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Abstract—Testing-based fault localization has been a research
focus in software engineering in the past decades. It localizes
faulty program elements based on a set of passing and failing
test executions. Since whether a fault could be triggered and
detected by a test is related to program semantics, it is crucial
to model program semantics in fault localization approaches.
Existing approaches either consider the full semantics of the
program (e.g., mutation-based fault localization and angelic
debugging), leading to scalability issues, or ignore the semantics
of the program (e.g., spectrum-based fault localization), leading to
imprecise localization results. Our key idea is: by modeling only
the correctness of program values but not their full semantics, a
balance could be reached between effectiveness and scalability. To
realize this idea, we introduce a probabilistic model by efficient
approximation of program semantics and several techniques to
address scalability challenges. Our approach, (SeMantics bAsed
pRobabilisTic Fault Localization), is evaluated on a real-world
dataset, Defects4J 2.0. The top-1 statement-level accuracy of our
approach is 14%, which improves 130% over the best SBFL and
MBFL methods. The average time cost is 205 seconds per fault,
which is half of SBFL methods. After combining our approach
with existing approaches using the CombineFL framework, the
performance of the combined approach is significantly boosted by
an average of 10% on top-1, top-3, and top-5 accuracy compared
to state-of-the-art combination methods.

Index Terms—Fault localization, semantics, probabilistic mod-
eling.

I. INTRODUCTION

IN the last two decades, testing-based fault localization, or
fault localization in short, has been a research focus in

software engineering [1], [2], [3], [4], [5]. Given a program and
a set of tests with at least one failing test, a fault localization
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approach computes the suspiciousness score of each program
element to determine which one is the most suspicious to be
faulty. Here the program elements can be statements, methods,
files, or any needed granularity.

Among the large body of fault localization research, a cen-
tral focus is coverage-based fault localization. Coverage-based
fault localization infers the suspiciousness scores of program
elements based on the coverage information, and the basic idea
is that the fault location that causes a failing test should appear
in the locations covered by the test and an element covered more
by failing tests rather than passing tests is more likely to be
faulty. For example, spectrum-based fault localization (SBFL)
[6], one of the most well-known fault localization families,
calculates the suspiciousness score of a program element based
on the number of passing tests and the number of failing tests
covering the element.

However, whether a buggy program element causes the fail-
ure of a test is determined by four conditions [7], [8], [9]: (1)
whether the test covers the buggy program element, (2) whether
the execution of the buggy program element results in an error
in the program state, (3) whether the error in the program state
is propagated to the output, and (4) whether the error in the
output is captured by an assertion or not. Coverage-based fault
localization ignores the semantics of the target program and
thus only considers the first condition. A test may cover a
buggy program element but still pass because the latter three
conditions are not satisfied, leading to inaccuracies in coverage-
based fault localization.

To overcome this problem, different approaches have been
proposed to take the latter three conditions also into considera-
tion. For example, mutation-based fault localization (MBFL)
[4], [10] generates many mutations on each element and
watches whether the program output or the test result (i.e., the
pass/fail status) changes. If a change in a statement is more
likely to change the program output or the test result in the
failing tests, and less likely in the passing tests, the statement is
likely to be faulty. Angelic debugging [11] and semantic fault
localization [12] use symbolic analysis to determine whether
the result of an expression can be modified to reverse the results
of failing tests while maintaining the results of the passing tests,
and such an expression is considered more likely to be faulty.
However, these approaches take the full program semantics
into consideration, and thus the analysis is inevitably heavy. As
an existing study [1] reveals, mutation-based fault localization
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often requires hours to localize a single fault. As far as we
are aware, there is so far no successful application of angelic
debugging or semantic fault localization to large programs.

In this paper, we propose a novel approach to fault localiza-
tion, that considers the four factors via efficient probabilistic
modeling of the program semantics. Our approach considers a
sample space of all possible faults and analyzes which program
element is more likely to be faulty based on current test results.
Our core insight is that the probability of a fault in the current
program element leading to the current test results can be effi-
ciently estimated by analyzing the following:
• the probability of each statement in the traces of test exe-

cutions to introduce an error into the system state;
• the probability of each statement to propagate an error.
In this way, we do not need to consider the full semantics

and can abstract each value into two possibilities: faulty or not.
Consequently, the analysis is significantly simplified and can
be efficiently approached. Along with this insight, we build a
probabilistic model based on static and dynamic dependencies
from the source code and test execution traces and calculate the
posterior probabilities of whether a statement is faulty based on
the test results.

However, realizing this idea still has scalability challenges.
Test executions can be long, and a model based on full test
execution traces could be too large to build and to conduct
inference. To overcome this challenge, there are solutions in
two directions. The first solution is to reduce the size of the
probabilistic model by discarding unimportant content. Specif-
ically, this process consists of three parts, including reducing
redundant methods, reducing redundant loops, and reducing
redundant tests. The second solution is to propose a more
efficient probabilistic inference algorithm. We design an op-
timized version of the probability inference algorithm [13,
14] specialized for inferring the posterior probabilities in our
model.

We have evaluated our approach on the widely-used De-
fects4J benchmark [15]. We experimented on all the 835 bugs
from Defects4J 2.0. The results show that our approach signif-
icantly outperforms both SBFL and MBFL methods, in terms
of both efficiency (205s per fault avg.) and effectiveness (14%
Top-1 statement accuracy). Our approach is also complemen-
tary to existing approaches: while combining our approach with
existing approaches using the CombineFL framework [1], the
performance of the combined approach is boosted by an average
of 10% on top 1, 3, and 5 accuracy compared to other state-of-
the-art approaches.

In summary, this paper makes the following main contribu-
tions.
• A fault localization approach by efficient approximation

of program semantics.
• Novel techniques to reduce the size of the model and to

efficiently infer posterior probabilities for addressing the
scalability challenge.

• An evaluation on the Defects4J dataset to show the effec-
tiveness and the efficiency of our approach.

This paper is a significantly extended version of a previous
conference paper [16].

• First, this submission introduces new techniques to en-
hance the scalability of the SmartFL approach, including
(1) adaptive folding, a technique for reducing redundant
methods, (2) virtual call edge, a technique for capturing
dependencies involving untraced methods, and (3) an op-
timized inference algorithm specialized for our models.

• Second, the implementation of SmartFL is improved for
compatibility, stability, and efficiency, by designing a new
version of tracing, better simulating the execution process
of Java Virtual Machine, and supporting more Java fea-
tures like run-time exceptions.

• Third, the evaluation has been extended to all the 835 bugs
from Defects4J 2.0 and the baselines are expanded. The re-
sults show that the new version of SmartFL is significantly
improved compared to the old version in both effectiveness
and efficiency.

• Fourth, this submission has been largely rewritten to im-
prove the presentation. In particular, we have switched
from an informal approach description based on factor
graphs to a formal description based on Bayesian networks
for enhancing readability.

The rest of the paper is organized as follows. Section II mo-
tivates our approach with examples. Section III presents basic
mathematical background about Bayesian networks. Section IV
describes our approach in detail. Section V describes how to
instantiate our approach for Java programs. Section VI shows
the experiment results and answers the research questions. Sec-
tion VII discusses some existing problems of our approach.
Section VIII discusses related research. Section IX concludes
the paper.

II. OVERVIEW

In this section, we motivate our approach using an example.

Motivating Example. Fig. 1 shows a simple program for il-
lustration purposes. The buggy condition a < = 2 at line 3
replaces the correct condition a < 2. There are two test cases
to find the fault. For test pass, the fault does not influence the
evaluation of the condition so the result is correct. However,
in test fail, the fault misleads the test to the wrong branch
and gets a wrong result. Here we assume a desirable approach
should rank line 3 at the top in statement-level fault localization.

Coverage-based Approaches. We first demonstrate why
coverage-based approaches such as SBFL fail to discover this
bug. Coverage-based approaches utilize code coverage informa-
tion to calculate suspiciousness scores. In SBFL approaches, the
suspiciousness scores of an element e are calculated from four
numbers: the number of passing tests covering e, the number of
failing tests covering e, the total number of passing tests, and
the total number of failing tests. However, in the above case,
the coverage of passing tests and failing tests are completely
identical, resulting in equal suspiciousness scores for every
statement regardless of specific SBFL formulas.

As analyzed in the introduction, SBFL formulas cannot dis-
tinguish the suspiciousness degrees of different statements be-
cause coverage is only one out of the four conditions that lead
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Fig. 1. A motivating example for condition modeling.

to test failure. In test pass, though the faulty expression is
covered, the affected run-time state is still correct, and thus cal-
culating suspiciousness with only coverage cannot distinguish
each statement.

Other Existing Approaches. To address the above challenge,
many existing approaches try to analyze also the latter three
conditions, i.e., whether the execution of a statement produces a
faulty state, whether the faulty state is propagated to the output,
and whether the test captures the fault in the state. However,
to analyze the three conditions precisely, we need to consider
the full semantics of the program, which is difficult to achieve
efficiently. Here we analyze two families of approaches.

A typical family is MBFL. MBFL mutates each statement
to generate multiple mutants and checks whether the output
of each test execution [4] or the test result (i.e., the pass/fail
status) [10] changes. In this case, mutating the statement at
line 4 or the statement at line 6 has a high probability to fail
test pass, while mutating the statement at line 3 has a much
smaller probability to fail test pass. In this way, we know
that the statement at line 3 has a weak correlation to the test
result of pass and is more likely to be faulty. However, to
obtain statistically significant information, we need to generate
a number of mutants for each statement, and all tests need to
be executed on each mutant, which takes a significant amount
of time. In an existing empirical study [1], mutation-based fault
localization requires hours to localize a single fault.

Another representative family is angelic debugging [11] and
semantic fault localization [12]. These approaches analyze, for
each expression, whether its result can be modified to reverse
the results of failing tests while maintaining the results of the
passing tests. In this example, changing the result of expression
a + 1 at line 4 or the result of expression a at line 6 to any
value different from 2 would fail test pass, and thus the two
expressions are not considered to be buggy. However, such an
analysis requires symbolic reasoning, which is known to be
heavy and has limited scalability. So far there is no successful
application of angelic debugging or semantic fault localization
to large programs within our knowledge.

Our Approach. Different from the above approaches, our ap-
proach takes a probabilistic view on fault localization. Let us
consider a sample space of all possible faults that the current
program could potentially contain. Given the current test results
as an observation, our approach estimates the posterior proba-
bility of each program element being faulty.

To precisely calculate the posterior probabilities, we need
a distribution of the faults and to model the full semantics
of the program. Specifically, first we need to find the prior
probability distribution of the fault localization problem space,
that is, the probability distribution of the potential correct ver-
sions of the program corresponding to the faulty program.
Second, we need to analyze the result of each test on each
correct version of the program and use the observed test results
to calculate the posterior probability. Both tasks are difficult.
It is difficult to know the prior distribution of the potential
correct versions and it is difficult to analyze many program
versions based on their full semantics, which requires prob-
abilistic modeling of the relationships between specific pro-
gram states. These difficulties make such probabilistic mod-
eling impossible to achieve, and even if it is possible, it will
face serious effectiveness and efficiency problems. The lack of
reasonable prior probability leads to poor performance. Even
if the prior problem is overcome, the model will have serious
efficiency problems in inference due to modeling the complete
semantics.

To overcome the above difficulties, our approach takes a core
assumption: a faulty evaluation results in an evenly distributed
random result. Specifically, an evaluation of an expression is
faulty only if one of the three conditions is satisfied.
• The expression itself is faulty.
• Any input value of the expression is faulty.
• The expression was executed by mistake; in a correct

execution it should not be executed.
When any of the above three conditions hold, we assume
that the expression would produce an evenly distributed ran-
dom output. This assumption allows us to use Bernoulli ran-
dom variables to model whether values in execution are cor-
rect or not; we do not have to find the prior distribution of
the potential correct versions, nor do we need to consider
the full semantics of the potential correct versions in the
analysis. Through this modeling, we not only scale the effi-
ciency of probabilistic inference but also simplify the prior
parameters.

Concretely, we introduce a set of Bernoulli random variables
to represent whether a statement is correct, denoted by Si,
where i is the line number of the statement. It is natural to
assume these random variables are independent of each other.
We also introduce another set of Bernoulli random variables to
represent whether the output value of an expression execution
is correct. In this example, we use Vp,i (Vf,i) to denote the value
produced by the expression execution at line i in test pass
(fail). In particular, Vp,2 and Vf,2 denotes the correctness of
the test inputs and Vp,6 and Vf,6 denotes the correctness of the
test outputs.

Now let us analyze the relations between the random vari-
ables. First, since the input values of the tests are correct, we
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have the following equations.

P (Vp,2 = 1) = 1, P (Vf,2 = 1) = 1

Please note that since the Bernoulli random variables are
binary, we also know P (Vp,2 = 0) = P (Vf,2 = 0) = 0. To
ease the presentation, we will only present one of the two
probabilities.

Then we consider the case of correct executions. Given a
statement, if the statement itself is correct, the input values of
the statement are correct, and the statement should be executed,
then the result of the statement must be correct. As a result, we
have the following equations:

P (Vt,3 = 1 | S3 = 1 ∧ Vt,2 = 1) = 1
P (Vt,4 = 1 | S4 = 1 ∧ Vt,2 = 1 ∧ Vt,3 = 1) = 1
P (Vt,6 = 1 | S6 = 1 ∧ Vt,4 = 1) = 1

where t ∈ {p, f}.
The first equation corresponds to the conditional expression

in line 3. The correctness of the expression is represented by
S3. The expression reads the input parameter a in line 2, whose
correctness is represented by Vt,2. The statement always needs
to be executed, so we do not need additional conditions. The
second equation corresponds to the statement in line 4. Simi-
larly, the correctness of the statement is represented by S4 and
the statement reads the input parameter a whose correctness
is represented by Vt,2. Yet whether the statement should be
executed depends on the result of the conditional expression
in line 3, and thus we need to include Vt,3 in the condition part.
The last equation is similar.

Next, we consider the case where faulty values may be
produced or propagated. The result of an expression could
be incorrect if any type of a faulty execution occurs: (1) the
expression is incorrect, (2) the input is incorrect, and (3) the
expression is executed by mistake. However, a faulty execution
does not necessarily result in an incorrect result. In general,
the probability of a faulty execution leading to a faulty result
is difficult to calculate as it depends on the type of fault and
the previous system state. However, based on our assumption,
all faulty evaluation results in an evenly distributed random
output, and thus we ignore these dependencies and calculate the
probability of the output being faulty based on the domain of the
result. If the size of the domain is n, the probability of a result
being faulty is (n− 1)/n. As a result, we have the following
equations:

P (Vt,3 = 0 | S3 = 0 ∨ Vt,2 = 0) = 0.5
P (Vt,4 = 0 | S4 = 0 ∨ Vt,2 = 0 ∨ Vt,3 = 0) = 0.99
P (Vt,6 = 0 | S6 = 0 ∨ Vt,4 = 0) = 0.99

where t ∈ {p, f}.
Our assumption also gives us an additional benefit: isolating

the random variables for different expressions. In the general
case of using the full semantics, even if we know the input for
line 6 is faulty, whether the output of line 6 is faulty still depends
on other factors. For example, if line 3 is correct and line 4 is
faulty, and the correct version is a = 5, then in test fail,
while the result of line 4 is faulty (should be 5 but is actually
3), the result of line 6 is correct. On the other hand, if the faulty

Fig. 2. Generated Bayesian network for Fig. 1.

line is line 3 as in our example but not line 4, the results of line
4 and line 6 are both incorrect in test fail. In other words,
Vt,6 depends on S3 and S4 even when Vt,4 = 0. Such indirect
dependencies will make the model strongly coupled and the cal-
culation of posterior probabilities difficult. On the other hand,
with our assumption, the correctness of an expression result
only depends on the random variables that directly affect the
expression.

Furthermore, for probability calculation, we need to know
the prior probabilities of statements being faulty. Since we do
not have any prior knowledge about their faulty probability, we
simply assume the same prior probability for all statements.

P (S3 = 1) = 0.5, P (S4 = 1) = 0.5, P (S6 = 1) = 0.5

Based on the above analysis, we can model the relations
between the random variables as a Bayesian network, as shown
in Fig. 2, where the nodes are random variables, and edges
are conditional dependencies. The details of Bayesian networks
will be introduced in Section III. Based on the definition of
the Bayesian network, we can calculate the joint probabilities
from the conditional probabilities represented by the edges.
Let Pr = P (Vt,2, Vt,3, Vt,4, Vt,6, S3, S4, S6) be the joint prob-
abilistic distribution, we can represent it as follows:

Pr = P (Vt,2)P (S3)P (Vt,3 | S3, Vt,2)

P (S4)P (Vt,4 | S4, Vt,2, Vt,3)

P (S6)P (Vt,6 | S6, Vt,4)}

where t ∈ {p, f}. The above formula allows us to infer prob-
abilities over this model. There also exist approximating algo-
rithms to efficiently infer probabilities on large models [14].

Finally, based on the test results, we have the following
observations.

Vp,6 = 1, Vf,6 = 0

Based on this observation, we can calculate the posterior prob-
ability of each statement being faulty. Using the loopy belief
propagation algorithm [14] on this model, we can infer the

Authorized licensed use limited to: Peking University. Downloaded on September 17,2025 at 00:41:06 UTC from IEEE Xplore.  Restrictions apply. 



WU et al.: SMARTFL: SEMANTICS BASED PROBABILISTIC FAULT LOCALIZATION 2165

following probabilities.

P (S3 = 0 | Vp,6 = 1, Vf,6 = 0)≈ 0.707

P (S4 = 0 | Vp,6 = 1, Vf,6 = 0)≈ 0.270

P (S6 = 0 | Vp,6 = 1, Vf,6 = 0)≈ 0.223

Therefore, S3 has the highest probability to be faulty, i.e.,
successfully localizing the fault.

Challenges and Solutions. While the basic idea is straightfor-
ward, realizing this idea still faces a scalability challenge: the
Bayesian network built may be too large to be solved efficiently.
We address this challenge from four aspects. More details can
be found in Section IV-D.
• First, we find a project may contain many tests, and mod-

eling all of them may lead to a very large model, while
many tests are unrelated to the current fault. To address this
issue, we introduce a two-phase instrumentation and use a
coarse-grained instrumentation to filter out tests unrelated
to the failing ones.

• Second, we find a test execution trace may be extremely
long due to the existence of loops (or recursions), while
such long loops provide repeated information, and mod-
eling such a trace alone leads to a very large model. To
address this issue, we introduce a loop compression algo-
rithm to select typical iterations such that all control/data
dependencies between statements and variables within any
iteration are covered by at least one selected iteration. In
this way, we model the main effects of the loop execution
with a small number of iterations.

• Third, we find some methods are not critical to the faults,
such as those that are only covered by passing tests (If a
method is only covered by passing tests and not by failing
tests, then the method does not contain any statement that
triggers a fault in a failing test). To address this issue, we
introduce a technique called “partial tracing” to ignore the
specific details in some methods. To avoid losing the de-
pendencies involved in these untraced methods, we design
a technique to model these dependencies.

• Fourth, we find that in the general probabilistic inference
algorithm (loopy belief propagation), the time cost of a cal-
culation for a term increases exponentially with its degree
(the number of incident nodes). To address this issue, we
design a specialized version of the inference algorithm for
our probabilistic model. Because the conditional probabil-
ities in our probability model all meet a unified format and
can be represented in a compressed way, we do not need
to traverse each table item and can manually derive the
calculation formula by extracting common factors, which
simplifies the exponential calculation process to a constant
level.

III. BACKGROUND

Before introducing our approach, we describe background
information about Bayesian networks, on which our probability
model is based.

A Bayesian network is a probabilistic graphical model rep-
resenting a set of random variables and their conditional de-
pendencies via a directed acyclic graph (DAG). Formally, a
Bayesian network is a DAG G= (V,E) together with a random
variable xi for each node i ∈ V and one conditional probability
distribution p(xi|xAi

) per node, specifying the probability dis-
tribution of xi conditioned on its preceding variables xAi

1 in
the graph. Thus, a Bayesian network defines a joint probability
distribution, by multiplying all the conditional probabilities. A
Bayesian network also allows specifying posterior distributions
by incorporating evidences. The form of evidences we consider
in the paper is the one that fixes a random variable to a value.
In other words, if the original Bayesian network defines a joint
distribution p(x), and the evidence is xi = v, the the posterior
distribution is p(x | xi = v).

The advantage of defining a probability distribution using a
Bayesian network is that it can decompose the joint probability
distribution into a product of factors, which allows inference
algorithms to compute the marginal distribution efficiently. In
particular, loopy belief propagation [14] is an efficient approx-
imate algorithm to infer the marginal distributions, which we
apply in our implementation.

To illustrate the procedure of loopy belief propagation, we
denote F to be the set of conditional probability distributions.
Each probability distribution in F is called a factor. Intuitively,
the random variables and the factors also form an undirected
graph in which they are nodes. For a conditional probability
distribution p(x|xA), all random variables in xA ∪ {x} are
incident to this factor in the graph. In other words, there is an
edge between a factor and a random variable if and only if the
random variable is involved in the corresponding conditional
probability distribution. The joint probability distribution can
be expressed as:

p(x) =
∏

a∈F

fa(xa)

where a denotes a factor, fa denotes the conditional probability
function of a and xa denotes the vector of incident random
variables of a. The graph is known as a factor graph [13].

Loopy belief propagation is a multi-round iterative message-
passing algorithm. It iteratively updates messages that go be-
tween a factor and a random variable that are incident, which are
in turn used to calculate the marginal probabilities in the end.
These messages are real valued functions that map the value of
a given random variable to a real value. We use μn

v→a to denote
the message that goes from a random variable v to a factor a
in the nth iteration and μn

a→v to denote the message that goes
in the opposite direction.

Each iteration is carried out alternately in two steps. In the
first step, each random variable sends a message to all its
incident factors. This message is the product of the messages
received by the random variable from other incident factors
(except the factor receiving the message). A message μn

v→a(xv)

1We use bold fonts to represent a set.
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from a random variable v to a factor a is defined by:

μn
v→a(xv) =

∏

a∗∈I(v)\{a}
μn−1
a∗→v(xv) (1)

where I(v) denotes the set of incident factors of v.
In the second step, each factor sends a message to all its

incident random variables. This message is computed using
the messages received from other incident random variables
(except the node receiving the message being computed) and
the conditional probability function of the factor. A message
μn
a→v(xv) from a factor a to a random variable v is defined by:

μn
a→v(xv) =

∑

xa\xv

⎛

⎝fa(xa)
∏

v∗∈I(a)\{v}
μn
v∗→a(xv∗)

⎞

⎠ (2)

where I(a) denotes the set of incident variables of a, xa denotes
the values of the set of random variables that are incident to a
(including xv), and the summation

∑
xa\xv

means to sum over
all possible values in xa while the value of v is fixed to xv .

To improve convergence, loop belief propagation implemen-
tations typically apply normalization on the calculated mes-
sages in each iteration:

μn
v→a(xv) = μn

v→a(xv)/
∑

c∈domain(v)

μn
v→a(c),

μn
a→v(xv) = μn

a→v(xv)/
∑

c∈domain(v)

μn
a→v(c).

The algorithm iterates until the messages converge or the
iteration exceeds a certain time limit. Suppose the algorithm
runs for N iterations, the marginal probability of each random
variable is calculated using the product of all final messages
from incident factors:

p(xv) =

∏
a∈I(v) μ

N
a→v(xv)∑

xv

∏
a∈I(v) μ

N
a→v(xv)

where the denominator is a normalization constant.

IV. OUR APPROACH

Fig. 3 outlines the workflow of our approach. The input is a
program and a set of test cases. First, our approach converts
the input into a dynamic dependency graph which describes
the data dependencies and control dependencies between state-
ments and values in the test cases by instrumenting the test cases
and performing a static analysis. Then our approach converts
the dynamic dependency graph into a Bayesian network. The
network defines a joint distribution of whether each statement
and value in the test executions is faulty. Finally, by condi-
tioning on the results of the test cases, our approach performs
marginal inference on the Bayesian network and ranks the state-
ments by the marginal probabilities of them being incorrect. To
scale our approach, we apply various optimizations to reduce
the dynamic dependency graph size and improve the inference
algorithm efficiency.

In the rest of the section, we go into each step of our approach
in detail with an emphasis on how to convert the dependency
graph into a Bayesian network, and describe our optimization
techniques in the end.

Fig. 3. Approach workflow.

A. Dynamic Dependency Analysis

The first step of our approach is to build a dynamic depen-
dency graph that captures data dependencies and control depen-
dencies in the test cases. Abstractly, the program execution on a
test case can be viewed as a sequence of statements along with
input values of the test case and values that are produced by
the statements. A statement is a static notation and can appear
multiple times in an execution. We refer to one statement’s
appearance as a statement instance. On the other hand, a value is
a dynamic notation and can be only produced by one statement
instance in a test case. Each statement instance can be viewed
as a function that maps a set of values to a value. We say
there is a data dependence from a statement to a value if one
of the statement instances produces the value. There is also a
data dependence from a value to another value if the latter is
produced using the former. We say there is a control dependence
from a value to a statement instance if the value is used in an
instance of a control statement (e.g., a branching statement)
that the statement is control dependent on. How to obtain such
dependencies depends on the programming language. In Sec-
tion V, we describe it for Java. Briefly, our approach obtains
the data dependency by instrumenting the test executions and
performing a dynamic analysis [17]; our approach obtains the
control dependency by performing a static analysis [18] that
calculates the dominance relations [19] between statements.

We build a dynamic dependence graph for all test cases in
the input using the aforementioned data dependency and control
dependency:

Definition IV.1 (Dynamic Dependency Graph): Given a set
of test cases on a program and their data/control dependencies,
a dynamic dependency graph is a directed acyclic graph G=
(N,E). There are two kinds of nodes in N :

1) For each statement s in the program, there is a unique
statement node ns ∈N .

2) For each value v in the test cases, there is a unique value
node nv ∈N .

There are three kinds of edges in E:
1) For each data dependence from an instance of statement

s to a value v, there is an edge from the corresponding
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statement node ns to the corresponding value node (i.e.,
〈ns, nv〉 ∈ E).

2) For each data dependence from a value v to a value v′,
there is an edge between the corresponding value nodes
(i.e., 〈nv, nv′〉 ∈ E).

3) For each control dependence from a value v to a value v′,
there is an edge between the corresponding value nodes
(i.e., 〈nv, nv′〉 ∈ E).

(a) Example: Consider the Bayesian network in Fig. 2. Ig-
noring the conditional probability distributions, its graph struc-
ture is the dynamic dependency graph for the example program
in Fig. 1 with two test cases. Nodes S3, S4, and S6 are three
statement nodes and other nodes are value nodes. Note the
statement nodes are static and shared between the two test cases.
On the other hand, the value nodes are dynamic and specific to
each test case. The edges 〈S4, Vp4

〉, 〈Vp3
, Vp4

〉, and 〈Vp2
, Vp4

〉
correspond to the three kinds of edges respectively.

B. Probabilistic Modeling

After building the dynamic dependency graph, our approach
transforms it into a Bayesian network. The Bayesian network
has the same structure as the original dependency graph and
defines a joint distribution of whether each statement and each
value can go wrong. In addition, the Bayesian network incor-
porates the test results by encoding them as evidences. We next
describe how our approach constructs the Bayesian network in
detail.

1) Graph Structure: For each statement node and each value
node in the dynamic dependency graph, there is a node and a
Bernoulli random variable representing whether the statement
or value is faulty. For two random random variables, there is
an edge between them if and only if there is an edge between
their corresponding nodes in the dynamic dependency graph.

2) Conditional Probabilities: For statement random vari-
ables, they have no parents in the Bayesian network. We set a
uniform prior probability 0.5 for all of them (i.e., p(xs) = 0.5
for a statement variable xs). As for a value random variable, it
has no parents if and only if it is an input value. We assume input
values are always correct, so we set their prior probabilities
to 1 (i.e., p(xi) = 1 for an input value variable xi). As for a
value that is produced by a statement, the idea is that it can
be erroneous if the statement is faulty or any value that is
used in the statement is erroneous; otherwise, it must be
correct. We model this idea using the conditional probability
between the value variable and its parents, which is the key
to our abstraction and modeling of program semantics. For a
value that is produced by a statement, let its random variables
be xv , and the random variables corresponding to its parents be
x1, ..., xn, then we have

p(xv = true | x1 ∧ ... ∧ xn) =

{
1, x1 ∧ ... ∧ xn = true

p0, x1 ∧ ... ∧ xn = false
.

Here p0 is a hyper-parameter. The idea is that even if the
statement is faulty or any value it uses is erroneous, there is still
a chance that the produced value is correct. For example, let the
correct statement be a≤ 1 where a= 0, even if the statement

becomes a < 1 evaluating it still produces true. Further, we
observe that statements whose operators are “<”, “>”, “==”,
“!=” or “%” are less sensitive to the correctness of the parents
than other operators (e.g. “+”, “×”). For example, when x
contains an incorrect value, there is a higher chance for x > 0
to produce a correct value than x+ 1, as the prior has a much
smaller value domain {True, False}. As a result, we set p0
differently for these two types of statements. For statements
with a wide range of the domain like “+”, we set p0 = 0.01,
which means that the result only has a very low chance of
being correct. For statements with a boolean range like “<”,
we set p0 = 0.5, which means the result is equally likely to be
correct or incorrect. We refer to parameters 0.01, and 0.5 as
very low, and moderate probabilities in Section VI. The impact
of different parameter values is further discussed in RQ4 of
Section VI.

3) Evidences: Finally, we encode the test results as evi-
dences in the Bayesian network. The test results are reflected by
the boolean values used in the assertions (e.g., evaluation of “x
> 0” in “assert(x > 0)”). Let xt be the set of random
variables that correspond to the values that are used in passing
assertions and xf be the set of random variables that are used in
failing assertions. Then

∧
x∈xt x= true and

∧
x∈xf

x= false
are added as evidences to the Bayesian network. As a result, the
final Bayesian network defines a joint distribution of whether
each value or statement is correct given the test results:

P (xS , xV |
∧

x∈xt

x= true ∧
∧

x∈xf

x= false),

where xS is the set of random variables that correspond to state-
ments, and xV is the set of random variables that correspond to
values.

C. Probabilistic Inference

Once the Bayesian network is built, our approach computes
the marginal probability of a statement being correct, which is
used to rank which statements are more likely to be faulty. For
a statement s, let its corresponding random variable be xs, then
its marginal probability of being correct P (xs = true) can be
calculated as:

∑

xS∪xV \{xS}
P (xS , xV |

∧

x∈xt

x= true ∧
∧

x∈xf

x= false).

We implement the inference using loopy belief propagation, as
described in Section III.

D. Scaling Our Approach

The size of the Bayesian network depends on the size of
the dynamic traces used to build the graph. As described in
Section II, instrumenting program runs can produce enormous
execution traces, which can lead to gigantic probabilistic graphs
that cannot even be stored in physical memory, let alone per-
forming inference. To address this challenge, we apply several
techniques to exclude certain test cases and reduce the trace
sizes. Also, we propose an optimized inference algorithm to
speed up the probability inference.
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1) Reducing Redundant Tests: Our approach identifies and
excludes test cases that are unlikely to contain useful informa-
tion or greatly hinder the efficiency of our approach.

First, we observe that while all failing test cases carry useful
information about faults, not all passing test cases are use-
ful, some of which can be excluded. The intuition is that a
failing test must execute at least one faulty statement, while
for a passing test, the more it overlaps with passing tests in
terms of coverage, the more likely it executes faulty statements.
Since a faulty statement must have been executed by a failing
test to trigger the fault, if a passing test has no overlap with
any failing test in coverage, then it carries no information for
fault localization as it does not cover any faulty statement
that triggers a fault. Based on this intuition, before generat-
ing dynamic dependency graphs, we first run lightweight in-
strumentation to get method-level coverage for each test case,
and then rank the passing tests based on the number of meth-
ods that are both covered by the failing test and any passing
test. Finally, we only keep the top 50 passing tests for gen-
erating dynamic dependency graphs and exclude the rest for
efficiency.

After the above test selection process, the resulting proba-
bilistic graph can be still too large so we further exclude test
cases that can blow up the graph size. First, in the instrumen-
tation phase, we set a hard limit on the size of the produced
trace, and if the size of any trace exceeds the limit, we discard
the corresponding test case. Second, we set a hard limit on the
size of the probabilistic graph under construction, and when
the size exceeds the limit, we discard all the passing test cases
that have not been considered yet. Concretely, we consider all
failing test cases when constructing the graph, following the
intuition that failing test cases are more likely to carry useful
information. If the graph size has already exceeded the limit, we
do not consider any passing test case. Otherwise, we sort the
passing test cases in an ascending order based on their trace
sizes and incorporate them one by one into the graph until the
graph size exceeds the limit.

2) Reducing Redundant Methods: Besides excluding cer-
tain test cases, our approach applies techniques to compress
traces produced by the test cases at different granularity. Note
in the aforementioned technique where our approach excludes
test cases of large trace sizes, the trace sizes are calculated
after compression. The first technique is to compress redundant
methods into atomic statements. A key challenge is how to
maintain important dependencies after compression. We next
introduce which methods to compress and how to address the
challenge.

Similar to the previous technique to reduce test cases, our
approach compresses methods that are unlikely to contain a
faulty statement and methods that would lead to long traces. For
the former kind of method, our insight is that faulty statements
that are responsible for the failure must be in the application
code (i.e., not in libraries), and be covered by at least one of
the failing test cases, which means our approach needs to trace
only the application methods covered by failing tests. We refer
to this technique as “partial tracing”.

For the latter kind of method, our approach compresses large
methods in large traces. As mentioned in the previous subsub-
section, our approach excludes test cases whose sizes exceed
a limit. However, this is undesirable for failing test cases as
they carry important information about faulty statements. So
instead of excluding such test cases, we propose a technique
called “adaptive folding” to compress them. Concretely, the
technique sorts each method in a failing test case whose trace
size exceeds the limit from large to small according to the
number of statement instances it comprises in the trace and then
compresses methods one by one until the trace size is below the
limit. While partial tracing avoids tracing certain methods at
the instrumentation stage, adaptive folding is a post-processing
technique after a trace is generated.

Now we describe how to maintain dependency integrity after
compression, especially given our approach has avoided tracing
certain methods in partial tracing. We face two main challenges:
how to handle side effects and how to handle callbacks to un-
compressed methods. As the situation varies for different invo-
cations to the same method, we discuss our solutions at method
invocation level. For method invocations not involving any of
the two cases, they can be compressed into atomic statement
instances which read their parameters and write to their return
values. When considering side effects, a method invocation
may read or write any memory location that is reachable via
global variables (static fields in Java programs) or parameters of
reference type. However, following this conservative assump-
tion would lead to a lot of false dependencies which would
degrade the performance of our approach severely. To balance
soundness and completeness, we assume any method invocation
does not access global variables (which is often the case in
practice for Java programs), and each invocation only access
a parameter object’s fields but not other memory locations that
are transitively reachable via fields. In other words, we abstract
each object as a memory location and when its reference is
used as a parameter of a method invocation, the invocation is
considered to both read and write this object.

When an untraced method invokes a traced method, if we
directly compress the untraced invocation, we would lose its
data dependency with the traced invocation. To address this
challenge, we introduce “virtual call edges” between the atomic
statement instance that is produced by compressing the untraced
invocation and the traced invocation. Concretely, we assume the
statement instance writes to the traced invocation’s parameters
and reads its return value.

3) Reducing Redundant Loops: The second technique to
compress a trace is to reduce redundant loops, which we refer
to as “loop compression”. The core idea of this technique is to
remove repeated loop iterations from the trace to get a com-
pressed trace. The key intuition is that the dependency infor-
mation a long-running loop provides can be captured by a few
iterations of it as the patterns of most iterations are repetitions
of those of these few key iterations. In particular, if the sequence
of statement instances in one iteration is identical to that in
another, the iteration is redundant. This is because the subgraphs
introduced by these two iterations in the dynamic dependency
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graph are isomorphic, and prove the same dependency infor-
mation. We identify and remove such redundant iterations by
checking every pair of adjacent iterations in a loop, and remov-
ing the latter iteration if the two iterations comprise the same
sequence of statement instances. For example, a sequence like
“(ab)100ad(ab)100” is compressed into “abadab”. For nested
loops, we first compress the inner loops and then compress the
outer loops.

4) Inference Optimization: Besides compressing the prob-
abilistic graphical model, we also propose a new optimized
inference algorithm. Concretely, by exploiting the structure of
our conditional probability constraints, we are able to reduce a
computation that is exponential in the number of variables in-
volved in a conditional probability distribution into a linear one,
which greatly improves the overall efficiency of the inference.

To infer the marginal probability of each program statement
being incorrect, we implement loopy belief propagation, which
is described in Section III. A key efficiency bottleneck in the
algorithm is the computation of a message that is sent from
a factor to a variable (see Equation 2), which is exponential
in the number of random variables that are incident to the
factor. Concretely, the algorithm needs to enumerate all possible
assignments to the variables involved. In our case, a factor is
a conditional probability distribution and all random variables
are Bernoulli, so if d variables are involved in a conditional
probability distribution, the complexity of computing a message
would be 2d−1.

In order to overcome this problem, we design an optimized
version of the inference algorithm by exploiting the structure
of our conditional probability distributions. The core idea of
this optimization is that in our scenario, for a given conditional
probability distribution, many different assignments yield the
same probability, so we can group their computation together
and avoid explicitly enumerate all assignments. By utilizing
this idea, we can simplify the computation of a message from
exponential complexity into linear complexity, which we will
introduce in detail below.

As described in Section IV-B, a conditional probability in our
modeling is in the form of

p(xv = true | x1 ∧ ... ∧ xn) =

{
1, x1 ∧ ... ∧ xn = true

p0, x1 ∧ ... ∧ xn = false
,

where V = {v1, v2, . . . , vn} are parent random variables of ran-
dom variable v in the Bayesian network, xv is the value of v,
and xi is the value of vi. For convenience, we denote y = xv and
X = {x1, x2, . . . , xn}. We denote the factor that corresponds to
the conditional probability as a and then its function f(y,X)
can be expressed as:

f(true, X) = 1, ∀xi ∈X : xi = true

f( false, X) = 0, ∀xi ∈X : xi = true

f(true, X) = p0, ∃xi ∈X : xi = false

f( false, X) = 1− p0, ∃xi ∈X : xi = false

The message from the factor a to the random variable v is:

μa→v(y) =
∑

X

f(y,X)
∏

vi∈V

μvi→a(xi)

In addition, in the loopy belief propagation process, normal-
ization is performed at each iteration, that is μv→a( false) +
μv→a(true) = 1. As a result, we have:

μa→v(true) =
∑

X

f(true, X)
∏

vi∈V

μvi→a(xi)

= (1− p0)
∏

vi∈V

μvi→a(true ) + p0

μa→v( false) =
∑

X

f( false, X)
∏

vi∈V

μvi→a(xi)

= (1− p0)(1−
∏

vi∈V

μvi→a( true))

After normalization, the sent messages are:

μ
′

a→v(true) =
μa→v(true)

μa→v(true) + μa→v( false)

μ
′

a→v( false) =
μa→v( false)

μa→v(true) + μa→v( false)

For the message from factor a to a random variable v∗ ∈ V ,
we denote V = V \v∗ and X =X\x∗, the message is:

μa→v∗(x∗) =
∑

y,X

f(y, x∗, X) · μv→a(y) ·
∏

vi∈V

μvi→a(xi)

Let b= p0 · μv→a(true) + (1− p0) · μv→a( false), we have:

μa→v∗(true) =
∑

y,X

f(y, true, X) · μv→a(y) ·
∏

vi∈V

μvi→a(xi)

= (μv→a(true)− b)
∏

vi∈V

μvi→a(true) + b

μa→v∗( false) =
∑

y,X

f(y, false, X) · μv→a(y) ·
∏

vi∈V

μvi→a(xi)

= p0 · μv→a(true) + (1− p0) · μv→a( false)

After normalization, the sent messages are:

μ
′

a→v∗(true) =
μa→v∗(true)

μa→v∗(true) + μa→v∗( false)

μ
′

a→v∗( false) =
μa→v( false)

μa→v∗(true) + μa→v∗( false)

The details of the deduction of μa→v(true), μa→v( false),
μa→v∗(true), and μa→v∗( false) can be found in the Appendix.

In summary, by exploiting the structure of our conditional
probability distributions, we have simplified the exponential
calculation process in the original loopy belief propagation into
a linear one.

V. IMPLEMENTATION FOR JAVA

In this section, we describe how to instantiate our approach
for Java programs, with a focus on the implementation details
about how to collect and analyze the dynamic information of
test runs to build the dynamic dependency graph. In the context
of Java programs, a statement is a bytecode instruction which
we refer to as an “instruction” for short, and a statement instance
is referred to as an “instruction execution”.

The first step is to collect dynamic information from tests.
Our approach instruments test runs at the bytecode level and
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collect traces that are later used to build the dynamic depen-
dency graph. Concretely, such a trace includes a sequence of
instruction executions, where each instruction execution in-
cludes the ID of the instruction, the type of the instruction, the
constants in the instruction (e.g. the branch offset in “goto”),
the values read/written by this instruction, and the source code
location corresponding to the instruction. In addition, if an
exception catch occurs, we will record the current stack trace in-
formation in the trace. After tracing, we can capture the data and
control dependencies on the collected traces by simulating their
executions to build the dynamic dependency graph described in
Definition IV.1. For control dependencies, we also need to apply
a static analysis on the whole program.

To capture data dependencies, we perform a dynamic anal-
ysis on the collected traces, simulating the execution process
of tests. Since we only need to know how the values in each
variable and memory address propagate to each other, the data
structures we maintain include a call stack and a heap. The
call stack includes various frames, each of which represents a
method invocation. A new frame is created and pushed into the
stack each time a method is invoked. A frame is destroyed and
popped from the stack when its method invocation completes.
Each frame has its own operand stack and local variable array.
The heap is a map that contains class instances and arrays. We
use the object address and the field name as the key to access
the heap. For arrays, we do not distinguish elements in the same
array, and abstract an array into a single object to keep our
method efficient. The elements held in the stack and the heap
are random variables for each run-time value. In addition, if a
run-time value is an object reference or array reference, we will
store its actual value (i.e., an address) as the key to access the
heap.

When parsing the bytecode sequence, We simulate the op-
eration of instructions on the operand stack and local variable
array in the current stack frame, as well as on the heap. If we
hit an exception stack trace, we will adjust the call stack to its
consistent structure by excluding stack frames that complete
abruptly due to exceptions. For each instruction, we find the
elements it reads from the data structure and store the elements
it writes into the data structure. In this process, the statement is
evaluated based on the read values to change the written value.
Corresponding data dependencies are transformed into items in
the dynamic dependency graph.

Besides data dependencies, we also need to consider control
dependencies to precisely model how errors are introduced and
propagated. Unlike modeling data dependencies, we need to
consider information from the whole program rather than only
from traces. To decide whether a branching statement controls
another statement in execution, one needs to investigate whether
the statement would still be executed if the branching state-
ment turns to a different branch other than the one taken in
the execution. Therefore, we need to perform a static analysis
of the control flow graph. Consider the program in Fig. 4.
Suppose in a concrete run, the program takes the false branch,
and thus the trace is “if(false) . . . return b”. The trace does
not include the information of the true branch and it remains
unclear whether line 5 would be executed if the true branch

Fig. 4. Example program demonstrating control dependencies.

was taken. However, by investigating the program, we know
that the dependency holds as the method will return at line 3
if the branching statement takes the true branch. As a result,
the branching statement controls all other statements in the
method, as its branching status affects all other statements being
executed or not. To precisely model control dependencies, we
apply a static analysis [18] that calculates dominance relations
[19] between statements on control flow graphs. Intuitively,
a branching statement controls all its subsequent statements
in its control flow graph until it reaches statements that post-
dominate it.

In order to combine the calculated control dependencies
with data dependencies, the call stack frame described above
also needs to contain a predicate stack to store the elements
corresponding to the calculated values of branching instruc-
tions. Each time a branching statement is executed, the cor-
responding element is pushed into the current predicate stack.
When the post-dominate statement of the branching statement
is reached, the predicate stack will be popped. When con-
structing the dynamic dependency graph, only the predicate
value at the top of the predicate stack (if the current position
is not controlled by any statement, the predicate stack should
be empty) will be treated as the program state value which
controls whether this statement is executed. Corresponding con-
trol dependencies are transformed into items in the dynamic
dependency graph.

With regard to control dependencies, one difficult issue is
handling exception control flows. To balance precision and
soundness, we only consider exceptions that are thrown in the
trace. A fully sound approach would require considering every
statement that can throw an exception (e.g., a field access can
throw a NullPointerException), which would introduce a lot
of spurious dependencies. At present, our handling of control
dependencies involving exceptions is as follows: after hitting an
exception stack trace, the captured exception instance is pushed
into the current predicate stack. This node will never be popped
until the method is finished. The explanation of this processing
is that the exception causes the program to jump to the location
where the exception is captured, so the exception instance has
a direct control effect on subsequent statements.

VI. EMPIRICAL EVALUATION

A. Research Questions

• RQ1: Effectiveness of SmartFL. How effective is
SmartFL compared to other standalone techniques?

• RQ2: Efficiency of SmartFL. What is the time cost of
SmartFL compared to other techniques?
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TABLE I
PROJECTS FROM DEFECTS4J DATASET, VERSION 2.0.0

Project Faults LoC ATests CTests

Chart 26 203.0k 1818 38
Cli 39 5.7k 262 42
Closure 174 138.8k 7027 18
Codec 18 10.9k 440 32
Collections 4 67.0k 15582 34
Compress 47 31.0k 432 40
Csv 16 3.1k 180 39
Gson 18 14.0k 988 33
JacksonCore 26 34.4k 356 41
JacksonDatabind 112 95.8k 1610 13
JacksonXml 6 7.6k 152 40
Jsoup 93 15.0k 454 18
JxPath 22 29.2k 305 12
Lang 64 52.3k 1815 30
Math 106 116.2k 3343 29
Mockito 38 18.8k 1156 5
Time 26 67.7k 3802 21
Total 835 76.3k 2604 24

‘Faults’ denotes the number of defective versions of the
project, ‘LoC’ denotes the average lines of code of each
project, ‘ATests’ denotes the average test numbers of each
project, and ‘CTests’ denotes the average number of chosen
tests after reducing redundant tests.

• RQ3: Effectiveness of Different Components. What is
the contribution of each component to the overall effec-
tiveness of SmartFL?

• RQ4: Influence of Different Factor Values. To what ex-
tent do moderate, very low, and very high factor values in
both sensitive and insensitive statements affect the results?

• RQ5: Combining with other Techniques. Can SmartFL
improve the effectiveness of combination methods?

B. Benchmark and Measurements

We take the projects from Defects4J [15] version 2.0 as
our benchmark suite. Defects4J 2.0 includes 835 faults from
17 projects, as shown in Table I, where “ATests” denotes
the average test numbers of each project, and “CTests” de-
notes the average number of chosen tests after reducing re-
dundant tests. Notice that since our approach does not rely
on machine learning, we do not need to use this dataset as a
training set.

Our evaluating metric is top-k where k is 1, 3, 5, or 10.
Top-k counts the number of faults that are successfully lo-
cated within the top k entries of the ranked suspicious can-
didate list. An existing study [20] suggested that developers
would only check a few entries in the ranked list, which is
consistent with the top-k metric. We manually mark all fault
locations and follow the tie-break rules provided in a previous
study [1].

Regarding the granularity of fault localization, we choose
both statement-level and method-level granularity, the two most
frequently used levels. As for method-level evaluation, we cal-
culate the maximum suspicious score of the statements in a
method as the suspicious score of the method.

C. Experiment Setup

1) Setting: We have implemented our approach for Java
using the instrumentation framework Javassist2. As described
in Section IV-D1, we select up to 50 test methods for tracing
and limit the maximum number of statements to less than 1.2
million for each trace. Upon building the graph, we limit the
maximum number of statements to less than 1 million for all
compressed traces. Please note that this selection only applies
to our approach but not any other baseline approach.

2) RQ1: Effectiveness of SmartFL: SmartFL is a standalone
fault localization technique that does not rely on other tech-
niques. To test the effectiveness of SmartFL, we compare the
result of SmartFL with other standalone techniques. We choose
SBFL to represent coverage-based approaches and MBFL to
represent the approaches modeling semantics. We do not com-
pare it with angelic debugging because there is no implemen-
tation scalable to large programs as far as we know. According
to existing research [1], we select Ochiai [2] and DStar [3]
from SBFL, Metallaxis [4] and MUSE [10] from MBFL for
comparison. Pearson et al. [21] studied the performance of
SBFL and MBFL on Defects4J, and our experiments reuse their
implementation. In addition, we also choose a set of state-of-
the-art fault localization approaches as baselines, and the results
of these baselines are obtained from their papers directly. CAN
[22] leverages graph neural networks to analyze and combine
the failure context for fault localization. UNITE [23] optimizes
coverage information based on the frequency of each statement
appearing in each test. GRACE [24] leverages graph-based
representation learning to embed both the syntax of the program
and the coverage information. LEAM [25] is a state-of-the-art
MBFL approach, that leverages DL-based mutation techniques.
For CAN and UNITE, we cannot directly compare the results
with them because there was no artifact that could be used to
reproduce the experimental results in these papers. Therefore,
we can only take an indirect comparison based on the data
presented in their papers. Concretely, their papers report the
ratios of top-k, and their benchmarks include four Defects4J
projects: Lang, Math, Chart, and Time. Although their bench-
marks also include other projects outside of Defects4J, we can
directly determine the upper limits of the numbers of top-k
in these four projects by multiplying the numbers of cases in
each benchmark by the ratios of top-k, and compare them with
SmartFL. For example, CAN shows that its benchmark includes
318 cases, of which 224 are from Defects4J and the top-1
ratio is 4.62%, so we can assume that the top-1 result must
be less than 318 ∗ 4.62% = 15 for cases from Defects4J. For
GRACE and LEAM, they only report method-level results, thus
we can only compare method-level results with them. GRACE
conducts experiments on all projects in Defects4J 2.0, while
LEAM reports method-level results on 4 projects in Defects4J
1.0, including Lang, Math, Chart, and Time. As a result, we
separately compare SmartFL with them. We will discuss com-
bination techniques in RQ5.

3) RQ2: Efficiency of SmartFL: The time cost in fault
localization is also important, as an approach that takes only

2https://github.com/jboss-javassist/javassist
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a few minutes is much more convenient than an approach that
takes several hours. In this RQ, we compare the run-time cost
of SmartFL with the four baseline approaches described in
RQ1. As Fig. 3 shows, SmartFL consists of three steps: (a)
profiling (coarse-grained instrumentation to get method-level
coverage, described in Section IV-D1), (b) tracing (getting fine-
grained traces of selected tests), and (c) modeling (building the
probabilistic graph and probabilistic inference). In the profiling
step, we use the default test instruction of Defects4J to execute
the entire test suite in a single-threaded. In the tracing step,
each test can run in parallel except for project Time and Closure
because the tests of Time and Closure do not support parallel
execution. As a result, we run tests in parallel with 16 threads
for the other three projects and run tests with a single thread for
Time and Closure. In the modeling step, we run modeling and
probabilistic inference in a single thread. For SBFL and MBFL
methods, we use the implementation from [21] and collect the
time-consumption data.

4) RQ3: Effectiveness of Different Components: We design
six ablation studies to evaluate the effectiveness of each com-
ponent.

1) In the first study, we use the original version of SmartFL
from [16] to compare the improvements of the new version
compared to the old version.

2) In the second study, we discard the adaptive folding tech-
nology described in Section IV-D2 to see the impact of the
adaptive folding technology.

3) In the third study, we discard the handling of exception
control flow described in Section V to see the impact of
modeling exception control flow.

4) In the fourth study, we discard the modeling of “virtual
call edge” described in Section IV-D2 to see the impact of
this modeling.

5) In the fifth study, we discard loop compression described
in Section IV-D3 to show the impact of loop compression.

6) In the sixth study, we discard the inference algorithm op-
timization described in Section IV-D4 to show the impact
of this optimization.

7) In the seventh study, we discard the test reduction de-
scribed in Section IV-D1 to show the impact of this op-
timization.

In the second and sixth studies, due to the lack of inference
algorithm optimization, the modeling part cannot be completed
within the valid time in some cases. Therefore, we introduced
a 20-minute time limit for the modeling part of each case. In
the seventh study, we only conducted the experiment on project
Lang for scalability issues. Specifically, we only exclude the
passing tests that have no coverage intersection with the failing
tests and consider all other tests in modeling. When calculating
the top-k results and average time consumption, only cases that
have not timed out will be considered. At the same time, we will
give the number of timed-out cases in each study.

For other techniques like partial tracing, they are a funda-
mental part of our framework for efficiency. Therefore, we do
not design corresponding ablation studies.

5) RQ4: Influence of Different Factor Values: Our ap-
proach contains a parameter about the probability P (Result=

1|Parents= 0). We assign 0.5 to the factor values of insensi-
tive operations and 0.01 to those of sensitive operations in our
default approach. In this RQ we evaluate the performance of
other possible values. We evaluate 5 p0 values for insensitive
operations: 0.3, 0.4, 0.5, 0.6, 0.7, and 5 p0 values for sensitive
operations: 0.001, 0.005, 0.01, 0.05, 0.1.

6) RQ5: Combining with other Techniques: CombineFL [1]
is one of the state-of-the-art combination-based fault localiza-
tion techniques on the statement level. CombineFL combines
different fault localization methods, including history-based,
stack trace-based, IR-based, slicing, SBFL, predicates switch-
ing, and MBFL. CombineFL uses rankSVM [26] to combine
the results of multiple methods so that our method can be easily
combined with other methods. TRANSFER-FL [27] is another
fault localization method that combines multiple types of in-
formation. TRANSFER-FL designs BiLSTM-based classifiers
to learn deep semantic features of statements from open-source
bug datasets and leverages the semantic-based, spectrum-based,
and mutation-based features for effective fault localization by
a multi-layer perceptron. TRANSFER-FL is also one of the
state-of-the-art fault localization techniques on the statement
level, as CombineFL and TRANSFER-FL are relatively close
in performance on Defects4J 1.0.

We integrated the results of SmartFL into CombineFL
and compared them with the results of CombineFL and
TRANSFER-FL to verify the ability of SmartFL to combine
with other methods. We combine SmartFL with other methods
under the framework of CombineFL on 357 cases from De-
fects4J 1.0 because other methods used by CombineFL only
include the results of these cases. CombineFL requires a suspi-
ciousness score for each standalone technique to perform learn-
ing. In SmartFL, the suspiciousness score of an ith − ranked
statement is defined as follow: Suspiciousness(i) = n−i+1

n ,
where n is the number of all suspicious candidates. We set up a
simple heuristic screening strategy to select high-quality results,
that is, only use cases with a size of less than 300 statements in
the result file to join the training, while in other cases we use
the original data.

D. Experiment Results

1) RQ1: Effectiveness of SmartFL: Tables II and III show
the numbers and percentages of faults localized by our ap-
proach, Ochiai, DStar, Metallaxis, and MUSE at the statement
level. Here, we describe that a fault is successfully localized by
an approach if the actual fault position can be found in the top
k program elements returned by the approach. We display the
results with different values of k in the top-k metric. The best
results under each category are in bold fonts. On all the 835
faults, SmartFL performs best among all values of k. At top-1,
3, 5, and 10, SmartFL improves 115%, 41%, 31%, and 10% over
the second-best approach, respectively. Regarding the details of
each project, our approach outperforms the baselines on most of
the benchmarks. For the few exceptions where Ochiai performs
better, our approach fails to capture part of the dynamic depen-
dencies. If the dependency is missed, our approach will not be
able to capture the relationship between the faulty statement
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TABLE II
STATEMENT-LEVEL PERFORMANCE. THE RESULT CONTINUES IN TABLE III

Project Technique Top-1 Top-3 Top-5 Top-10

Lang

Ochiai 2(3%) 21(33%) 28(44%) 37(58%)
DStar 1(2%) 14(22%) 19(30%) 29(61%)
Metallaxis 8(13%) 24(38%) 33(52%) 42(66%)
MUSE 8(13%) 13(20%) 15(23%) 15(23%)
SmartFL 20(31%) 35(55%) 39(61%) 45(71%)

Math

Ochiai 11(10%) 30(28%) 41(39%) 61(57%)
DStar 10(9%) 21(20%) 28(26%) 46(43%)
Metallaxis 10(9%) 28(26%) 39(37%) 43(41%)
MUSE 7(7%) 15(14%) 22(20%) 25(24%)
SmartFL 16(15%) 30(28%) 41(39%) 43(41%)

Chart

Ochiai 1(4%) 6(23%) 8(31%) 15(58%)
DStar 1(4%) 5(19%) 7(27%) 13(50%)
Metallaxis 0(0%) 6(23%) 6(23%) 11(42%)
MUSE 2(8%) 4(15%) 5(19%) 5(19%)
SmartFL 5(19%) 14(54%) 16(62%) 19(73%)

Time

Ochiai 1(4%) 7(27%) 9(35%) 11(42%)
DStar 3(12%) 7(27%) 9(35%) 12(46%)
Metallaxis 4(15%) 8(31%) 9(35%) 11(42%)
MUSE 0(0%) 1(4%) 2(8%) 4(15%)
SmartFL 4(15%) 7(27%) 8(31%) 11(42%)

Closure

Ochiai 7(4%) 16(9%) 24(14%) 40(23%)
DStar 3(2%) 14(8%) 20(11%) 34(20%)
Metallaxis 1(1%) 7(4%) 10(6%) 13(7%)
MUSE 6(3%) 8(5%) 10(6%) 14(8%)
SmartFL 6(3%) 8(5%) 10(6%) 14(8%)

Mockito

Ochiai 3(8%) 8(21%) 8(21%) 8(21%)
DStar 2(5%) 7(18%) 7(18%) 7(18%)
Metallaxis 3(8%) 6(16%) 7(18%) 11(29%)
MUSE 2(5%) 7(18%) 9(24%) 9(24%)
SmartFL 10(26%) 13(34%) 14(37%) 16(42%)

Cli

Ochiai 6(15%) 12(31%) 16(41%) 20(51%)
DStar 5(13%) 7(18%) 12(31%) 15(38%)
Metallaxis 3(8%) 7(18%) 9(23%) 10(26%)
MUSE 2(5%) 4(10%) 4(10%) 6(15%)
SmartFL 7(18%) 9(23%) 11(28%) 14(36%)

Codec

Ochiai 2(11%) 6(33%) 6(33%) 9(50%)
DStar 3(17%) 6(33%) 6(33%) 8(44%)
Metallaxis 1(6%) 2(11%) 211%) 5(28%)
MUSE 1(6%) 3(17%) 3(17%) 5(28%)
SmartFL 5(28%) 7(39%) 8(44%) 10(56%)

Collections

Ochiai 0(0%) 1(25%) 1(25%) 1(25%)
DStar 0(0%) 0(0%) 0(0%) 0(0%)
Metallaxis 1(25%) 1(25%) 1(25%) 1(25%)
MUSE 1(25%) 1(25%) 1(25%) 1(25%)
SmartFL 1(25%) 1(25%) 1(25%) 1(25%)

and the failure of the test, thus incorrectly ignoring the faulty
statement. For instance, our approach does not model the data
dependency introduced through IO (i.e. writing to a file and then
reading from it), which we plan to address in the future.

Table IV shows the performance of each approach at the
method level. It also includes the method-level results produced
by GRACE which is designed specifically for method-level
fault localization. The GRACE paper conducts experiments on
all projects in Defects4J 2.0 and we directly use the results from
it. Similar to the statement-level results, SmartFL outperforms
SBFL methods and MBFL methods among all values of k.
However, SmartFL is not as good as GRACE at the method
level. We think this result is reasonable because the design of

TABLE III
STATEMENT-LEVEL PERFORMANCE. CONTINUED FROM TABLE II

Project Technique Top-1 Top-3 Top-5 Top-10

Compress

Ochiai 5(11%) 14(30%) 16(34%) 18(38%)
DStar 5(11%) 14(30%) 15(32%) 18(38%)
Metallaxis 2(4%) 8(17%) 11(23%) 17(36%)
MUSE 0(0%) 7(15%) 9(19%) 13(28%)
SmartFL 7(15%) 15(32%) 19(40%) 24(51%)

Csv

Ochiai 4(25%) 6(38%) 7(22%) 8(50%)
DStar 4(25%) 6(38%) 7(22%) 8(50%)
Metallaxis 2(12%) 4(25%) 4(25%) 6(38%)
MUSE 1(6%) 2(12%) 2(12%) 3(19%)
SmartFL 4(25%) 5(31%) 6(38%) 6(38%)

Gson

Ochiai 2(11%) 4(22%) 6(33%) 8(44%)
DStar 2(11%) 4(22%) 6(33%) 8(44%)
Metallaxis 5(28%) 5(28%) 5(28%) 5(28%)
MUSE 1(6%) 2(11%) 2(22%) 2(22%)
SmartFL 6(33%) 9(50%) 9(50%) 9(50%)

JCore

Ochiai 3(12%) 7(27%) 7(27%) 7(27%)
DStar 1(4%) 7(27%) 7(27%) 8(31%)
Metallaxis 4(15%) 6(23%) 8(31%) 8(31%)
MUSE 2(8%) 2(8%) 2(8%) 3(12%)
SmartFL 6(23%) 8(31%) 9(35%) 11(42%)

JDatabind

Ochiai 0(0%) 0(0%) 0(0%) 0(0%)
DStar 0(0%) 0(0%) 0(0%) 0(0%)
Metallaxis 1(1%) 5(4%) 6(5%) 10(9%)
MUSE 1(1%) 2(2%) 3(3%) 5(4%)
SmartFL 6(5%) 12(11%) 13(12%) 18(16%)

JXml

Ochiai 0(0%) 0(0%) 0(0%) 0(0%)
DStar 0(0%) 0(0%) 0(0%) 0(0%)
Metallaxis 0(0%) 2(33%) 2(33%) 2(33%)
MUSE 0(0%) 0(0%) 0(0%) 0(0%)
SmartFL 0(0%) 0(0%) 0(0%) 0(0%)

Jsoup

Ochiai 3(3%) 4(4%) 5(5%) 11(12%)
DStar 0(0%) 2(2%) 3(3%) 8(9%)
Metallaxis 6(6%) 13(14%) 14(15%) 20(22%)
MUSE 0(0%) 1(1%) 3(3%) 8(9%)
SmartFL 11(12%) 23(25%) 28(30%) 32(34%)

JxPath

Ochiai 0(0%) 0(0%) 0(0%) 0(0%)
DStar 0(0%) 0(0%) 0(0%) 0(0%)
Metallaxis 0(0%) 0(0%) 0(0%) 4(18%)
MUSE 2(9%) 3(14%) 3(14%) 3(14%)
SmartFL 1(5%) 4(18%) 6(27%) 6(27%)

Total

Ochiai 50(6%) 142(17%) 182(22%) 254(30%)
DStar 42(5%) 114(14%) 146(17%) 214(26%)
Metallaxis 51(6%) 132(16%) 166(20%) 219(26%)
MUSE 36(4%) 75(9%) 95(11%) 121(14%)
SmartFL 115(14%) 200(24%) 238(29%) 279(33%)

‘JCore’ denotes ‘JacksonCore’, and the same for ‘JDatabind’ and ‘JXml’.

SmartFL is mainly aimed at statement-level fault localization
rather than method-level as our modeling is based on the exe-
cution process of each statement. In contrast, the method-level
results are not our focus, because the direct output of SmartFL
is the statements sorted by faulty probability, and the method-
level results are directly obtained by statement-level results.

We also compare our approach with LEAM at the method
level, which is another approach designed specifically for
method-level fault localization. As its paper reports method-
level results on only 4 projects in Defects4J 1.0, including Lang,
Math, Chart, and Time, we put the comparison results sepa-
rately in Table V. As Table V shows, similar to the comparison
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TABLE IV
METHOD-LEVEL PERFORMANCE

Technique Top-1 Top-3 Top-5 Top-10

Ochiai 167(20%) 305(37%) 351(42%) 398(48%)
DStar 157(19%) 274(33%) 316(38%) 371(44%)

Metallaxis 143(17%) 261(31%) 301(36%) 351(42%)
MUSE 90(11%) 158(19%) 188(23%) 220(26%)

GRACE 280(34%) 382(46%) 438(52%) \
SmartFL 213(26%) 326(39%) 372(45%) 424(51%)

TABLE V
COMPARING SMARTFL WITH LEAM

Technique Top-1 Top-3 Top-5

LEAM-Metallaxis 118(53%) 182(81%) 188(84%)
LEAM-MUSE 126(56%) 181(81%) 189(84%)

SmartFL 91(41%) 131(58%) 149(67%)

TABLE VI
SIGN TEST RESULT

Level Method POS NEG P-value Effect Size

Statement

vs. Ochiai 209 134 3.03e-5 0.27
vs. DStar 222 122 3.84e-8 0.51

vs. Metallaxis 218 136 7.69e-6 0.42
vs. Muse 248 90 1.59e-18 1.09

Method

vs. Ochiai 227 189 0.0348 0.10
vs. DStar 243 180 0.0012 0.21

vs. Metallaxis 235 171 8.67e-4 0.27
vs. Muse 312 124 4.47e-20 0.99

with GRACE, LEAM is also more effective than SmartFL at
the method level.

We perform a sign test on each pair of techniques considering
faults where at least one technique has a top-10 result on it,
and the result is shown in Table VI. GRACE and LEAM are
excluded from the comparison as we only take their results
directly and do not manually reproduce them. We confine the
test to these faults because a difference between rank 100 and
1000 would not make a great difference in actual use cases. In
addition, we use the standardized difference between two means
as the effect size [28]. In our setting, if a method’s result on a
particular example is not in top-10, it will be set to 15 for calcu-
lating the effect size because we care most about top-10 cases
as in the sign test, and should give a reasonable effect size to the
cases that are not in top-10. The result implies that our approach
significantly outperforms other methods, as all p-values are less
than the significance level of 0.05. Still, the negative cases in
the sign test show that our approach could be complementary
to others, which is further discussed in RQ5. The effect sizes
show that our approach is more suitable for statement-level fault
localization as the effect size is small against Ochiai, medium
against Dstar and Metallaxis, and large against Muse. On the
other hand, for method-level fault localization, the effect size is
small against Ochiai, Dstar, Metallaxis, and large against Muse.

TABLE VII
COMPARING SMARTFL WITH CAN AND UNITE

Technique Top-1 Top-3 Top-5

CAN ≤ 15(7%) ≤ 64(28%) ≤ 93(41%)
UNITE ≤ 26(12%) ≤ 75(33%) ≤ 100(45%)

SmartFL 47(21%) 88(39%) 103(46%)

TABLE VIII
AVERAGE TIME CONSUMPTION OF EACH

TECHNIQUE (IN SECONDS)

SBFL MBFL
SmartFL

(a) (b) (c) total

413 46749 41 126 37 205

‘SmartFL-(a), (b), and (c)’ respectively denote
the three steps introduced in Section VI-C.
SmartFL-total denotes the sum of them.

Finally, we compare our approach with CAN and UNITE
at the statement level. As we discussed in Section VI-C, we
directly compare the upper limit of their results based on their
papers with SmartFL. Table VII shows the results comparing
SmartFL with CAN and UNITE. Notice that the results of
SmartFL are real for the 224 cases from project Lang, Math,
Chart, and Time, and the top-k numbers of CAN and UNITE are
strictly smaller than SmartFL’s in the table. This result shows
that SmartFL performs better than CAN and UNITE.

Summary 1

SmartFL focuses on statement-level fault localization
and SmartFL performs better than all other techniques
at the statement level. At method level, SmartFL signifi-
cantly outperforms SBFL methods and MBFL methods,
but GRACE and LEAM outperform SmartFL. In sum-
mary, the above results demonstrate the effectiveness of
SmartFL.

2) RQ2: Efficiency of SmartFL: Table VIII shows the time
costs of all techniques. The average time of SmartFL is 205
seconds, which is 50% of the average time of SBFL methods
and an order of magnitude smaller than MBFL methods, while
SmartFL is also more accurate. Although SmartFL does more
detailed tracing and performs probabilistic modeling and infer-
ence, the results show that it is faster than SBFL methods. This
is mainly because SmartFL will not instrument all tests, but
will perform method-level profiling and then only select a part
of the tests for tracing according to the method described in
Section IV-D1, while SBFL methods will execute all tests un-
der instrumentation. The comparison between columns “SBFL
methods” and “SmartFL-(a)” shows that SmartFL’s method-
level profiling is much faster than SBFL’s statement-level pro-
filing. For MBFL methods, the average time consumption is
about 13 hours, which is much higher than SmartFL.
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TABLE IX
EFFECT OF DIFFERENT COMPONENTS

Technique Top-1 Top-3 Top-5 Top-10

SmartFL 115 200 238 279

original SmartFL [16] 97(-18) 158(-42) 188(-50) 221(-58)
w/o adaptive folding 103(-12) 182(-18) 218(-20) 257(-22)
w/o exception handling 103(-12) 179(-21) 209(-29) 244(-35)
w/o virtual call edge 105(-10) 185(-15) 224(-14) 264(-15)
w/o loop compression 113(-2) 194(-6) 228(-10) 277(-2)
w/o inference optimization 102(-13) 188(-12) 226(-12) 264(-15)

Summary 2

The time consumption of SmartFL is half of SBFL
methods and 0.5% of MBFL methods. These results
demonstrate the efficiency of SmartFL.

3) RQ3: Effectiveness of Different Components: We per-
form several ablation studies to evaluate the effect of different
components of our approach. Table IX shows the results of
the first six experiments. First, let us analyze the impact of
the ablation setups shown in the first few columns of the table
on the effectiveness of SmartFL. The first experiment directly
compares SmartFL with the original version. Since the original
SmartFL timed out on several cases, we also discuss the results
of SmartFL after excluding those cases, which are 106, 180,
213, and 249 at top-1, 3, 5, and 10. These two comparisons
strictly demonstrate SmartFL has been greatly improved com-
pared to the original version because of the newly introduced
components and better implementation. The second experiment
shows that adaptive folding has an important influence on the
effectiveness of SmartFL, as it ensures the integrity of the
failing test traces. The third experiment shows that the modeling
of exception control flow also has an important influence on
the effectiveness of SmartFL because it correctly maintains the
stack frame while parsing the bytecode sequence and captures
the necessary control dependencies. The fourth experiment
demonstrates the effect of “virtual call edge”, which shows that
in some cases the lack of construction of the calling edge of
the callback function will reduce the effectiveness of SmartFL.
The fifth experiment shows that discarding loop compression
slightly reduces the effectiveness of SmartFL. The sixth exper-
iment shows that discarding inference optimization will also
reduce the effectiveness of SmartFL, as there are some cases
where the modeling and inference process cannot be completed
without this optimization.

For the seventh experiment, the results of SmartFL on project
Lang after turning off test reduction are 20, 35, 38, and 45
at top-1, 3, 5, and 10, while the original results are 20, 35,
39, and 45, respectively. The results show that there are no
significant differences in terms of ranking effectiveness with
and without test reduction. As a result, our approach of test re-
duction effecitively increases the scalability of SmartFL without
significantly hurting its ranking effectiveness.

Table X shows the average time cost and timed-out cases
in each experiment. We choose the same timed-out settings

TABLE X
TIME CONSUMPTION OF DIFFERENT COMPONENTS

Technique Time Cost Timed Out

SmartFL 200s 1

original SmartFL 392s 242
w/o adaptive folding 200s 1
w/o exception handling 199s 1
w/o virtual call edge 201s 1
w/o loop compression 205s 1
w/o inference optimization 365s 153

TABLE XI
EFFECT OF DIFFERENT FACTOR VALUES

Parameter Type Value Top-1 Top-3 Top-5 Top-10

Moderate probabilities

0.1 122 203 249 297
0.2 111 193 237 273
0.3 117 203 242 286
0.4 115 203 239 280
0.5 115 200 238 279
0.6 114 205 244 284
0.7 117 208 250 290
0.8 114 205 242 284
0.9 116 200 236 280

Very low probabilities

0.001 115 195 236 279
0.005 112 201 243 280
0.01 115 200 238 279
0.05 112 201 243 280
0.1 122 203 249 297

according to the previous conference paper. The first experiment
shows the efficiency of SmartFL has been greatly improved
compared to the original version and there are 242 cases where
inference cannot be completed due to lack of inference opti-
mization. The fifth experiment shows that loop compression
can slightly improve the efficiency of SmartFL. The last exper-
iment shows that SmartFL will almost double the average time
cost without the inference optimization and will be unable to
complete inference on 153 cases. Other experiments show the
techniques studied do not affect the efficiency.

Summary 3

The above results show that each ablation study proves
the effectiveness of the corresponding technology in
SmartFL. In addition, SmartFL has significantly im-
proved compared with the original version.

4) RQ4: Influence of Different Factor Values: We re-run
our approach with different factor values. The result is shown
in Table XI. The first column denotes the parameter type. The
first five rows represent the five sets of experiments to study
the influence of the moderate factor values for insensitive op-
erations and the last five rows are five sets of experiments to
study the very low factor values for sensitive operations. The
second column denotes the factor values, where the value repre-
sents P (Result= 1|Parents= 0). When studying the effect
of changing one type of parameter, we use the default value for
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TABLE XII
INTEGRATING COMBINEFL WITH SMARTFL

Technique Top-1 Top-3 Top-5

CombineFL 71(20%) 130(36%) 160(45%)

TRANSFER-FL 76(21%) 133(37%) 155(43%)

CombineFL with SmartFL 80(22%) 147(41%) 168(47%)

the other type. We can see that the choice of parameters has
only a small impact on the results and our default parameters
are not in an optimal position. This suggests that our model is
robust with respect to different parameters, and could still work
without fine-tuning.

Summary 4

The above results show that the factor values do not
have much effect on SmartFL and the default param-
eters of SmartFL are not in an optimal position.

5) RQ5: Combining With Other Techniques: Table XII
shows the results of combining SmartFL with CombineFL. As
we can see, combining SmartFL with CombineFL can com-
prehensively improve the effectiveness of CombineFL as the
results are better than TRANSFER-FL and the original Com-
bineFL.

Summary 5

This experiment shows that SmartFL can be effectively
combined with other fault localization methods and im-
prove the effect of the combined method.

E. Threats to Validity

Internal Validity. The potential threat to internal validity
mainly lies in the implementation of SmartFL and the exper-
imental scripts. This may cause inaccurate experimental results
or fail to truly reflect the approach of SmartFL. To mitigate
the threat, we manually check our code and the logs during
experiments.

External Validity. The primary threat to external validity is
the benchmarks used in our study. To mitigate the threat, we
choose the widely-used real-world dataset Defects4J 2.0 as our
benchmark. In addition, we conduct experiments on the 835
cases from all 17 projects in Defects4J 2.0 to minimize the
threat.

Construct Validity. The primary threat to construct validity
is the metrics we used in our study. To mitigate the threat, we
use the widely accepted Top-k metrics, which are commonly
utilized in prior fault localization studies.

VII. DISCUSSION

A. The Generalizability of Our Approach

The implementation and evaluation of our approach are fo-
cused solely on Java programs, which may cast doubts on the
generalizability of our approach. We acknowledge that in order
to implement our approach in other languages, it is necessary
to implement corresponding dynamic tracing and building dy-
namic dependency graphs, which may require a certain amount
of engineering overhead. However, at the approach level, our
approach is independent of the Java language because it is a
process of converting from a dynamic dependency graph to
a Bayesian network. Therefore, in theory, our approach can
be extended to any assignment-based imperative programming
language.

B. The Complexity of the Solution

Since our approach relies on detailed tracing to capture dy-
namic dependencies and maintain a Bayesian network system,
the implementation of our approach may be challenging. This
is indeed a shortcoming of our approach, but we believe that
although our approach has a certain complexity in implemen-
tation, it is stable and valuable after implementation, so it is a
worthwhile one-time effort. For example, we have already im-
plemented it robustly and effectively on Java and it has achieved
good performance in both effectiveness and efficiency on var-
ious programs. Java developers could use our implementation
for various fault localization cases out of the box.

C. The Assumptions in Probabilistic Modeling

Section II introduces the core assumption of our paper: “A
faulty evaluation results in an evenly distributed random result.
Specifically, an evaluation of an expression is faulty only if one
of the three conditions is satisfied”, which may oversimplify
real-world fault scenarios. However, there is a trade-off between
the complexity of the model and efficiency, and our approach
tries to strike a balance. There are indeed corner cases where
our model is not accurate, but our empirical evaluation on the
835 faults from the 17 Defects4J projects shows that our design
is both accurate and efficient in practice.

D. Complexity Analysis

The time and memory costs of our approach scale linearly
with the lengths of the test executions, which indicates that our
approach has the potential to scale to even larger programs.

As we discussed in Section VI-C3, SmartFL consists of three
steps: (a) profiling, (b) tracing, and (c) modeling. For profiling,
the time overhead is approximately the original test execution
time multiplied by a constant as our instrumentation simply
records the method coverage. Similarly, the memory consump-
tion is approximately linear in the test execution time as the
memory consumption of information recorded per method is
constant. For tracing, the time overhead is approximately the
execution time of the chosen test cases multiplied by a constant
since our instrumentation simply records the instructions that
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are executed. Similarly, the memory consumption is linear in the
number of instructions executed in the chosen test cases as the
memory consumption of information recorded per instruction
is constant. For modeling, it consists of building the graph
and performing inference on the graph, whose complexities we
discuss in detail next.

For building the graph in modeling, the time consumption
is dominated by parsing the traces to build the graph while
the time consumption of the static analysis is negligible, as
our static analysis is lightweight. As explained in Section V,
the parsing process can be viewed as simulating the program
execution but only to capture the def-use relationship between
runtime values and instructions. For each instruction, the com-
putation consists of 1) finding nodes in the graph that corre-
spond to the values it accesses, and 2) adding edges between
these nodes and the node representing the instruction’s correct-
ness based on the dependency introduced by the instruction.
Both kinds of computation consume constant time so the overall
time scales linearly with the sum of the trace lengths. Similarly,
the space consumption scales linearly with the graph size, which
is linear in terms of the sum of the trace lengths.

For probabilistic inference in modeling, the probabilistic in-
ference algorithm we apply is an iterative approximate one. The
number of computations in one iteration increases linearly with
the size of the graph, and the size of the graph is also linearly
related to the length of the considered traces. In addition, we
set a maximum number of allowed iterations. Therefore, the
time consumption for probabilistic inference will also increase
linearly with the length of the test executions. As for memory
consumption, it is linear in the graph size which is in turn linear
in the length of the test executions.

According to the above analysis, the time and space con-
sumption of all steps in our approach increases linearly with the
lengths of the test executions, which indicates that our approach
has the potential to scale to even larger programs.

VIII. RELATED WORK

Fault localization has been intensively studied during the past
decades. Here we leave a full summary of fault localization to
respective surveys [29], [30], [31] and empirical studies [1], and
discuss only the most related work.

A. Probabilistic Approaches

Fault localization is inherently a probabilistic analysis pro-
cess, and many existing approaches resort to probabilistic mod-
eling. Similar to our approach, these modeling approaches also
treat the sample space as all possible faults or all possible fault
locations and try to identify the element that has the highest con-
ditional probability of being faulty based on the observed test
results. Different from our approach which extracts the proba-
bilities from the semantics of the program, most probabilistic
approaches either consider only the coverage and do not model
the semantics of the program [32], [33]. Some probabilistic
approaches learn the probabilities from test executions but do
not build precise dynamic dependency graphs [34], [35]. Kang

et al. [36] proposed a Bayesian framework to explain existing
fault localization approaches like SBFL from a probabilistic
angle but it does not model the semantics of the program or
propose new fault localization approaches.

The only exception is the approach proposed by Xu et al.
[37]. This approach solves a different problem, namely inter-
active fault localization: how to support the developer when he
faces one failing test. Similar to our approach, their approach
also uses probabilistic modeling and introduces Bernoulli prob-
abilistic variables to represent whether the run-time values and
statements are faulty or not. Our approach is inspired by their
work, but the fundamental difference is that our approach ad-
dresses the scalability challenge while their work cannot. Their
work only handles a single failing test of a small program,
and cannot be used for non-interactive fault localization. Each
scaling technique in our approach is shown to be critical in
Section VI.

B. Spectrum-Based Fault Localization

As mentioned before, the most popular type of coverage-
based fault localization techniques are SBFL approaches, which
calculate the suspicious scores of program elements based on
the numbers of pass/fail tests covering the element using dif-
ferent formulae [38], [39], [40].

As mentioned, coverage is only one of the four conditions
for a test to fail on a fault, and thus the coverage-based ap-
proaches do not consider the latter three conditions. To over-
come this problem, some existing approaches combine SBFL
with program slicing [41], [42], [43], in the sense that only the
statements in the slice can produce and propagate the faults. For
example, Mao et al. [42] proposed SSFL (slice-based statistical
fault localization). By calculating the suspiciousness score on
an approximate dynamic backward slice, SSFL significantly
boosts all 16 formulas of SBFL. However, slicing only reveals
the possibility but not the probability that a program element
produces or propagates fault, and thus is a very inaccurate mod-
eling of semantics. Some other approaches try to make better
use of coverage information. Zhang et al. [23] proposed UNITE
to optimize coverage information based on the frequency of
each statement appearing in each test and also combine with
program slicing. However, these approaches are still limited by
the limitations of coverage information and essentially do not
accurately model semantics.

C. Approaches Modeling Semantics

As we have discussed in Sections I and II, MBFL [4], [10]
and angelic debugging [11], [12] are the two main families that
model semantics for fault localization, but both have scalability
issues due to their precise modeling of the semantics. Our
evaluation also shows that our approach is more than 100 times
faster than MBFL and is much more effective.

In addition, there are some new MBFL approaches in recent
years. Delta4Ms [44] integrates the principles of signal theory to
model the actual suspiciousness and mutant bias as the desired
and false signal components. Since Delta4Ms only reports re-
sults on 15 cases in the Lang project of Defects4J, and its artifact
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does not include instructions on how to make it work on the
Defects4J cases, we cannot compare with them directly. LEAM
[25] leverages DL-based mutation techniques by adapting the
syntax-guided encoder-decoder architecture and predicting the
statements to be mutated. Although these approaches have im-
proved a lot compared to traditional MBFL approaches, the
scalability issue still remains unsolved, as they still typically
need hours to locate a fault.

D. Combination Approaches

Multiple approaches try to combine existing approaches or
different information sources. Xuan and Monperrus [45] pro-
posed a learning-to-rank approach to integrate the suspicious-
ness scores of 25 existing SBFL formulae. Zou et al. [1] further
extended this approach to integrate the suspiciousness scores
produced by different families of fault localization techniques.
Sohn and Yoo [46] use the learning-to-rank technique to com-
bine the suspiciousness scores of existing SBFL formulae, code
complexity metrics, and code history metrics. Li et al. [47]
use neural networks to combine suspiciousness scores of SBFL
and MBFL, code complexity metrics, and text similarity met-
rics; Küçük et al. [48] use causal inference techniques and
machine learning to integrate predicate outcomes and run-time
values. Lou et al. [24] proposed GRACE to leverage graph-
based representation learning to embed both the syntax of the
program and the coverage information. Meng et al. [27] use
BiLSTM-based classifiers to learn deep semantic features of
statements and leverage the semantic-based, spectrum-based,
and mutation-based features for fault localization by a multi-
layer perceptron. CAN [22] leverage graph neural networks to
analyze and combine the failure context for fault localization.
However, none of these approaches are able to model program
semantics in detail to infer the probability of introducing and
propagating errors during test executions, which is the focus of
this paper.

Our approach and the combination approaches are inherently
orthogonal, as Section VI shows that our approach can be
effectively combined into a combination framework [1] and
significantly improve the effect. The experiments also show that
after combining our method into a relatively old framework,
the results can outperform the state-of-the-art combination
results.

E. Large Language Models Approaches

Multiple approaches introduce large language models
(LLMs) into fault localization [49], [50]. These studies show
that LLMs have a powerful ability to understand program
faults. However, the input to these approaches is a relatively
small program fragment containing the faulty program
element, while other fault localization approaches take the
full project source code as input. Therefore, there is still a big
difference between the setups in these approaches and practical
fault localization scenarios. Combining the comprehension
of programs from LLMs with our approach is a promising
direction, which is future work.

IX. CONCLUSION

This paper proposes a novel fault-localization method based
on the probabilistic graphical model. Specifically, we utilize
semantic information of different statements, while combining
both dynamic and static information into our model. We con-
duct an experiment on a real-world dataset, Defects4J. Our tech-
nique is evaluated to be complementary to existing techniques
as it could further improve state-of-the-art by combining with
existing techniques.

To facilitate research, our tool and the fault localization data
are available at https://github.com/toledosakasa/SMARTFL.
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