CCC: An Aspect-Oriented Intermediate
Language on .Net Platform

Yingfei Xiong 2

School of Computer Science and Engineering
University of Electronic Science and Technology of China
Chengdu, China

Institute of Software, Peking University
Beijing, China

Feng Wan?

School of Computer Science and Engineering
University of Electronic Science and Technology of China
Chengdu, China

Abstract

The AOSD tools and methodologies have developed in a rapid speed in Java area.
However, no matter how homologous .Net and Java are, AOP tools on .Net plat-
form are still in experimental stage. The complex infrastructure and multi-language
support make it hard to establish aspect-oriented programming on .Net. Microsoft
provides Microsoft Intermediate Language(MSIL) to facilitate language implemen-
tation on .Net platform. But MSIL doesn’t support aspect-oriented languages. To
facilitate aspect-oriented language implementation on .Net platform, it is best to
provide an aspect-oriented intermediate language.

This paper presents CCC, an aspect-oriented intermediate language on .Net plat-
form. CCC stands for Common language Cross Cutter. Any aspect-oriented .Net
language could first be transformed to CCC and then woven by CCC compiler.
Since CCC supports high-level aspect-oriented language constructs directly, such as
aspect, there is a little work to do for language implementation and the developers
could concentrate on language design.

Key words: CCC, AOP, .Net, intermediate language

! Email: flyinghero@21icn.com
2 Fax: 86-10-62751792
3 Email: windfast_20000163. com


http://www.math.tulane.edu/~entcs

XIONG AND WAN

1 Introduction

Aspect-oriented programming (AOP) is an emerging technique for modulariz-
ing crosscutting concerns, which cut across several basic modules. These con-
cerns cannot be modularized with existing techniques such as object-oriented
programming.

After AOP was first announced by Gregor Kiczales in ECOOP‘97, the
AOSD tools and methodologies developed in a rapid speed, especially in Java
area. So far, several major AOP tools in Java language, such as AspectJ[11],
and Hyper/J[10], have gained wide commitment and have been used, although
in a limited way, in some industrial projects.

Although.Net and Java are homologous, AOP tools on .Net platform are
still in their experimental stage. For one thing, the .Net infrastructure is
much more complex than Java, which makes the .Net languages, such as C#,
have more language constructs than Java. Hence the mature AOP tools on
Java platform can not port to .Net without redesign. For another, the .Net
is language-independent in its nature. So the AOP tool on .Net platform is
better to also be language-independent, which brings many new problems.

To facilitate language implementation, Microsoft provides Microsoft In-
termediate Language(MSIL)[5]. This is a collection of machine-independent
directives which support high-level language constructs, such as class, directly.
Thus the compiler has to do a little work to transform source code into MSIL,
and the Microsoft .Net framework transforms the MSIL to native code at
running time.

So in order to facilitate aspect-oriented language implementation, it is
best to provide an aspect-oriented intermediate language to which the aspect-
oriented code can be easily transformed. This paper presents our efforts to
develop such an intermediate language. Our approach is called CCC, which
is an XML-based aspect-oriented intermediate language. Any other aspect-
oriented language could firstly be transformed to CCC and then woven by
CCC Compiler.

2 Programming Model

2.1 Specifying Aspect

One major problem in CCC language design is how to specify aspect. CCC is
an intermediate language so it must be independent of any high-level language.
Then the media used to specify aspect in CCC must also be independent of
any high-level .Net language. Also, it must be flexible enough so that the
complex elements in aspect-oriented languages could be explicitly and clearly
specified.

We regard XML as suitable media for this situation. Derived from SGML,
XML is language-independent in its nature. XML, as a “metalanguage”, also



XIONG AND WAN

Non-Aspect-Oriented
Code(.Net Assembly)

Aspect-Oriented

Code(XML)

CCC Compiler —  Woven Assembly

Fig. 1. Behavior of CCC Compiler

meets our second requirements. It is flexible enough to describe any language
constructs.

At the mean time, with the help of XSD (eXtensible Structure Definition)
[2], we can easily write a schema to automatically validate the grammar and
syntax of user-written xml file, which saves a lot of code and developing time.

2.2 Run-Time, Load-Time and Compile-Time Weaving

Currently, many researches on AOP are focused on run-time weaving, and
several available projects, such as RAPIER-LOOM.NET[9], have shown its
feasibility. Also, MSIL is compiled to native code at run-time, the generic
types in .Net 2.0 are instantiated at run-time. A run-time weaver will be
compatible with the overall .Net design. So it seems reasonable for CCC
to be a run-time woven language. However, current implementations of such
languages are considerably slow at run-time, because the weave process adds a
lot of extra work to object creation and no knowing technique can significantly
lessen such work. We believe performance is an important issue to evaluate a
language, so we reject this idea of run-time weaving.

Load-time weaving is another choice. Loading seems to be a better time
to perform longer tasks. Some research projects are also aimed at creating a
load-time weaver, such as Weave.NET[4]. But weaving at loading time means
all types should be woven and the accumulative time is also unaffordable.

So we chose compile-time weaving as the weaving method of CCC, like
most other aspect-oriented languages. Weaving once at compiling time will
save a lot of time in assembly loading or running.

2.8 Scenarios of Using CCC

As shown in Figure 1, the input of CCC includes a .Net assembly containing
the non-aspect-oriented code written in MSIL and XML files specifying aspect.
CCC compiler weaves the aspect behaviour code into non-aspect-oriented as-
sembly according to what is written in the XML files, generating a new, woven
assembly.

To illustrate this idea, we give two scenarios. Consider a user programs
CCC directly:



XIONG AND WAN

(i) The user writes the non-aspect-oriented code in existing languages, and
then compiles it into an assembly.

(ii) The user writes the aspect-oriented code in several XML files according
to CCC syntax.

(iii) The CCC compiler reads the XML files and the assembly, generates the
woven assembly:.

The second scenario is for language compiler compiling the source code with
the help of CCC:

(i) The compiler reads the source code, separating them into aspect-orient
part and non-aspect-oriented part.

(ii) The non-aspect-oriented part is compiled into MSIL in a temporary as-
sembly:.

(iii) The aspect-oriented part is compiled into an XML file according to CCC
syntax.

(iv) The CCC compiler reads the temporary assembly and the xml file, gen-
erating the final assembly.

3 Language Syntax and Semantics

3.1 Join Point

In CCC, a join point is a well-defined point in the program structure. We
define six types of join points in current version: Method Reference, Method
Declaration, Field Set Reference, Field Get Reference, Type Reference, Type
Declaration.

e Method reference represents the point on which a method is called, that is,
a method is referred by the other parts of the system. The MSIL directives
call and callvirt are examples of this join point.

e Method declaration represents the point where a method is declared. It
works like the execution() pointcut in AspectJ. All method declarations, no
matter private or public, are considered as method declaration join points.

e Flield set reference represents the point where a field is being set. The MSIL
directives stfld and stsfld are examples of this join point.

o Field get reference represents the point when the value of the field is being
retrieved. The MSIL directives 1dfld and ldsfld are examples of this join
point.

o Type reference represents the point where a type is referred to. It also
includes the dynamically created type such as array and managed pointer.

Type declaration represents the point where a type is declared.



XIONG AND WAN

3.2 Pointcut

A pointcut is a set of conditions to select the join points which are of interest.
In CCC, a pointcut is described by a pointcut expression. For example, the
following pointcut expression selects all method reference join points where
the method is declared in MyClass and begins with Set:

<Call><MethodNameMatches>MyClass.Set)%</MethodNameMatches></Call>

The Call and MethodNameMatches in the above pointcut expression are
called pointcut functions. Pointcut functions, which select specific types of
join points, are the main component of pointcut expression. The Method-
NameMatches pointcut function selects method reference join points or method
declaration join points where the full name of the method matches its inner
match pattern, which is “MyClass.Set%” in the above example. The “%” in
the match pattern presents arbitrary number of characters. The Call point-
cut function selects all method reference join points from its inner pointcut
function.

A pointcut expression can be given a name, and thus is called named point-
cut. Other parts of the system can refer to the pointcut using the name. This
is the main way to reuse pointcuts in CCC. Continuing the above example,
if we want to name the pointcut expression “SetMyClass”, we can write code
like this:

<PointCut Name="SetMyClass" Accessibility="Public">
<Call>
<MethodNameMatches>MyClass.Set%</MethodNameMatches>
</Call>
</PointCut>

The Accessibility attribute indicate to what extent the pointcut can be
accessed. When the accessibility is Public, this pointcut can be referred to
from any parts of the system. When the accessibility is Private, this pointcut
can only be referred to within the aspect in which it declared.

3.3 Advice

Advice defines what will be executed at specific pointcut in execution of the
program. The code to be executed is called behavior.

A problem related to behavior is where the behavior code lies. The lan-
guage like AspectJ surrounded the behavior code with advice declaration, so
that the code is stored together with the aspect. But this is not suitable for
CCC. If we put behavior code within advice declaration, to maintain the in-
dependence of high-level languages, the only language can be used to write
behavior code is MSIL. But writing MSIL directly is not convenient both for
users and compilers of high-level languages.

Our approach is to let user write the behavior code within a public static
method in the target assembly. This method is called behavior method. And



XIONG AND WAN

when declaring the advice, the user uses the method name to refer to the
behavior method. The code stored in the behavior method will be used as
behavior code. The reason of the method being static is that a static method
can be called at anytime without object creation.

Now consider an example of advice:

<Advice PointCut="SetMyClass"
Behaviour="MyAspect.BeforeSetMyClass"
Type="Before"/>

The PointCut attribute is used to refer to a named pointcut already de-
clared. Here we refer to the SetMyClass pointcut in the previous example. The
Behavior attribute specifies which method will be used as behavior method.
The Type attribute defines how the behavior code is executed at the join
points. The advice has two types in this release. The before advice means the
behavior code runs just before the join point picked out by the pointcut. The
after advice means the behavior code runs just after the join point picked out
by the pointcut, even if it throws an exception.

After this advice is declared, MyAspect. BeforeSetMyClass method will be
called just before each call to the Set methods in MyClass.

Sometimes referring to a previously declared named pointcut is not conve-
nient, we can also declare new, anonymous pointcut within the advice body,

like this:

<Advice Behaviour="MyAspect.BeforeSetMyClass"
Type="Before">
<PointCut>
<Call>
<MethodNameMatches>MyClass.Set%</MethodNameMatches>
</Call>
</PointCut>
</Advice>

Advices also expose data from the execution context at the join points.
This will be discussed in more detail in section 4.3.

3.4 Aspect

Aspect wraps named pointcuts and advices together to form a modular cross-
cutting unit. An aspect also has a name so that it can be referred to latter.

4 The Language Features of CCC

This section summarizes the features which characterize CCC different from
other aspect-oriented languages. Some of the features are present because of
the role of CCC: as an intermediate language. Some of the features are to
solve the problems in existing languages.



XIONG AND WAN

4.1 Pointcuts Are as Primitive as Possible

In many aspect-oriented languages, pointcuts are not primitive. Take AspectJ
as an example, the call() expression is not a primitive pointcut. It combines
expressions of args() and within(), method name filtering and return type
filtering.

The nonprimitive pointcut is easy to write, but not suitable for CCC. CCC
is an intermediate language, so it should be convient to transform high-level
language to CCC. But if the pointcut is nonprimitive, the transformation
from some high-level languages to CCC might be difficult. For example, the
aspect method in AspectC# is similar to the call() pointcut in AspectJ, but
it does not match the method return type yet also matches the names of
parameters. Such differences make it difficult to describe an aspect method
of AspectC+# using Aspect]’s language constructs.(Although we can use “*”
to represent arbitrary return type, but compiler does extra work to check the
“*7) So every pointcut function we defined in CCC is a primitive pointcut
function. The counterparts in CCC of call() pointcut in Aspect] are six
pointcut functions: <Call>, <MethodNameMatches>, <DeclaringTypels>,
<ParameterTypels>, <ParameterCountlIs>, <ReturnTypels>

4.2 Static Join Point Model

We classify the join point model into two categories: dynamic join point model
and static join point model.

The join point model used in AspectJ and many other Aspect]-like lan-
guages is dynamic join point model. That is, some properties of the join point
can only be determined at run-time. For example, consider the following code
in AspectJ:

pointcut a() : args(String)

This pointcut a() selects not only the method whose first formal parameter
type is String, but also the method which will be called with String argument
at runtime. That is to say, a method whose first formal parameter is object
will be selected by the pointcut a() if it is called with an argument of String.

The dynamic join point model looks fine at first glance: pointcut a() does
select all methods whose first argument is String. But it has significant effect
towards system performance. Continuing the above example, in order to catch
all the point when a method is called with String argument, the system has to
type-check the arguments of all methods whose first formal parameter type is
object. This overhead is too significant to be ignored, because a lot of methods
in Java library use object as its first parameter, such as the methods in Vector.
To make matter worse, using any type in args() expression will also cause this
overhead, for all types are derived from object.

However, this problem are not that serious in practice, because args point-
cuts normally used with the other pointcuts that statically discriminate join
points so the overheads are in negligible range in most cases. But still the



XIONG AND WAN

overheads exist, and in the cyclic statements or in some critical functions,
they cause problems. None the better, the programmers are unlikely to real-
ize this overhead. When a programmer writes down the above statement, the
things in his/her mind must be selecting some method whose first parameter
is String. He/She seldom realizes the effect towards the system performance.

So we choose static join point model as our join point model in CCC. The
static join point model means all properties of the join point can be statically
determined at compile time. Consider writing the following code in CCC:
<PointCut Name="a">

<And>

<ParameterTypels>
<ParameterIndex>1</ParameterIndex>
<Type>
<TypeNameMatches>System.String</TypeNameMatches>
</Type>
</ParameterTypels>
<ParameterCountIs>1</ParameterCountIs>

</And>
</PointCut>

This piece of code has almost the same meaning as the above AspectJ code
except that: it only selects the method whose first formal parameter is String.
Other methods, such as the methods whose first formal parameter is object,
are not affected. So the programmers have more control over the system’s
behavior.

One virtue of static join point model is that one can easily simulate the
dynamic join point model by writing a little code. So if a high-level language
choose dynamic join point model, it can still be transformed to CCC without
much work. For example, if we are going to simulate the following AspectJ
code:
pointcut a() : args(String)
before() : a()

{
//do something

We can write code in CCC like this:
<PointCut Name="a">
<And>
<ParameterTypels>
<ParameterIndex>1</ParameterIndex>
<Type><Base(Of>
<TypeNameMatches>System.String</TypeNameMatches>
</Base0f></Type>
</ParameterTypels>
<ParameterCountIs>1</ParameterCountIs>



XIONG AND WAN

</And>
</PointCut>
<Advice PointCut="a" Behaviour="Sample.Behaviour" Type="Before">
<Parameters>
<Parameter Name="StringArgument'>
<Type><Direct>System.0bject</Direct></Type>
<Binding Type="Argument" Index="0"/>
</Parameter>
</Parameters>
</Advice>
To select the join point where argument is of String type, we write a simple
line in the behavior method:

public static void Behavior(object stringArgument)
{
if (stringArgument is String)
{
//do something
}
}

4.8 Context Binding Specified by Advice

In AspectJ and AspectlJ-like languages, context binding is specified by point-
cuts. For example:

pointcut a(int argl) : call(x print(...)) && args(argl);

This AspectJ statement binds arg! to the argument passed to print(int).
We believe this approach has the following drawbacks:

(i) The binding declaration is separated from the parameter declaration

When we declare a parameter in advice, our intention is to bind this
parameter to some data in the execution context. Unfortunately, the
binding declaration is in pointcut, so we have to navigate to the point-
cut to check if the parameter has been correctly bound. Sometimes the
context binding behavior defined in the pointcut is not what we wanted,
then we have to declare new pointcut. Since every parameter declared in
advice is aimed to be bound on something, putting the two declarations
together can greatly improve the readability and modifiability.

(ii) Parameter binding must be explicitly checked
When parameter declaration and binding declaration is separated, there
might be errors of parameter unbound or binding arguments not provided.
Both situations should be explicitly checked, which adds burden to both
user and compiler implementor.

(iii) Ambiguous expression could be formed
When context binding is specified by pointcuts, we can write code like



XIONG AND WAN

this:
pointcut a(int argl) : call(* SomeMethod(..)) || args(argl);

What will happen if args(argl) evaluated as false and call(* SomeMethod..))

evaluated as true? What will be passed to argl? This is an ambiguous
expression. AspectJ considers such ambiguous expression as an error.
But such semantic error is best to be avoided by a carefully designed the
syntax.

Because of these drawbacks, the binding behavior in CCC is specified by
advice. In CCC, every parameter declaration in advice contains a binding
declaration specifying which data in the executing context this parameter
should be bound to. For example, the following statements bind argl to the
first argument passed to print method:

<Advice Behaviour="SomeBehaviorMethod"
Type="Before">
<PointCut>
<MethodNameMatches>print</MethodNameMatches>
</PointCut>
<Parameters>
<Parameter Name="argl">
<Type><Direct>System.Int32</Direct></Type>
<Binding Type="Argument" Index="0"/>
</Parameter>
</Parameters>
</Advice>

We believe this approach have solved all the problems above: binding
declaration and parameter declaration are put together, and never will be
parameter unbound error, binding arguments not provided error or ambiguous
expression error occur.

Admittedly, this approach has its own drawbacks. One drawback is that
it can not handle the case when a parameter to advice should be taken from
different argument positions. For example, if advice runs with the first pa-
rameter to print method, or the second parameter to write method, AspectJ
can specify the argument positions in a pointcut:

before(int x) : call(* *.print(int)) && args(x) ||
call(* *.write(int,int)) && args(int,x) {...}

But users can not specify different argument positions in our approach.
Fortunately, this can be simulated by writing multiple advices like the follow-
ing:
<Advice Behaviour="BeforePrint" Type="Before">

<PointCut>
<MethodNameMatches>print</MethodNameMatches>
</PointCut>



XIONG AND WAN

<Parameters>
<Parameter Name="x">
<Type><Direct>System.Int32</Direct></Type>
<Binding Type="Argument" Index="0"/>
</Parameter>
</Parameters>
</Advice>
<Advice Behaviour="BeforeWrite" Type="Before">
<PointCut>
<MethodNameMatches>write</MethodNameMatches>
</PointCut>
<Parameters>
<Parameter Name="x">
<Type><Direct>System.Int32</Direct></Type>
<Binding Type="Argument" Index="1"/>
</Parameter>
</Parameters>
</Advice>

public static void BeforePrint(int x)
{

AdviceBody (x);
}
public static void BeforeWrite(int x)
{

AdviceBody (x) ;

}
public static void AdviceBody(int x){...}

Another drawback is when a pointcut is modified to match different join
points, the binding specification in advice might be subject to modification.
On the other hand, usually only the pointcut is affected in AspectJ. However,
we don’t consider this a serious problem. For one thing, this case is infrequent
in development to our knowledge. For another, every approach has its own
advantages and disadvantages. There are cases when AsepctJ code is subject
to modification while CCC code is not.(e.g. When an advice needs to expose
more data from the context, the user has to modify the pointcut in AspectJ.
But in CCC, only the advice should be modified) So drawbacks like this are
acceptable.

We also suggest the high-level languages constructed on CCC adopt this
binding-in-advice approach. If a language adopts the binding-in-pointcut ap-
proach like AspectJ does, there is some extra work to do when transforming

to CCC:
For each pointcut which contains binding declaration, do the following:



XIONG AND WAN

(i) If there is no or operator in the pointcut expression, or if there is or
operator but the parameters to be bound are not contained in any one of
its operands(e.g. (call(x *.print(..)) || call(* *.write(..)))
&% this(x), z is not contained in any operands of the or operator), find
what context data each parameter binds to. Then add binding declara-
tions to all advices that use the pointcut.

(i) If there is or operator in the poincut expression and its operands contain
some parameter, do the following steps until there is no such or operator
left in the expression:

(a) Find the the or operator who has the lowest priority

(b) Decompose the pointcut into two pointcuts at the point of the or
operator. e.g. the pointcut
pointcut a(int x) : call(* *.print(..)) &&

(arg(String, x) || arg(x));

is decomposed as

pointcut al(int x) : call(* *.print(..) && arg(String, x));
pointcut a2(int x) : call(* *.print(..) && arg(x));

(c) For each advice that uses the pointcut, duplicate the advice, and use
the decomposed pointcuts respectively. For example, the following
advice
before(int x) : a(x){...}
should be modified as:
before(int x) : al(x){...}
before(int x) : a2(x){...%}

5 Implementation

To make matters simple, we created a set of classes to represent the assembly
structure in memory. This set of classes is called code graph. The system first
parses the assembly into code graph, then performs weaving operations on
code graph, and finally generates new assembly according to the woven code
graph.

The System falls into five major parts: Assembly Parser, Weaver, Assembly
Generator, Code Graph and Driver, their relationships are shown in figure 2.

Code graph is a set of classes to represent the type hierarchy in memory.

Assembly parser analyzes the structure of assembly and parses it into code
graph.

Weaver reads the aspect specified in xml files and weaves them into code
graph.

Assembly generator reads the code structure in code graph and writes them
into the new assembly:.

Driver controls the whole flow.



XIONG AND WAN

Driver
-~ | ~
- ~
- | ~ -
Yl V > A
Assembly W eaver Assembly
Parser Generator
g [ -
<. | -
~ VR
Code
Graph

Fig. 2. System Architecture

6 Related Work

There are several tools trying to enable AOP on .Net platform, such as EOSI[6],
AspectC#[3], AOP.Net[7]. Some of these tools attempt to support all .Net
languages, and these tools has greatly influenced the design of CCC.

Weave.NET[4] is a language-independent load-time weaver on .Net plat-
form. Similar to CCC, Weave.NET uses XML to specify aspect binding. It
weaves the behavior code, which stored in another assembly, into the target
assembly according to the XML file at loading time. However, Weave.NET is
designed to be used directly by the programmers, so its syntax greatly differs
from the syntax of CCC.

Loom.NET8| is another language-independent tool on .Net platform. It
uses both xml file and an extension to C# language to specify crosscutting.
But Loom.NET doesn’t modify existing types but creates new ones. And the
clients still have to modify their code to reference to the new assembly. In a
large system where types always have a lot of clients, this approach would be
less preferable than an approach that does not affects the clients.

There are also some Java AOP tools that describe pointcuts and advice
specifications outside the Java language, and utilize method in Java byte code
as advice bodies, which is similiar to what CCC does. JBoss-AOP[12] is the
Java AOP architecture used for the JBOSS application server. AspectWerkz[1]
is a dynamic, lightweight and high-performant AOP/AOSD framework for
Java. They both use XML to specify aspect binding.



XIONG AND WAN

7 Conclusion and Future Work

The purpose of CCC is to provide an aspect-oriented intermediate language on
Net platform. We have strived to make CCC powerful, so that many language
concepts are supported directly and the work of high-level language compiler
is minimized, and flexible, so that the languages of different styles can all be
supported by combining the language constructs in CCC differently.

We also summarized the characteristics which distinguish CCC from ex-
isting languages and stated the reason of such design:

(i) Primitive pointcuts.
(ii) Static join point model.
(iii) Specify context binding by advice.

We hope this tool will accelerate the development of aspect-oriented lan-
guages on .Net platform and will enable the .Net community to get more
involved with aspect-oriented software development.

The current implementation of CCC compiler is just a prototype and its
functionality is limited. e.g. It can not support assembly that contains un-
managed code. So the future work is mainly focused on creating a stable
compiler. Also the current XML-based language is not so efficient as an inter-
mediate language, so we plan to develop a binary equivalent which could be
efficiently parsed and generated.

Aspect is often good reusable unit in its nature. But most languages only
support aspect reuse on source code level. With the development of language
in binary form, we also plan to support aspect reuse on binary level. One
assembly can reuse the aspect defined in another assembly without referring
to the source code of that assembly.

References

[1] Boner, J., and A. Vasseur, AspectWerkz Documentation,
http://aspectwerkz.codehaus.org/introduction.html, 2004

[2] Fallside, D.C., XML Schema Part 0: Primer,
http://www.w3.org/TR/2001/RECxmlschema-0-20010502/, 2001.

[3] Kim, H., “AspectC#: An AOSD implementation for C#,” M.Sc. thesis, Trinity
College, Dublin, 2002.

[4] Lafferty, D., and V. Cahill, Language Independent Aspect-Oriented
Programming, Proceedings of OOPSLA ’03, 2003

[5] Lidin, S., “Inside Microsoft .NET IL Assembler. Microsoft Press, ” Redmond,
Washington, 2002.

[6] Rajan, H. and K. Sullivan, Eos: Instance-Level Aspects for Integrated System
Design, Proceedings of the ESEC/FSE ’03, 2003


http://aspectwerkz.codehaus.org/introduction.html
http://www.w3.org/TR/2001/RECxmlschema-0-20010502/

XIONG AND WAN

[7] Schmied, F. AOP.NET Homepage,
http://wwwse.fhs-hagenberg.ac.at/se/berufspraktika/2002/se99047/

contents/english home.html, 2003

[8] Schult, W., and A. Polze, Aspect-Oriented Programming with C# and
.NET, Proceedings of International Symposium on Object-oriented Real-time
distributed Computing ’02, 2002, 241-248

[9] Schult, W., and A. Polze, Dynamic Aspect-Weaving with .NET, Workshop
zur Beherrschung nicht-funktionaler Eigenschaften in Betriebssystemen und
Verteilten Systemen, TU Berlin, Germany, 7-8 November 2002.

[10] Tarr, P. and H. Ossher, Hyper/J User and Installation Manual,
http://www.research.ibm.com/hyperspace/, 2000

[11] The AspectJ Team, The AspectJ Programming Guide (V1.0.6),
http://dev.eclipse.org/viewcvs/indextech.cgi/~checkout~/aspectj-home
/doc/progguide/index.html, 2004

[12] The JBoss Team, The JBoss AOP Homepage,
http://www. jboss.org/index.html?module=html&op=userdisplay&id=
developers/projects/jboss/aop, 2004


http://wwwse.fhs-hagenberg.ac.at/se/berufspraktika/2002/se99047/contents/english_home.html
http://wwwse.fhs-hagenberg.ac.at/se/berufspraktika/2002/se99047/contents/english_home.html
http://www.research.ibm.com/hyperspace/
http://dev.eclipse.org/viewcvs/indextech.cgi/~checkout~/aspectj-home/doc/progguide/index.html
http://dev.eclipse.org/viewcvs/indextech.cgi/~checkout~/aspectj-home/doc/progguide/index.html
http://www.jboss.org/index.html?module=html&op=userdisplay&id=developers/projects/jboss/aop
http://www.jboss.org/index.html?module=html&op=userdisplay&id=developers/projects/jboss/aop

	Introduction
	Programming Model
	Specifying Aspect
	Run-Time, Load-Time and Compile-Time Weaving
	Scenarios of Using CCC

	Language Syntax and Semantics
	Join Point
	Pointcut
	Advice
	Aspect

	The Language Features of CCC
	Pointcuts Are as Primitive as Possible
	Static Join Point Model
	Context Binding Specified by Advice

	Implementation
	Related Work
	Conclusion and Future Work
	References

