is much more common than full
equivalence. For example, the statement x+=2; and x*=2; are
not fully equivalent but are test-equivalent if x equals 2 before
invoking the mutated statement in a test. Furthermore, any two
mutants whose mutated statements are not executed by a test
are equivalent with respect to the test. Given a group of test-
equivalent mutants with respect to test ¢, only one needs to be
executed on ?.

To deduplicate mutants, existing approaches employ an
offline procedure to detect equivalent mutants before the test
execution, and then select one mutant among each equivalence
class to be tested. Baldwin and Sayward [41] and Papadakis
et al. [42] utilize compiler optimization to detect fully equiva-
lent mutants, while Pan [43] uses constraint solvers to identify
the fully equivalent mutants.

Since test-equivalence is more common than full equiv-
alence, the Major mutation framework [34] identifies test-
equivalent mutants by a pre-pass executing the original pro-
gram and interpreting the mutated expressions in the mu-
tants along the execution. Since the pre-pass is performed
on the original program, Major can successfully detect test-
equivalence between the original programs and the mutants,
but for test-equivalence between mutants, Major requires a
static analysis to determine the equivalence for the rest of the
executions after they deviate from the original program. More
discussion can be found in the next section.

3) Test Virtualization: Before executing a test for the
mutants, the test suite must be initialized for each mutant.
The repetitive initialization is costly in languages based on
a virtual machine (VM), such as Java, as booting the VM
takes non-trivial time. Test virtualization approaches such as
VMVM [32] reduce this cost by reusing the previous VM
instance for the next mutant execution. The global variables
changed by the previous test execution are identified and reset
before the next round of test execution by instrumentation.

4) Test Case Prioritization: The idea of test case prioritiza-
tion is that some test cases run faster or are more likely to fail,
so that if these test cases run before other test cases, the mutant
will be killed earlier when they fail [33, 44]. Different heuristic
policies can be used to determine what tests get prioritized. In
particular, in regression testing, of which APR patch validation
can be seen as an instance, a typical heuristic is to prioritize the
previously failed test cases. Another heuristic is to prioritize
the test cases in the same package of the modified code, which
are most likely to cover the modified code.

5) Parallelization: Many mutation testing tools [39, 45]
seek parallel test execution on multicore processors. Because
tests and mutants are independent of each other, parallelization
can be trivially applied by dividing the work into multiple
pieces to be consumed by a process pool, e.g., each piece
dealing with a small group of mutants or tests. Some early-

stage mutation testing approaches also utilize hardware paral-
lelization mechanisms, such as SIMD [46] and MIMD [47].

B. Techniques Unsuitable for Current APR

A class of acceleration techniques uses an optimized execu-
tion engine to execute all mutants at the same time, reducing
possible redundant execution when executing each mutant
separately. We classify these techniques as unsuitable for
general-purpose patch validation for current APR approaches,
because they either require a specific platform feature, or incur
too much overhead such that the benefit gained is difficult to
surpass the overhead:

Fork-based mutation analysis tries to accelerate by sharing
the same execution among mutants, relying on the fork mech-
anism of the POSIX systems. Spilt-stream execution (SSE)
begins with one process representing all mutants, and then
forks into multiple subprocesses when a mutated location
in the program is reached, one subprocess representing one
mutated statement [48, 49]. AccMut [50] and WinMut [51]
are two enhanced versions of SSE. When a mutated location
is reached, their engines analyze all mutants for their changes
to the system state, and cluster the mutants based on their
changes: the mutants whose changes lead to the same sys-
tem state are in the same cluster. Finally, the engines fork
only one process for each cluster, reducing the number of
processes compared with SSE. However, all of the fork-based
approaches require the fork mechanism, and are not suitable to
be used in a general-purpose patch validation approach as we
need to support different operating systems and programming
languages that may not support the fork mechanism, such as
Windows and Java.

Variational execution [52] employs a special execution
engine allowing a variable to store a conditional value, which
is a special data structure that records possible values of the
variable in all mutants. Operations in the program, such as
plus or minus, directly manipulate conditional values, and thus
executing the program with conditional values produces the
test result of all mutants. However, executing the statements
over conditional values incurs significant overhead, and thus
variational execution is effective only when the number of
mutants is huge (e.g., exponential). As reported in an existing
study [53], variational execution could slow down the execu-
tion when there are only tens of or hundreds of mutants, a
scenario commonly encountered in patch validation.

Furthermore, all techniques discussed above are lossless
acceleration techniques. There are also lossy acceleration
techniques [36, 54, 55, 56, 57, 58, 59, 60], which approximate
the test results on the mutants to produce the mutation score,
which is defined as the ratio of mutants that cause a test failure.
However, on patch validation, we need to get the accurate test
result on each patch to identify a correct patch, rather than
calculating a ratio, and thus the lossy techniques do not apply
to the patch validation.

C. Techniques That Are Subsumed

Test case selection is an optimization used in several mu-
tation testing tools [39, 61, 62] that skips test cases that
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Fig. 2: State transitions with different patch validation approaches

do not execute the mutated code. It is subsumed by mutant
deduplication because if the test does not execute the mutated
code, all mutants should be in a test-equivalence class.

IV. EXECUTION SCHEDULING
A. Overview

Among all the five classes of suitable acceleration tech-
niques, mutant deduplication and mutant schemata have not
been adapted to general-purpose patch validation due to the
differences between mutation testing and patch validation. In
this section, we propose the execution scheduling approach,
which is suitable for general-purpose patch validation and
subsumes both acceleration techniques.

We first demonstrate the possible redundancies during patch
validation with an example as shown in the code snippet
below. In this code snippet are five patches, P, to Ps, each
modifying either of the two statements in the function £ () (S
for the former two patches, So for the latter three patches).
The test function test () determines the correctness of £ ()
by asserting its behavior.

int i=2, j=1;
void f() {

i+=2; // s1

// Pl: "i

J+=2;

// P3: "j

}

void test () {
f(); assert (i
f(); assert (i

4

}

Figure 2(a) illustrates the redundant test executions in this
example, where each vertical sequence shows the execution
of the test on one patch, and each circle indicates the system
state at a specific location. P, and P, are test-equivalent to
the original program, because all of them effectively set i=4
and =3 at the first call to £ () and thus the first assertion in
test () fails (State C). Ps and P, are test-equivalent to each
other, setting i=4, j=2 at the first call to £ () (State D), and
i=6, j=4 at the second call (State F), passing both assertions.
P5 is not test-euivalent to any other variant: though P; sets
i=4, j=2 at the first call to f (), temporarily leading to the
same state D as P3; and Py, their states deviate during the
second call where Ps sets §=2 instead of 4 (State G). There-
fore, if we take the plain patch validation approach, where the
test iteratively executes over P; to Ps, test-equivalent patches

(b) Three rounds of test execution

(a) The State-Transition Tree

Fig. 3: Iteratively building the state-transition tree in ExpressAPR

always follow the same path of state transition, leading to
redundancies as highlighted in yellow.

As mentioned, the state-of-the-art mutant deduplication ap-
proach, Major, detects test-equivalence by a pre-pass on the
original program, and executes the test on only one patch from
each equivalence class. In this example, Major will instrument
the original program and execute the instrumented program as
a pre-pass. When a location modified by patches is reached,
e.g., S1, the instrumented code will invoke an interpreter to
interpret all the patches based on the system state of the
original program, record and compare their changes to the
system state. If a patch always makes the same changes to
the system state as the original program, it is test-equivalent
to the original program, and thus does not need to test. In
this example, it detects that P; and P» are test-equivalent to
the original program. However, it is hard to identify whether
Ps, Py, and P5 are test-equivalent to each other. Although
they make the same change to the system state in their first
invocation (state B), their behavior in the second invocation
(state E) is unknown, because state E deviates from the pre-
pass which follows the original program (A — B — ().
Therefore, Major requires a static analysis to determine the
equivalence between the patches whose execution deviates
from the original program. How to implement such a static
analysis is not discussed in the original publication, and
implementing a precise and scalable static analysis of test-
equivalence between patches is difficult. In this case, if we
cannot statically determine the test-equivalence between P;
and P4, we have to execute the tests on both of them, leading
to Figure 2(b).

Our execution scheduling approach overcomes this limita-
tion by embedding the detection process into the test execution
process instead of in a pre-pass. To achieve that, we record the
runtime behavior of patches as a state-transition tree, as shown
in Figure 3(a). Each node in the tree indicates an inferesting
program state of the test, where either the next statement to
execute is changed by some patches, or the test completes. In
the figure, a node annotated with S,,(v;,v;) means that the
statement S,, will be executed with variables i and j set to v;
and v;, and a node annotated with “Failed” or “Passed” means

the result of a completed test. Each edge U L5 V indicates
the transition of interesting states: when executing the variant
P against the state U, the next interesting state will be V. For
each patch, its execution corresponds to a path from the root
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node to a leaf node.

The state-transition tree is built iteratively through multiple
rounds of test execution. The current analysis result is recorded
on the state-transition tree, so that in the next round we can
test another patch that is not test-equivalent to any existing
patches. As for the above example, P; to P5 are validated with
three rounds of test execution, as shown in Figure 3(b). In the
first round, we randomly select a patch P;, and throughout its
execution, we record state changes of other patches onto the
state-transition tree. We observe that P; to P5 deviate from P
(with the state-transition path A — B — C) at B, as marked
by the ? symbol. Therefore, in the second round, we select
a patch among Ps to P; to explore the deviated A — B —
? path. This process repeats until all paths are explored. In
this way, we can achieve ideal mutant deduplication for this
example, as illustrated in Figure 2(c), without the need for
heavy static analysis in a pre-pass.

B. Problem Definition

Before introducing the approach, we define a set of concepts
related to patch validation. These definitions abstract away
details in different programming languages, such that our
algorithm can apply to a wide range of programs that follow
this definition.

We view the procedure of executing a test case as stepping
through a state machine, as shown as Algorithm 1. The code-
base consists of a set of locations and a mapping (Cb.Stmt)
from locations to statements, which represents all source code
in the project including tests. When a test begins, the location
of the initial state .S points to the entry point statement of the
test case (Cb.TestEntry). Then the statement gets executed,
modifying S that includes the current location (S.Loc). This
process repeats until the state becomes a termination state
that represents a failed or passed test result. Please note this
algorithm is conceptual and does not imply an interpreter. In
compiler-based language, the algorithm is implemented by the
hardware architecture and the language runtime.

Algorithm 1 Test execution

Input: The codebase Cb

S < {Loc: Cb.TestEntry}

while S is not a termination state do
S < EXECUTE(S, Cb.Stmt[S.Loc])

end while

REPORTRESULT(S)

AN

A patch is defined as a modification to the codebase, which
is a modified mapping that replaces one or a few statements
in the codebase. Given a set of patches Ps, a plain patch
validation procedure enumerates through the patch set to
execute the test against each modified mapping of statements,
as shown as Algorithm 2. If the codebase contains multiple test
cases, this procedure is repeated for each test against patches
that survive all previous tests.

C. The Execution Scheduler

In this subsection, we explain how execution scheduling
works. Same as in the previous subsection, we shall only

Algorithm 2 Plain patch validation

Input: The codebase Cb, the patch set Ps
1: for P € Ps do

2: S« {Loc: Cb.TestEntry}

3 while S is not a termination state do

4 S « EXECUTE(S, P[S.Loc])
5

6

7:

end while
REPORTRESULT(P, S)
end for

give an algorithm describing the process. How to implement
it using instrumentation will be explained in Section V.

Our approach requires a component to capture the state
changes of the patches for analysis. Concretely, we require
that there exist a CAPTURE procedure and a REPLAY pro-
cedure, so that C' < CAPTURE(S,T) extracts the state
change of statement T' over the state S into C, and S’ «
REPLAY(S,C) actually applies the state change C to the
state S. In this way, we can check whether the state change
of two patches is the same by comparing the value of C.
We require that these two procedures are accurate, such that
REPLAY (S, CAPTURE(S,T')) = EXECUTE(S, T') for any state
S and any statement 7. Capturing and replaying changes will
be discussed in Section V, and for now, we keep CAPTURE
and REPLAY as abstract procedures in this section.

The execution scheduler is shown as Algorithm 3. It takes
as input the codebase of the project and a patch set to be
validated. It maintains a variable Root, which corresponds to
the root of the state-transition tree (Figure 3). Each node in
the tree is labeled with a status (“visited”, “not-visited”, or
“test-finished”), a set of patches that belong to this node, and
a mapping “Edges” from state changes to the child nodes.
Initially at line 1, the tree has only a root node labeled as “not-
visited” with all patches belonging to it, indicating that nothing
has been explored yet. Then, the loop body starting at line 2
explores a path from the root node to a leaf node. The loop
body resembles the plain patch validation, except that when
there are some patches to the current statement (Pc # &, at
line 7), the EVALPATCHES procedure analyzes the state change
of each patch, and chooses a child corresponding to a group of
patches making the same state change to move forward. When
a round of test execution finishes, test results for all patches
belonging to the current node are reported (line 14).

EVALPATCHES is the critical procedure of the execution
scheduling. When the current node is visited for the first
time (line 18), it captures the state change of each patch, and
inserts a child node under the current node for each unique
state change. For each patch, it searches for an existing edge
corresponding to the state change Ch of the patch (line 21):
if there is such an edge, the patch merges into the patch set of
the sub-node; otherwise, the patch forms a new sub-node on
its own. Finally, EVALPATCHES finds a child whose subtree
includes at least one “not-visited” node to continue execution
(line 28), updating the current node and system state (line 29).
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Algorithm 3 Patch validation with execution scheduling
Input: The codebase Cb, the patch set Ps

1: Root < {Status: "not-visited”, Patches: Ps,Edges: &}
2: while there are ”not-visited” nodes under Root do
3: Cur < Root
4. S+ {Loc: Cb.TestEntry}
5. while S is not a termination state do
6: Pc + {P € Cur.Patches |
P[S.Loc] # Cb.Stmt[S.Loc] }
7: if Pc # @ then
8 Cur, S <— EVALPATCHES(C'ur, S, Cur.Patches)
9: else
10: S <« EXECUTE(S, Cb.Stmt[S.Loc])
11: end if

12:  end while

13:  Cur.Status < “test-finished”

14 REPORTRESULTS(Cur.Patches, S)
15: end while

16: procedure EVALPATCHES(C'ur, S, Ps)
17:  if Cur.Status = not-visited” then

18: Cur.Status < visited”

19: for P € Ps do

20: Ch < CAPTURE(S, P[S.Loc])

21 if S.Edges[Ch] is defined then

22: S.Edges[Ch].Patches <
S.Edges[Ch].Patches U { P}

23: else

24: S.Edges[Ch] + {

Status: “not-visited”, Patches: { P}, Edges: &}
25: end if
26: end for
27:  end if
28:  Ch, Cur < FINDNOTVISITEDCHILD(Cur.Edges)
29:  return Cur, REPLAY(S, Ch)
30: end procedure

D. Properties of the Execution Scheduler

Theorem (Efficiency). The number of rounds of test execu-
tions in Algorithm 3 is equal to the number of test-equivalence
classes among patches, i.e., it removes all redundancies caused
by test-equivalence.

Proof Sketch. Because two patches are test-equivalent if and
only if they always make the same state change during the
test execution, test-equivalent patches are never separated
by EVALPATCHES into different sub-nodes, and non-test-
equivalent patches must be separated by EVALPATCHES when
they cause different state changes. Therefore, each leaf node
labeled with “test-finished” corresponds to a test-equivalence
class. We can see from Algorithm 3 that each round in the
loop turns one label of a leaf node from “not-visited” to “test-
finished” at line 13, so the number of rounds is equal to the
number of “test-finished” leaf nodes, which is furtherly equal
to the number of test-equivalence classes. O

Theorem (Soundness). Algorithm 3 reports the same patch

Codebase Codebase Instrumented
2. Patch Program
Source Source Compilation
Er A L oy
S compile
Q. errors
[
[ calls o
[ Test ] [ “ | Results
calls \)2 - 3. Test
1. Preparation Execution (@ X= Execution
Scheduler =

Fig. 4: An overview of ExpressAPR

validation result as Algorithm 2.

Proof Sketch. First, we generalize Algorithm 3 so that the
initial .S and Root are read from inputs. Then we can prove
that Algorithm 3 is equivalent to Algorithm 2 by induction
on the depth of Root. For the base case when the depth
is one (so Root has no children, and thus EVALPATCHES
is never executed), two algorithms are apparently equivalent
because both algorithms execute the original program, leading
to the same test result for all patches. For the induction case,
consider an arbitrary patch P that belongs to a leaf node L,
which is reached by the path Tree - A — ... — L. The
test result for P must be reported in the round that explores
this path. During this round, let us consider the moment when
Cur changes from Root to A, which is the moment when
EVALPATCHES is called (line 8) for the first time. Before this
moment, both algorithms always execute the original program,
so S will be the same for the two algorithms up to this
moment. Then, S is updated to S’ := EXECUTE(S, Stmt)
in Algorithm 2 and S” := REPLAY(S, CAPTURE(S, Stmt))
in Algorithm 3, where Stmt := P[S.Loc|. Based on the
accuracy requirement for CAPTURE and REPLAY, we must
have S’ = S”. Then we can apply the induction hypothesis
with the initial S set to S’ and Root set to A. O

V. INTERCEPTION-BASED INSTRUMENTATION

The execution scheduling algorithm can be implemented in
different ways. To ensure the performance of the system, we
implement this algorithm using instrumentation. That is, the
tests and the patches are executed in the original runtime of
the programming language, and only at certain locations, the
instrumented code is invoked to detect equivalent patches and
schedule executions.

An overview of the patch validation process is shown
in Figure 4. It takes three steps to validate all patches:
preparation, patch compilation, and test execution. In the first
step, the codebase as well as the patches are instrumented to
ensure the correct execution of the execution scheduler. In the
second step, we compile the instrumented codebase, dropping
patches that are uncompilable. In the third step, the execution
scheduler iteratively runs the test suite, and stores the test
result for each patch.

Implementing the overall process of Algorithm 3 with
instrumentation is straightforward. First, a main procedure is
injected into the codebase that initializes the state-transition
tree and starts test executions. Then, at each patched location,
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the code is instrumented to evaluate the patches and update
the tree. The main challenging part is how to implement the
CAPTURE and REPLAY in Algorithm 3.

Existing mutation-testing approaches [31, 52] instrument an
interpreter at the mutated location for this purpose. However
in APR, since a patch may invoke other methods and then
execute a large chunk of code, using an interpreter is not
only expensive but also difficult to implement. To solve this
problem, we propose interception-based instrumentation. Our
approach inserts code before and after the patched statement,
such that the patch itself executes normally in the original
runtime, and the inserted code is responsible for detecting what
changes the patch has made to the system state and reverting
the changes, i.e., the change is intercepted.

In the preparation step, our approach adds instrumentation
code around each patch, turning each patch into a capture
component and a replay component. All such components
are woven together into the codebase, effectively implementing
mutant schemata. Finally, in the test execution step, the
execution scheduler calls the corresponding component as the
CAPTURE and REPLAY procedures.

In the rest of this section, we shall first introduce a small
programming language, IMP+, for illustration. Then we de-
scribe how to intercept the changes based on IMP+. Finally,
we show how to deal with uncompilable patches.

A. IMP+

IMP+ is an enhancement of the classic IMP language [63]
with control flow constructs. IMP+ contains the commonalities
between imperative programming languages, so we use it to
illustrate our instrumentation process. The syntax of IMP+ is
shown below:

s — 81 83 (statements)
X :=e;

x:=m(e,...,en);

if(e) s1 else so

try s; catch(x) s»

while(e) s

break;

continue;

return e;

throw e;

e — eitey (expressions)

The runtime system state of an IMP+ program is a pair
(o,w), where the data state o is a function mapping vari-
ables to their values, and the control state w can be one of
the following values that reflects the effect of control flow
statements:

e Normal, indicating that we should normally execute the

next statement;

e Break, indicating that a loop should break;

e Continue, indicating that a loop should skip to the end

of its body;

e Return v, indicating that a method has returned v;

e Exception e, indicating that an exception e has been

thrown.

The main operational semantic rules of IMP+ are shown in
Figure 5, where ¢ <> v means that expression e evaluates to v
under the system state (o, Normal), and o = (¢, w’) means
that statement s changes the system state from (o, Normal)
to (o/,w’). For simplicity, we only show the rules related to
control flow change, and omit standard rules such as those for
assignments and conditionals.

Since a state includes two parts, we need to intercept the
changes to both parts. Below, we discuss how to deal with
changes to the control state and the data state respectively.

B. Changes to the Control State

Recall that the capture component is responsible for
detecting what changes a patched statement has made, and
reverts the change; the replay component is responsible for
replaying the recorded change. For changes to both states, the
main challenge for implementing the two components lies in
the control state, where the statement following the patched
statement in the code file is not always the next statement to
be executed at runtime. Therefore, we need a reliable way to
detect and revert control state changes after the execution of
the patch. Furthermore, since different programming languages
have different language constructs for changing the control
states, the design of these two components is by nature
language-dependent.

To cope with the challenges, we propose a design process,
Process 1, to systematically design capture and replay
components for the control state w given the semantic rules of
the target programming languages. While this process involves
human effort, it only needs to be done once when migrating
ExpressAPR to a new language: once these components are
implemented, they are fully automatic and can be used for all
patches under this language.

Process 1 Capturing/replaying control state changes

Input: Semantic rules S
Output: Capture component C, replay component R

1: C <+ As,s

2: R+ skip

3: T + possible types of w in S

4: while (7' \ {Normal}) # @ do

5. Choose at € (T\ {Normal})

6: T+« T\{t}

7 #1: Pick an R, € S that can change w from ¢ to

Normal, and an R, € S that can change w from Normal
to ¢.

8:  #2: Use R, to write a capture component ¢;(s) for any
target statement s and the type ¢.

9:  #3: Refine ¢;(s) to ensure that it preserves the semantics
of s when it yields a state in 7.

10.  #4: Use R, to write a replay component r; for type t.

11: C <+ As,e(C(s))

122 R+ ryR

13: end while

The generated capture component takes a patch as input,
and produces a code snippet for executing the patch and
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E-BREAK
break;

o — (o, Break)

- E-CONTINUE
continue;

(o, Continue)

e
g — v
E-RETURN
return e;
(o,Return v)
g3
E-THROW

throw e;

o —— (0, Exception v)

1

o3 (¢, Normal) o 2 (6" W)

P—— E-SEQ

o <U”,w”>

o2 (0/,w') W' # Normal

s E-SEQSKIP
o 1 82 <O'/,wl>

o > true o (o', W)

hil
w’ € {Normal, Continue} o’ hile(e) s, (0", w'")

E-WHILE
o while(e) s <a",w”>
e
o — false E-WHILEFALSE
while(e) s
(0, Normal)
o3 true o 3 (0/,Break)
e s E-WHILEBREAK
——— (o', Normal)
o3 true o2 (o,
w’ € {Return v, Exception e}
E-WHILESKIP
while(e) s <0’l w,)
)
body(m) = s ooy
olpara(m, i)\v;] 2 (o', Return v) e
-CALL
il GULIL Y (o'[z\v], Normal)
body(m) = s o
olpara(m,i)\v;] 2 (o', Exception e) LB
x=m(er,.en) (o', Exception e)
o 2 (o' Exception e) o' [z\v] = (6", w")
E-CATCH

try si catch(x) sy "o
—— (¢", W)

(w'" # Exception e)

(o',

o (o), W)

E-CATCHSKIP
try sq catch(x) so
i A Bt AN

Fig. 5: Semantic rules of IMP+

capturing the change in variable change. The generated
replay is a code snippet replaying the change captured in
change. Process 1 works by capturing and reverting each
type of abnormal control state at a time. For each type, there
are four manual steps (#1 to #4) to craft a capture component
and a replay component for this exact type of control state.
Then, these components are stacked together (line 11-12) to
cope with the whole control state.

We illustrate this process with the semantic rules of IMP+
as shown in Figure 5, where Break, Continue, Return v

and Throw e are abnormal control states that we concern.

For the Break state: At step #1, we find that the only
possible R, is E-WHILEBREAK and the only possible R, is
E-BREAK. At step #2, we use this rule to write a capture
component that turns a Break state into Normal:

while (true) {s}
change := "break";

Among possible states in 77 = {Normal,Continue,
Return v,Exception e}, the component above does not
preserve the semantics of the former two states: if the patch
ends up with a Normal or Continue state, it causes an
endless loop. Therefore at step #3, We modify the capture
component to fix these problems:

flag := 0;
while (true) {
flag := flag+l;
if (flag>1l) break;
{s}
flag := flag+l;}
if (flag=1l) change := "break";
if (flag=2) continue;

The added flag variable will distinguish Break from
Normal and Continue, so that it correctly preserves the
semantics of s when it does not cause a Break state. Finally
at step #4, we use E-BREAK to write a replay component:

if (change="break") break;

For the continue state: At step #1, we find R, =
E-WHILE and R, = E-CONTINUE. At step #2—#3, the
capture component is mostly the same as the component for
Break, but the last line should be changed to if (flag=2)
change:="continue";. At step #4, the replay component
is if (change="continue") continue;.

For the Return v state: At step #1, R, = E-CALL and
R, = E-RETURN. At step #2, the capture component wraps
the statement into a new method and then calls it:

def m() {s}
x = m();
change := "return"; retval := x;

For each state in T = {Normal,Exception e}, this
component fails when the patch ends up with a Normal state.
At step #3, we fix it by returning a unique special value at
the end of the wrapping method:

def m() {{s} return "--special--";}
x =m();
if (x!="--special--") {

change := "return"; retval := x;}

At step #4, we come up with this replay component:

if (change="return") return retval;

For the Exception e state, we similarly use R, =
E-CATCH to write the capture component as try
{s} catch(e) {change:="exc"; exc:=e;}, and uses
R, = E-THROW to write the replay component as if

(change="exc") throw exc;.
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In the end, we get the following components that capture
and replay all control state changes.

C ( 3) = CException (CReturn (CCominue (CBreak (5) ) ) )

R= TExceptions TReturn; "Continue ; 7'Break s skip

C. Changes to the Data State

After the control state is intercepted in Process 1, further
intercepting changes to the data state is easier because we can
detect and revert the modified variables in the next statement
following the patch — the next statement is now guaranteed to
run. On the other hand, unlike the control state where reverting
always sets it to Normal, here we need an efficient way to
detect and revert the data state to its version before executing
the patched statement. Simply recording the whole data state
is not feasible due to its size.

To cope with this challenge, we use lightweight static
analysis to detect the change scope that each patch may bring
to the data state, and record only the values within the scope.
After executing the patched statement, the new values in the
scope can be compared with the recorded ones for detecting
and reverting the change. We further bypass the equivalence
detection on patches whose change scope is too large: these
patches are validated sequentially using the plain method but
not with the execution scheduler.

Our approach does not restrict the choice of the static
analysis and the definition of the change scope, and the
implementation could use any static analysis algorithm that
best fits the target programming language and the APR tools.
In the following, we describe an implementation of the two
components for the IMP+ language, which is close to those
used in ExpressAPR.

In IMP+, the only two types of statement that can change
the data state are x := e and x :=m(ey, ..., e,), which change
the value of a variable x to an expression or the return
value of a method. As a result, we can define the change
scope as a set of variables, and use an inter-procedural static
analysis to produce this change scope. This static analysis can
be easily implemented by scanning the code and collecting
the left variables in all assignments. When a method call is
encountered, all variables changed by the target method are
also iteratively added until a fixed point is reached.

Given a set of variables {xi,...x,} returned by the static
analysis, we can refine the capture component in the fol-
lowing way to intercept data state changes.

0ld; :=x1; ...; oldy := Xn;

(original capture component by Process 1)
if(old; # x1) {change[0] := x1; x4 := olds; }

else {change[0] := null; }

if(oldn # xn) {change[n — 1] := xn; Xn := 0ldy; }
else {change[n — 1] := null; }

We similarly refine the replay component.

if(change[0] # null) x; := change[0];

if(change[n — 1] # null) x, := change[n — 1J;
(original replay component by Process 1)

This implementation still has two issues in efficiency. First,
the change scope may include too many variables, causing
excessive overhead at runtime. To deal with this issue, we sim-
ply use a purity analysis [64] rather than an inter-procedural
change scope analysis. A method is pure if it does not change
the data state. A purity analysis involves only a Boolean result
and can be efficiently conducted. If a patched statement calls
any impure method, we consider its change scope too large
and it will bypass the equivalence detection.

Second, a variable may store a large data structure where
copying and comparison may be costly. To deal with this issue,
we keep an allowlist of types that are either primitive types
or compound types of a small, fixed size. If the change scope
includes any variable whose type is not in the allowlist, we
consider the change scope too large and the patch will bypass
the equivalence detection.

D. Properties of Interception-based Instrumentation

Theorem (Efficiency). The time cost of the designed capture
and replay components in the above example is at most
linear to the syntactic size of the patched statement, i.e., the
overhead of interception-based instrumentation is small even
if the patched statement may execute for a long time (e.g.,
contains a loop or a recursive call).

Proof Sketch. The final capture and replay components
consist of statements that deal with changes to the control state
and the data state. For the control state, a constant number of
statements are added to the component. For the data state, the
number of added statements is linear to the number of possibly
modified variables, which is no more than the syntactic size
of the statement. O

Theorem (Soundness). REPLAY(S,CAPTURE(S,T)) =
EXECUTE(S,T) for any state S and any statement T, i.e.,
calling the capture component and then the replay com-
ponent for any patch is equivalent to executing the patch.

Proof Sketch. The construction of both components is incre-
mental, i.e., we build a component for each aspect of the
state change, and combine them together. Each individual
component is sound within its own scope by design, and the
combining process is also sound: when combining components
for control state changes, step #3 in Process 1 ensures that an
added component does not break previous components; when
refining the component for data state changes, the control
state is already reverted, so that the refined component always
executes normally regardless of control flow effects in the
patch. O

E. Compilation Isolation

Unlike mutation testing that assumes mutants always com-
pile, patches generated by an APR approach may not compile,
leading to a challenge when all patches are woven into one
program: if any patch cannot compile, the whole program
cannot compile. It is impossible to detect and remove uncom-
pilable patches by individually compiling each patch, because
it will nullify the acceleration effect of mutant schemata.
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An intuition to solve this challenge is to rely on the error
messages from the compiler: if the error messages could
precisely pinpoint all uncompilable code snippets, we can
compile the codebase once and then remove the uncompilable
patches based on the error messages.

However, the error messages are often not perfectly precise:
for example, a patch in the middle of a method may lead to
compile errors at the end of this method, and it is often the case
that an error stops the compilation of the rest of the method.
Therefore, we cannot rely on the error messages to precisely
pinpoint all uncompilable patches.

To solve this problem, we propose the concept isolation
unit to measure the granularity of the preciseness in the error
messages of a compiler: a compilation error within an isolation
unit will only cause error messages within the isolation unit
but not affect the compilation of other parts of the code. An
isolation unit must exist for any compiler: in the extreme
case, the whole codebase is the isolation unit. However, our
observation is that modern compilers usually have more fine-
grained isolation units. For example, many compilers compile
each file individually into an object file (. java files into Java
bytecode files, and . c files into assembly files), and thus each
file is an isolation unit. Furthermore, a method or a procedure
in many imperative programming languages, including Java
and C, is also an isolation unit, because these programming
languages are carefully designed such that compilers only need
to perform intra-procedural analysis when compiling the code
(inter-procedural analysis is often applied at a much later stage
for optimizing the code where the compilation errors have
already been detected).

Therefore, to isolate compile errors, our interception-based
instrumentation approach should wrap each patch in an isola-
tion unit. Let us assume that methods are also isolation units
for an IMP+ compiler. Each capture component produced in
Section V-B is already in an individual isolation unit because
we wrap the patch in a method to deal with the Return v
control state. Then we can compile the codebase woven with
all patches with two rounds of compilation: the first round
identifies all uncompilable patches from error messages, which
will be removed, and the second round compiles the codebase
with only the remaining patches.

VI. LIMITATION

While our approach is theoretically sound and can be
applied to arbitrary patches under our idealized problem
definition in Section IV-B, there are two practical limitations
when applying it in the real world. We will evaluate them in
our experiment.

Patch Limitation: We define a patch as a modification of
statements. Therefore, patches that modify other parts in the
program (e.g., the definition of a field) are out of the scope of
ExpressAPR. We detect this case in the preparation step, and
fall back to plain validation for affected patches.

Test Limitation: We define executing the test as stepping
through a state machine, where the state-transition should be
stable, i.e., being exactly the same across multiple runs. In
practice, most test cases are stable — otherwise, it would be

difficult to troubleshoot a test failure. We perform runtime
checks in Algorithm 3 to detect rare unstable test cases', and
fall back to plain validation for them.

Also note that ExpressAPR is only suitable for test-based
generate-and-validate APR. While most existing studies focus
on this category, many other kinds of defects, such as alerts
by static analyzers [65] or anomalies in logs [66, 67], may
also be targets of APR. ExpressAPR is not designed for these
approaches because they do not run tests for patch validation.

VII. IMPLEMENTATION

After the challenges for adapting mutant schemata and
mutant deduplication are solved, we build ExpressAPR, a
general-purpose patch validator for Java, which adapts all five
classes of acceleration techniques suitable for patch validation.
We choose Java as the target programming language because
it is supported by most APR tools?.

To achieve mutant schemata and mutant deduplication,
we implement the execution scheduling algorithm described
in Section IV and the interception-based instrumentation by
following the design process described in Section V.

The capture/replay component for Java is similar to
the IMP+ example as described in Section V, because both
languages share similar features. For the control state, control
flow statements in Java can only be break, continue,
return, or throw [68], which are all covered by IMP+. For
the data state, Java programs similarly change the data state
by assignment statements. The capture/replay component
for Java has three differences compared against IMP+: 1)
Java allows to assign a label to a loop and jumps out of
a labeled loop. To support this syntax, we detect labeled
break/continue statements in the preparation step, and add
the same label in the generated replay component. 2) Java
methods can declare a list of checked exceptions to be thrown.
Generated components should inherit this list from the original
method. 3) A patch may access local variables in the original
method and fields in the original class. To make it possible, we
put generated methods in the same class as the original patch,
and declare auxiliary fields for passing around local variables
between the original method and the generated methods.

Adapting the three other acceleration techniques is straight-
forward: Test virtualization is adapted by resetting global
states (except for the state-transition tree that should be
shared across runs) before each round of test execution.
Current ExpressAPR implementation uses an existing library,
VMVM [32], for test virtualization. Test case prioritization
is adapted by sorting test cases in the test suite. Following
the two heuristics mentioned in Section III-A4, ExpressAPR
first executes the failing test cases, then other test cases in
the same package of a patched location, and then test cases
in other packages. Parallelization is adapted by spawning
multiple instances of the patch validator with a process pool,

Tn the EVALPATCHES procedure and when the test ends, we assert that
the observed system state should be consistent with the record on the state-
transition tree. For example, if the test execution finishes but C'ur.Status =
“visited”, the test case is considered unstable.

2program-repair.org lists 23 APR tools for repairing Java programs, which
is the largest among all programming languages.


https://program-repair.org/

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

one instance dealing with a subset of patches, each subset
corresponding to all patches to the same fault location as
generated by the APR approach.

VIII. EXPERIMENT SETUP
A. Research Questions

Our evaluation aims to answer these research questions.
RQI. Overall performance. How fast patch validation could
be with ExpressAPR?

Technique effectiveness. Does each technique in Ex-
pressAPR contribute to the final performance?
Feasibility. Will ExpressAPR fail or report incorrect
validation results, affecting the ability of APR?
Generalizability. How does the speed and feasibility of
ExpressAPR generalize to different kinds of programs?

RQ2.
RQ3.

RQ4.

B. The Benchmark

We used Defects4] [69] v1.2 as the benchmark for RQl1
through RQ3. Defects4] v1.2 is a widely used APR benchmark
on Java, containing 395 bugs in open-source Java projects.
We chose four publicly available APR tools covering different
kinds of APR approaches to be studied in this evaluation:

e Recoder [8], a deep-learning-based tool fixing 53 bugs in
the benchmark.

o TBar [2], a template-based tool fixing 41 bugs.

o SimFix [70], a heuristic-based tool fixing 33 bugs.

o Hanabi [71], a decision-tree-based tool fixing 27 bugs.

We obtained the replication package for each tool, and
collected all generated candidate patches under the original
time-out value for evaluation.

We did not conduct the evaluation on all 395 bugs in
Defects4] because the computational cost would be unaccept-
able to execute multiple baselines for the patches generated
by the four APR tools. Instead, we sampled the dataset in
two possible ways: 1) for each studied APR tool, choosing
all bugs it can fix as reported by its authors (the fixable
dataset); 2) choosing 30 bugs randomly from the whole dataset
(the random dataset). The fixable dataset helps us understand
whether APR can be accelerated: if the time used in each
fixable bug is shorter, we can use a shorter time limit without
affecting the effectiveness of the tool. The random dataset is
supplemented to avoid the threat of possible selection bias on
the fixable dataset. Results on both datasets are reported.

In RQ4, we additionally experimented with Recoder under
30 random bugs in the IntroClassJava [72] benchmark, as a
supplement to Defects4]. This benchmark includes 297 small
and buggy student assignments, which allows us to understand
the generalizability of ExpressAPR.

The statistics of evaluated patches is shown in Table II. The
current evaluation costs over 18 months of single-CPU-core
time in total, which is of the largest scale among all existing
studies on accelerating APR within our knowledge.

C. Experiment Methodology

In RQ1, the patch validation time per bug using Express-
APR is compared with the following two baselines:

TABLE II: Statistics of evaluated patches

#Patches

RQ APR #Bugs #PatchSets  #Patches Avg - =2
Recoder 53 3096 101543 32.8
RQI~3  TBar 41 3138 110882 353
(fixable)  SimFix 33 1799 120788 67.1
Hanabi 27 959 99627 103.9
Recoder *29 1956 34722 17.8
RQI~3  TBar * 29 4602 148140 322
(random)  SimFix 30 3161 227041 71.8
Hanabi *29 650 87990 135.4
RQ4 Recoder 30 866 36565 422

*: Among the 30 selected random bugs, Recoder and Hanabi fails to run on
Lang-25, and TBar fails to run on Mockito-20.

o Plain. Each patch is compiled using the defects4j
compile command that ships with the Defects4] dataset,
which uses an Ant script to compile changed files and per-
form necessary user-defined actions. Compilable patches
are tested using the defects4j test command. This
reflects the normal practice of evaluating APR techniques.

o State-of-the-Art. UniAPR [22], the current state-of-the-
art patch validator on Java, is used to validate all patches.
It incorporates test virtualization, test case prioritization,
and parallelization, but not mutant schemata and mutant
deduplication, the two techniques brought to patch vali-
dation by ExpressAPR for the first time. When compiling
the patches, we use the OpenJDK compiler (the javac
command) to compile only the patched file.

To simulate the degree of parallelization on average hard-
ware, the patch validation job for each defect is distributed to
eight CPU cores for every baseline. In other words, paralleliza-
tion is already included in all the baselines. To understand
the performance without parallelization, we also report the
time needed when we perform serial validation in the Plain
baseline. However, for a fair comparison, we do not treat the
serial validation as a separate baseline, because otherwise the
acceleration ratio can be easily manipulated: the more CPU
cores we use in our experiment, the higher the acceleration
ratio for the parallel validation.

We also measure the memory footprint of each approach
during the experiment.

In RQ2, we discuss the individual effectiveness of each
acceleration technique in ExpressAPR. For Parallelization, its
effectiveness is straightforward (roughly N times acceleration
when running on N cores). For the other four techniques,
namely Mutant Schemata (MS), Mutant Deduplication (MD),
Test Virtualization (TV), and Test Case Prioritization (TCP),
we empirically measure their effectiveness.

Among these four techniques, Mutant Schemata accelerates
the patch compilation step, and the other three techniques
accelerate the test execution step. Besides the original Ex-
pressAPR implementation, we add intermediate configurations
by removing each technique from ExpressAPR one by one,
and measure their time usage. For the patch compilation step,
we add one intermediate configuration (“-MS”); for the test
execution step, we add three intermediate configurations (‘-
TCP”, “-TCP -MD”, “-“TCP -MD -TV”). In this way, we can
understand the effectiveness of the removed technique between
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two adjacent configurations. Note that this is not an ablation
study due to implementation-level dependencies — it can be
hard to individually remove a technique from ExpressAPR®.

In RQ3, we compare the validation result (“plausible”,
“implausible” or “fails to validate”) of ExpressAPR against
the Plain baseline. The ExpressAPR implementation may fail
to accelerate the validation of a patch if it detects a violation of
two limitations described in Section VI. It may also produce
an incorrect result if it fails to detect such a violation that
affects the validation result. In this RQ, we evaluate how
often these cases happen. We count the number of patches
that ExpressAPR fails to validate or reports incorrect results
(reported “plausible” when should be “implausible” or vice-
versa), and analyze the reason.

In RQ4, we compare the validation time and the result
of ExpressAPR against the patch validation command under
the IntroClassJava dataset (similar to the Plain baseline). This
helps us to understand how much the result of previous
RQs generalize to small programs that may not have many
redundancies. Due to the computational cost, We do not
experiment with other repair tools or other baselines.

D. Experiment Settings

The experiment is run on a Xeon® 8270 CPU server
with eight processes, each using one dedicated CPU core.
For patches ExpressAPR “fails to validate”, we fall back to
the State-of-the-Art baseline in RQ1. To deal with candidate
patches with dead loops, following an existing study [15], we
set the test timeout to 5 seconds plus 1.5 times over the original
test execution time. UniAPR and ExpressAPR have offline
procedures to measure the original test execution time or to
analyze the purity of methods (the analysis averagely takes
130 seconds), and they are excluded from time usage.

IX. RESULT ANALYSIS
A. RQI: Overall Performance

The total patch validation time per bug in both datasets using
each approach is shown in Figure 6. The Y-Axis is logarithmic
due to the huge difference across baselines. Note that UniAPR
fails to run on 24% of bugs, hence some points in the SOTA
series are missing in the figure. This result brings the following
findings for the APR community:

1. ExpressAPR accelerates patch validation to a new
degree in a variety of settings. From Figure 6 we can see that
in every studied APR tool, patch validation with ExpressAPR
consumes significantly less time compared with the two base-
lines for almost all bugs. In the fixable dataset, ExpressAPR
shows an acceleration of 137.1x over the Plain baseline, or
8.8x over the State-of-the-Art baseline on bugs where UniAPR
successfully runs. In the random dataset, ExpressAPR shows a
similar acceleration of 108.9x over Plain or 10.3x over State-
of-the-Art. This indicates that the performance of ExpressAPR
generalizes to different APR tools and different bugs.

3For example, Mutant Deduplication requires the state-transition tree to per-
sist across executions, which is implemented as part of the Test Virtualization
technique. Therefore, we cannot remove TV without breaking MD.
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Fig. 7: Percentage of time spent for patch validation

2. Patch validation is no longer the speed bottleneck
of APR if mutation testing techniques are systematically
adapted. The percentage of time spent for patch validation
when repairing each bug in the fixable dataset is shown in
Figure 7. When using the stock Defects4] command (the Plain
baseline), patch validation takes more than 95% of the repair
time. If the previous best patch validation approach (the State-
of-the-Art baseline) is used, this portion is reduced to 75% ~
95%, still the bottleneck. ExpressAPR has reduced this portion
to about 50%, so patch validation is now as fast as patch
generation. This suggests that future APR acceleration work
should also consider the patch generation phase.
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3. The speed of APR satisfies the expectation of most
users. In our experiment with an 8-core configuration, when
ExpressAPR is used, the total repair time for the fixable dataset
has greatly reduced to less than 3 minutes for more than half
bugs and less than 10 minutes for nearly all bugs, as shown
in Figure 8. This execution time satisfies the expectation of
most users in an existing survey [12].

4. The memory overhead of ExpressAPR is negligible.
While ExpressAPR theoretically has a memory overhead for
the State-Transition Tree, we do not observe additional mem-
ory usage in the experiment. In fact, ExpressAPR uses much
less memory compared with Plain, because it avoids heavy
frameworks (Maven or Ant) when running tests. Figure 9
shows the memory footprint of all three approaches over the
first hour of the experiment, which validates the candidate
patches in the fixable dataset in random order.

5. The acceleration ratio from parallelization is close to
the number of CPU cores used. To understand the perfor-
mance without parallelization, we further randomly sampled
300 patch sets from the fixable dataset, and validated them
with only one process on a single CPU core (in contrast to
eight processes each using one core). The time usage becomes
7.2 times as long as Plain, which is close to the number of CPU
cores (8). This is intuitive because the validation of patches
at different locations has no dependency on each other and is
thus naturally parallelizable.

B. RQ2: Technique Effectiveness

In this RQ, we separately measure the effectiveness of
four acceleration techniques in its step (patch compilation for
MS; test execution for MD, TC, and TCP). Results on both
datasets are shown in Figure 10. Each point (2%, y) in the plot
indicates that the time usage of this step among x% patch sets
is within y seconds. We have the following findings:

1. Acceleration techniques in ExpressAPR are effective
on their own. Figure 10 shows that every addition of technique
contributes to a significant acceleration in its step. The average
contribution of each technique is over 3x. Because the Y-Axis
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Fig. 10: Effectiveness of each acceleration technique

is logarithmic, the acceleration ratio can be directly read from
the distance of two series.

2. With all techniques used, patch compilation takes
more time than test execution for most patch sets. This can
be confirmed by comparing the ExpressAPR series in (i) and
(ii). This is because: 1) When TCP is used, most patches fail
the first few unit tests, which costs little time. 2) The portion
of patches that do not compile is considerable, precisely 54%,
51%, 76%, and 52% for the four APR tools, and test execution
is skipped for them. It suggests that future work may spend
more effort optimizing patch compilation.
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TABLE III: The feasibility of ExpressAPR

% of patches in ...

Category fixable bugs random bugs
Correct result 97.197% 98.782%
Validation failure (patch limitation) 1.882% 0.693%
(test limitation) 0.886% 0.524%

Result misclassified (as plausible) 0.018% 0.000%
(as implausible) 0.017% 0.001%

3. The effectiveness of Mutant Deduplication depends
on the patch space. We can see that MD performs best with
Hanabi, by comparing the “-TCP -MD” and the “-TCP” series
in different figures. This makes sense because Hanabi, as a
decision-tree-based APR approach, naturally produces many
patches changing Boolean conditions. These patches are more
likely to be test-equivalent because Boolean conditions are
either true or false.

C. RQ3: Feasibility

In this RQ, we count the number of cases where Express-
APR fails to accelerate and classify them by their reasons. We
also compare the validation result reported by ExpressAPR and
the Plain baseline for detecting incorrect results. The result is
shown in Table III, which leads to the following findings:

1. The acceleration feasibility of ExpressAPR is high.
In the fixable dataset and the random dataset, 97.197% and
98.782% of patches are correctly validated with acceleration.
It indicates that the two implementation-level limitations do
not affect the majority of patches.

2. ExpressAPR has a negligible negative impact on the
effectiveness of APR. Most limitation violations are detected
by ExpressAPR by reporting a validation failure. In our
implementation, the plain validation approach is automatically
used for these patches as a fallback, keeping the validation
result correct. Only a very small portion of patches (0.035%
of the fixable dataset and 0.001% of the random dataset)
are misclassified because of undetected unstable tests. Among
them, some are implausible patches misclassified as plausible,
which can be ruled out by a post-check using the fallback
approach on all plausible patches. So only plausible patches
misclassified as implausible will have a negative impact on the
effectiveness of APR. Since this portion is very small (0.017%
and 0.001%), we believe the impact is negligible.

D. RQ4: Generalizability

When evaluating with Recoder under the IntroClassJava
benchmark, ExpressAPR achieves an acceleration ratio of
41.5x. 99.77% of patches can be accelerated. All accelerated
patches have a correct patch validation result. Therefore:

1. The acceleration of ExpressAPR generalizes to smaller
programs. The acceleration ratio under IntroClassJava (41.5x)
is worse than Defects4] (108.9x for the random dataset), but
is still very significant. The difference is possibly due to the
fact that IntroClassJava is made of simple programs instead
of large open-source projects. Therefore, test execution is less
redundant with smaller codebases and fewer tests.

TABLE IV: Acceleration techniques in general-purpose patch validators

Technique ExpressAPR UniAPR PRF DSU Mehne et al. AE FRTP
(ours) [22] [15] [23] [24] [18] [25]

Mutant Schemata v #1

Mutant Dedup. v

Test Virtualization v v #2

Test Case Prio. v v v /7 v v 7/

Parallelization v # v/ o8 #3 v /7

#1: Does not discuss how to deal with uncompilable patches.
#?: Reuses JVM without test virtualization, leading to incorrect results.
#3: No built-in parallelization, but is parallelizable.

2. The feasibility of ExpressAPR is improved for
smaller programs. Under IntroClassJava, ExpressAPR sup-
ports 99.77% patches and achieves 100% correctness, which is
significantly better than the result under Defects4] (98.782%
supported for the random dataset). The improvement is in-
tuitive, because simple programs are less likely to contain
advanced syntax (breaking the patch limitation) or randomness
(breaking the test limitation).

E. Threats to Validity

Threats to internal validity might come from the possible
faults when implementing ExpressAPR and performing the
experiment. To avoid faults in our implementation, we have
added assertions and sanity checks in the code. We have
also manually inspected misclassified patches in RQ3 and
did not find faults in the final implementation. To mitigate
timing errors due to varying system load, we used the cgroup
mechanism in Linux to assign one dedicated CPU core and
enough RAM resources to each process.

Threats to external validity lie in the representativeness of
the benchmark. To mitigate the threats, we experiment under
both Defects4] (containing defects in open-source projects)
and IntroClassJava (containing buggy student assignments),
two widely used datasets for APR evaluation. We collect can-
didate patches from four recent APR tools, covering multiple
kinds of approaches. Therefore, our results have a high chance
of representing the general use cases.

X. RELATED WORK
A. Accelerating Patch Validation

Existing approaches that accelerate patch validation can be
categorized as general-purpose or special-purpose. General-
purpose approaches [15, 18, 22, 23, 24, 25] take an ar-
bitrary set of patches as input, while special-purpose ap-
proaches [19, 20, 21, 26, 27, 28] are designed for and rely on
a specific patch generation algorithm. Table IV summarizes
acceleration techniques used in general-purpose approaches
for easy comparison. Below we compare our work against
these existing approaches in three aspects.

1. Our empirical contribution is to understand the overall
performance of integrating all five techniques and their relative
accelerations on top of the other techniques. No existing
approach has integrated all these techniques, so these empirical
results were previously unknown.
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2. Our technical contribution is a set of novel techniques to
overcome the challenges when adapting mutant schemata and
mutant duplication to general-purpose patch validation. Three
existing approaches have adapted mutant schemata within our
knowledge. Two of them [19, 21] are special-purpose: they
are designed for a specific patch space that does not have
the problem of uncompilable patches. Though the approach
by Mehne et al. [24] is proposed as general-purpose, it does
not discuss how to deal with uncompilable patches, which is
one of our technical contributions. Four existing approaches
have employed mutant deduplication within our knowledge.
Three of them [18, 19, 21] statically detect the equivalence
of patches and only reduce the patch validation time for
fully equivalent patches. Mechtaev et al. [20] uses the test-
equivalence relationship to prune the patch space to avoid
generating test-equivalent patches. However, their approach
works for only a few special cases (interchangeable expres-
sions and swappable statements) but cannot detect equivalence
or test-equivalence in general (e.g., cannot detect x+=2; and
x++; x++; are equivalent).

3. Some approaches [15, 21, 24, 26, 28] have adapted test
case selection. We do not adapt this technique as it is subsumed
by mutant deduplication, as discussed in Section III-C.

B. Mutation Testing

There are multiple techniques for mutation testing acceler-
ation, as surveyed in Section III-A. Our technical contribution
is to adapt two classes of them, namely mutant schemata
and mutant deduplication, to general-purpose patch validation.
Below we compare our work against related mutation testing
approaches.

1. Existing approaches with mutant schemata [30, 31, 40]
only allow pre-defined mutation operators against the program,
which are designed not to cause compile errors. In comparison,
we allow arbitrary changes to statements, so the space of
mutation is significantly enlarged, and compile errors are
handled by compilation isolation. ExpressAPR is more suitable
for patch validation against mainstream APR tools, where the
patch space is huge, and many patches cannot compile.

2. Among four existing approaches with mutant deduplica-
tion [34, 41, 42, 43], three approaches [41, 42, 43] can detect
only fully equivalent mutants, and are weaker than Express-
APR, which detects test-equivalent mutants. The Major frame-
work [34] detects test-equivalence by interpreting mutants in
a pre-pass. As discussed in Section IV-A, if a mutant’s state
transition deviates from the original states, it requires a static
analysis process, which may be hard to implement precisely,
or fail to detect some test-equivalent mutants if the analysis is
imprecise. In comparison, our execution scheduling approach
does not need such analyses, so it is easier to implement and
detect more test-equivalent mutants.

C. The Effectiveness Aspect of APR

Many existing papers improve the effectiveness of APR
by filtering or re-ranking candidate patches [73, 74, 75, 76].
While they may have a side-effect of improving efficiency
(because plausible patches are ranked higher), we consider

them orthogonal to our work. ExpressAPR performs only
lossless acceleration and does not re-order patches. Therefore,
ExpressAPR can be used together with such approaches to
achieve a better performance.

Also, readers may wonder about whether ExpressAPR can
improve the effectiveness of APR (“Can we fix more bugs in
the same time budget?”’). While this is an interesting question,
it is orthogonal to our work: we can already study this without
ExpressAPR. Vu et al. [77] has shown that given exponentially
more time, the APR effectiveness only increases linearly or
not at all. Therefore we do not expect that ExpressAPR can
help APR tools repair significantly more bugs in its original
time limit (generally several hours [12]). That being said,
ExpressAPR is useful for this kind of study, because the time
required for experiments can be greatly reduced.

XI. CONCLUSION

We surveyed mutation testing acceleration techniques and
identified five classes of applicable techniques for general-
purpose patch validation. We proposed two novel approaches,
namely execution scheduling and interception-based instru-
mentation, to overcome technical challenges when adapting
two of the techniques for the first time. Our large-scale
empirical experiment has shown that patch validation can be
dramatically accelerated and no longer be the time bottleneck.
When acceleration techniques are systematically used, thou-
sands of patches can be validated in minutes, satisfying the
expectations of users.

The ExpressAPR artifact, including the source code
with documentation, a command-line interface for APR
users, a Docker image to reproduce the experiment, and
raw experiment results, is available on GitHub [35].
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