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Abstract—It is well-known that using floating-point numbers
may inevitably result in inaccurate results and sometimes even
cause serious software failures. Safety-critical software often has
strict requirements on the upper bound of inaccuracy, and a
crucial task in testing is to check whether significant inaccuracies
may be produced.

The main existing approach to the floating-point inaccuracy
problem is error analysis, which produces an upper bound of
inaccuracies that may occur. However, a high upper bound does
not guarantee the existence of inaccuracy defects, nor does it give
developers any concrete test inputs for debugging.

In this paper, we propose the first metaheuristic search-based
approach to automatically generating test inputs that aim to trigger
significant inaccuracies in floating-point programs. Our approach
is based on the following two insights: (1) with FPDebug, a
recently proposed dynamic analysis approach, we can build a
reliable fitness function to guide the search; (2) two main factors
— the scales of exponents and the bit formations of significands
— may have significant impact on the accuracy of the output, but
in largely different ways. We have implemented and evaluated
our approach over 154 real-world floating-point functions. The
results show that our approach can detect significant inaccuracies
in the subjects.

I. INTRODUCTION

Inaccuracy caused by floating-point numbers is a well-known
problem in software development. In critical software systems,
disastrous results may be caused by floating-point inaccuracy.
An example well cited in the literature is the failure of a Patriot
missile to intercept an incoming missile in the first Persian
Gulf War, due to the accumulated floating-point errors during
the continuous tracking and guidance. This failure caused the
loss of 28 lives and around 100 injuries.

Floating-point numbers are usually less inaccurate because
they use finite number of digits to represent a real number.
For example, when we represent 0.1 as a (single precision)
floating-point number, because 0.1 cannot be represented
in finite digits in a binary fraction, the value is in fact
0.100000001490116119384765625. One consequence of the
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inaccuracy in representation is the rounding error, e.g., when
adding a small number to a large number, significant digits
in the small number may be rounded off due to the limited
digits to represent the final result. Accumulated rounding errors
during the computation may result in significant inaccuracy in
the output.

Because of the importance of ensuring accuracy in floating-
point calculation, several approaches [1]–[3] have been pro-
posed to detect floating-point inaccuracies. Most approaches
use static analysis based on interval arithmetic [4] or affine
arithmetic [5], trying to determine the possible range of errors
in the result of the computation. However, we observe several
limitations in reporting the ranges of errors:

• Due to the limitations of static analysis, the computed
range is often an over-approximation of the actual error,
and the difference is often very large. Even in the latest
approach [1], the computed upper bound is usually several
orders of magnitude larger than the actual error, and is
sometimes infinite. As a result, even if a large upper bound
is reported, it is still unknown whether or not a problem
in accuracy exists.

• To debug an inaccuracy problem, it would be more
convenient to have an input that triggers the problem,
so that developers can follow the execution to discover
the root cause of the problem. However, as reported by
Bao and Zhang [6], there may be only a small portion
of inputs among all possible inputs causing significant
inaccuracies in the output. Thus, it would be quite difficult
for developers to obtain such an input manually.

To overcome these problems, this paper proposes a meta-
heuristic search-based approach that aims to generate a test
input for a program to maximize the error of the output.
To the best of our knowledge, our approach is the first
metaheuristic test generation approach aiming to detect floating-
point inaccuracies. Existing test generation approaches [7],
[8] for floating-point programs focus on maximizing path
coverage rather than output errors. Our approach is based on
the following two insights. First, with FPDebug, an approach
recently proposed by Benz et al. [9], we can obtain the likely
error occurred in the output of a particular concrete execution.
Thus, we can build a fitness function around this error to guide
the search. Second, there are two main factors of the input



TABLE I: IEEE 754 floating-point representation

Sign Exponent Significand
Single Precision 1 8 23
Double Precision 1 11 52

floating-point numbers that may affect the error of the output:
the scales of exponent and the bit formation of significand,
but their relations to accuracy exhibit different characteristics.
These factors could be exploited for designing efficient search
algorithms.

In summary, we make the following major contributions:

• We perform an empirical analysis to uncover the relations
between different factors and the accuracy of output. The
results suggest that both the scales of the exponents and
the bit formation of significands may substantially affect
accuracy. While only exponents in a small interval lead
to significant inaccuracies, a large portion of significands
may lead to significant inaccuracies.

• We design a novel genetic algorithm, locality-sensitive
genetic algorithm (LSGA), based on the results of the
empirical analysis. Our basic idea is to evolve the exponent
to hit the small interval, while randomly generate the
significand as the large portion of bit formation is easy
to hit. The fitness function is built upon the output of
FPDebug [9].

• We evaluate our approach by (1) a sanity check on six
classic examples [10] of stable and unstable algorithms,
and (2) a series of experiments on 154 floating-point
functions selected from the latest version of the GNU
Scientific Library. Our experiments compare three search
algorithms, including our own, a standard genetic algo-
rithm, and a random search algorithm. Our results reveal
that (1) our algorithm exhibits absolute superiority over
the other two algorithms, and (2) our approach is able
to find extremely large inaccuracies in widely-used real
world scientific functions.

The rest of the paper is organized as follows. Section II
introduces some background knowledge, while Section III
further motivates our research. Section IV presents the empirical
analysis and our algorithm design. Section V reports the two
evaluations. Section VI discusses the main limitations and
possible future research. Section VII discusses related work,
and Section VIII concludes.

II. BACKGROUND

A. Format of Floating-Point Numbers

According to IEEE 754 standard [11], a floating-point
number contains three parts: sign, exponent, and significand.
Table I depicts the numbers of bits of the three parts in either
a single precision number or a double precision number.

Let us denote the sign as s, the value of the exponent as e,
and the value of the significand as f . If all bits of the exponent
are 1, this floating number is one of the special values:∞,−∞
or NaN , where NaN indicates errors in computation such

as division by zero. Otherwise, the value of a floating-point
number is depicted by Formula 1:

(−1)s × f × 2e (1)

Suppose that the significand is in the form of b0b1 . . . bn−1,
the value of the significand, f , is defined by Formula 2:

f =

{∑n−1
i=0

bi
2i+1 , if all bits of e are 0

1 +
∑n−1

i=0
bi

2i+1 , otherwise
(2)

Suppose that the exponent is in the form of b0b1 . . . bn−1,
the value of the exponent, e, is defined by Formula 3:

e =

n−1∑
i=0

2ibi − 2(n−1) + 1 (3)

B. Genetic Algorithm

A Genetic Algorithm (GA) [12] is a metaheuristic search
technique that simulates the process of natural selection for
solving optimization problems. In a GA, each candidate solution
is called an individual, and has a set of properties that can be
represented in a binary form. There is also a fitness function f
to evaluate how close an individual is to an optimal solution.

The process of GA typically starts from a set of individuals,
randomly selected or pre-defined, to form the first generation.
The population size is problem-dependent. When to create the
next generation, all the individuals in the current generation
are put into a selection pool, in which each individual has a
probability, which is dependent on the fitness of the individual,
to be a parent for generating individuals in the next generation.
To create an individual in the next generation, a pair of parent
solutions are selected from the selection pool. Then, two types
of operations (i.e., crossover and mutation) are used to create
a child of the two parents. The generated children, optionally
plus the individuals from the previous generation, form the
next generation. The selection-creation loop is repeated until
reaching a termination condition, such as finding a good enough
solution, reaching the maximum number of generations, and
reaching the time limit.

There are several key components in designing a genetic
algorithm, such as the selection method (i.e., how to select
individuals for reproduction), crossover operator (i.e., how to
produce a child from two parents), mutation operator (i.e., how
to mutate a child), and initial population (i.e., how the first
generation is populated).

III. MOTIVATING EXAMPLE

Example. To motivate our research, let us consider function
F (x) defined in the following code snippet. F (x) is a carefully
constructed example to demonstrate the problem of floating-
point inaccuracy, containing several major operations on
floating-point numbers (addition, subtraction, division) and
a common code pattern (adding up many numbers in a
loop). F (x) should always returns a constant number in real
arithmetic.
float F(float x)



{
1: int i,n=8192;
2: float y,z;
3: y=z=n;
4: if (x<0) x=-x;
5: for (i=0;i<n;i++)
6: y=y+x;
7: y=y/z;
8: return (0.125f+x)/(y-0.875f);
}

As the loop on Lines 5 and 6 will be executed n times,
the value of y before executing Line 7 should be equal to
n∗(1+|x|). To make the analysis easy, we set n to 8192 = 213.
As a result, the value of y after executing Line 7 should be
equal to 1 + |x|. Therefore, F (x) should always return 1.

However, due to the accumulation of rounding errors in the
loop, the value of y after executing Line 7 cannot be exactly
1 + |x|. This error will be further magnified on Line 8. As
a result, F (x) may produce significant inaccuracy for some
input x. The most inaccurate output is 1.0039062.
Range of problematic inputs. The range of x for F (x) to
produce significant inaccuracies is not large. The reason is that,
when the value of |x| becomes larger (e.g., 10 times larger
than 0.125), the value of F (x) will be mainly decided by
|x|, not the accumulated rounding error. In fact, all the cases
of inaccuracy over 0.001 occur when x is between -0.4 and
0.4. Note that, when the value of x is very close to 0, F (x)
cannot produce very large inaccuracy. The reason is that a
very small |x| (e.g., smaller than 0.0001) would not produce
a large enough rounding error when executing the loop only
8192 times.

Considering that the number of possible values of x is
huge when testing F (x), generating tests to trigger significant
inaccuracies of F (x) should be difficult. In fact, if we want
to trigger an inaccuracy that is close to the largest inaccuracy
0.0039062, e.g., the absolute error is larger than 0.0039, the
range of |x| is much smaller (i.e., between 0.0004874 and
0.0004883). Note that existing coverage-based test generation
cannot help here, since any value of x can achieve 100% branch
coverage.
Factors affecting accuracy. This example demonstrates that
there are two distinctive factors that may affect the error of
the output, and the impact of one factor may be very different
from the other. The first factor is the scale of the exponent
in the input. Since the scale of a floating number is mainly
determined by its exponent, only when the exponent falls into
a small range can the input trigger a large error. The second
factor affecting the accuracy of the output is the bit formation
of the significand. Due to the “round to even” policy adopted
by floating-point numbers, large inaccuracies appear only when
the accumulated rounding errors do not cancel each other. This
requires that the formation of bits in the significand exhibits
certain patterns.

IV. APPROACH

A. Problem Definition

Given a program using floating-point numbers (denoted as
P ) with M input parameters (denoted as I1, I2,...,IM ), we

deem the problem of detecting floating-point inaccuracy in P
as a search problem. The search space of this search problem
is the space represented by all the possible combinations of
the values of the M input parameters. The aim of the search
problem is to find a particular input (i.e., a combination of the
values of the M input parameters) that maximize the error of
the output.

To solve this search problem, we need a criterion to
determine whether one input would lead to a more inaccurate
output than another input. Search algorithms will use this
criterion to guide the searching process. Unlike coverage, which
is widely used as the criterion in search-based test generation,
it is not straightforward to set up the criterion needed in our
approach. Fortunately, Benz et al. [9] recently proposed a
dynamic analysis technique which dynamically increase the
precision of the floating-point numbers to calculate both the
likely absolute error and the likely relative error of the output
of a program for an arbitrary input.1 Following the common
practice [16], we use relative error to measure the inaccuracy
of the output. Let us denote the real result as R and the actual
output as A. The relative error is defined as |R−A|/|R|.

With this basic framework, different metaheuristic search
techniques can be adopted for detecting significant inaccuracies.
However, it is not easy to discover significant inaccuracies
through searching. First, as our motivating example and an
existing study [6] have shown, often only a very small portion
among all possible floating-point numbers may lead to serious
inaccuracies. When there is more than one input parameter
for a floating-point function, the probability of hitting a large
error becomes very low. Second, FPDebug has a slow down
of several hundreds of times [9], such that we could test only
a relatively small number of input values during the search
process. As a result, it is critical to design an effective search
algorithm that hits large inaccuracies quickly. To design such an
algorithm, we perform a small empirical analysis to understand
the relation between the accuracy of the output and different
factors.

B. Empirical Analysis

In Section III we have seen that there are two main factors
that may affect the accuracy of the output, each corresponding
to one of the three main components of a floating-point numbers.
These two factors can be exploited to design an effective search
algorithm. To further understand the relation between the two
factors and the accuracy of the output, we performed a small
empirical analysis.

Analysis setup. In our analysis, we randomly chose four
functions from the GNU Scientific Library (GSL). More de-
scription of GSL can be found in Section V. The four functions
are bessel K0, Ci, erf, and legendre Q1. Function bessel K0
computes the cylindrical Besssel function, Ci computes the
Cosine integral, erf computes the Gauss error function, and
legendre Q1 computes the Legendre function. We deliberately

1These errors are likely errors because increasing the precision does not
guarantee more accurate result in all cases [13]–[15].
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Fig. 1: erf at significand 0x34873b27b23c6

Fig. 2: erf at exponent 1023

chose functions with one floating-point input parameter to
simplify our analysis.

We invoked these programs in FPDebug with different inputs,
and monitored how the relative errors of output change based
on the change of input. To better understand the two factors
individually, we fixed one factor and changed the other. First
we fixed significand and changed exponent. For each program,
we randomly generated three significands. For each significand,
we combined it with every possible exponent allowed by the
double precision format to form an input to a subject program,
and then we executed the program in FPDebug to get the
error for each input. Second we fixed exponent and changed
significand. We randomly generated two exponents for each
program. However, because of the slow down from FPDebug,
it is not possible to test the whole space of significand in
double precision. As a result, we generated 100,000 random
significands and tested each pair of significand and exponent.
In all tests, we set the sign bit to 0.
Results. Fig. 1 shows different relative errors at different
exponents for function erf when the significand is fixed at
0x34873b27b23c6. Fig. 2 shows different relative errors at
different significands for erf when the exponent is fixed at
1023. Note that in the X axes of both figures, we interpret both
the exponents and significands as unsigned integers, and report
their integer values. We shall use the two figures as examples
to illustrate our results, and the experiments on all functions
exhibit very similar patterns.

First, we observe that both the exponents and the significands
have a great impact on the relative errors. In all functions, by
changing the significands we could achieve a difference of
5∼9 orders of magnitude, and by changing the exponents we
could achieve a difference of 4∼18 orders of magnitude.

Second, we observe that the exponents that invoke large

relative errors stay in a small interval of the axis, while the
significands that invoke large errors distribute evenly on the
axis. This result confirms our analysis about the two factors in
Section III. How exponents affect accuracy is decided by their
scales, while how significands affect accuracy is decided by
their bit formations.

Third, as we can see from the figures, the portion of
exponents that invoke large relative errors is usually very
small. In the worst case, there is no more than 0.1% of
the exponents invoking errors that are within two orders of
magnitude difference of the largest error. On the other hand,
the portion of significands that invoke large relative errors is
usually large. Even in the worst case, we still have more than
28% of the significands invoking errors that are within two
orders of magnitude difference of the largest error. Note that
this result is consistent with the existing study [6]: Although
a large portion of significands may invoke large errors, the
probability of a random input invoking a large error is still
very small, as both the significand and the exponent need to
invoke large errors.

Fourth, there usually exist exponents that are near the interval
of large errors and lead to errors higher than the average. As
shown in Fig. 1, there is small burst of error near the exponent
of 1000, before the large burst near 1023. Though the errors
from the small burst are still much smaller than the largest
error, they are higher than most other errors.

Fifth, we observe that the small interval of exponents leading
to large errors is likely to be near the value 1023, which
is just the median of all double-precision exponents. This
indicates that the exponents around the median may have
higher probability to invoke large relative errors.

The third observation suggests that the key to design an
effective search algorithm is to hit the small interval of the
exponents that lead to large errors, which is much more
difficult than hitting a significand that lead to a large error.
The fourth and fifth observations indicate possible strategies
towards this problem. The next section explains how we design
our algorithm based on these observations.

C. Our Genetic Algorithm

As revealed by the fourth observation, exponents near the
small interval of large relative errors may also invoke a
relatively high error. Though it is difficult to hit the small
interval of large errors, it is much easier to hit an exponent near
it, and gradually evolve the exponent to hit the small interval.
Based on the fifth observation, exponents invoking large errors
often appear near the median of all possible exponents, so
searching around the median might be more effective than
searching in other places.

Based on these ideas, we design a genetic algorithm, named
locality-sensitive genetic algorithm (LSGA). A high-level
outline of our algorithm is shown in Algorithm 1. Let us first
consider programs with one floating-point input parameter. Our
genetic algorithm first randomly generates a set of exponents
(line 1). This generation process tries to make the generated
exponents evenly distributed in the space of all exponents,



Algorithm 1 Outline of LSGA

1: population ← generateInitialPopulation()
2: for i ← N do
3: input ← select(population)
4: input ← mutate(input)
5: population.add(input)
6: return maxError(population)

but favors exponents around the median. These exponents are
combined with randomly generated significands and signs to
form the initial population. During every iteration, we pick
an individual with a high relative error (line 3), mutate it
(line 4) and put it back to the population (line 5) without
removing the original one from the population. The mutation
process adds a random number to the exponent, regenerates its
significand randomly, and flips its sign bit with a probability.
This process repeats until a predefined number of iterations
have been reached, and the result with the highest relative
error is returned (line 6). Programs with multiple floating-point
input parameters are processed in a similar way, but each time
we deal with a set of floating-point numbers rather than one
number.

The algorithm always randomly generates the significand
because, as revealed by our empirical analysis, a randomly
generated significand already has a high probability to invoke
a large error. To avoid further complication for our algorithm,
we use random search for the significands. We regenerate the
significands at every mutation to increase the diversity of the
population. Our algorithm also drops the cross-over operation
in the standard genetic algorithm, because we do not find
sensible operation to combine two exponents based on their
scales. As a matter of fact, this coincides with the design of
many existing genetic algorithms, which favor mutation over
cross-over [17].

We can see that there are three main components of the
algorithm: generate an initial population, select, and mutate.
In the following we explain each in detail.

Initial Population. We generate n exponents as the initial
population based on a uniform distribution, but the exponents
in the interval [median − t,median + t] has a probability
five times as high as other exponents. Number median is the
median value of all possible exponents, being 1023 for double-
precision and 127 for single-precision. Number t is equal to
2dk/2e in our current implementation, where k is the number
of digits in the exponent part.

To implement this distribution, we separate the space of
exponents into n intervals, where the lengths of the intervals
within [median − t,median + t] are five times as small as
those outside [median− t,median+ t]. For programs with a
single floating-point input parameter, we randomly generate an
exponent within each interval, and get n inputs. For programs
with multiple floating-point input parameters, we randomly
pick an interval and generate an exponent within the interval
for each parameter. We repeat the generation n times for n

sets of parameters.
For each generated exponent, we randomly generate the

sign bit and the significand to form a floating-point number.
Then we run the program in FPDebug with each set of input
parameters to get the relative error of its output.

Selection Method. In the selection step, we would like to
favor the inputs that lead to a larger error. A standard selection
method for this purpose is roulette wheel selection [18], where
the probability of selecting individual i is fi/

∑n
j=1 fj , where

fi is the fitness (in our case, relative error) of individual i and
n is the total number of individuals. However, this method is
not suitable for our case because the probability of hitting a
large error is small. If we have not hit a large error, it is likely
that in our population there is only a few number of individuals
whose errors are slightly larger than the others. Roulette wheel
selection cannot select those slightly better individuals because
their number is too small. On the other hand, if we really
encounter an individual who has several orders of magnitude
larger error than other individuals, it is unlikely we will choose
any other individual.

To overcome this problem, we choose the group-based rank
selection, which is more suitable to our case based on existing
studies [18]. We first group the population by their relative
errors. Every two individuals in a group have a difference of
no more than two orders of magnitude in relative error. Then
we select a group by their rank. We first select the group with
highest relative errors with a probability of p. If the first group
is not selected, we select the group with the second highest
relative error with probability of p, and etc. After we have
selected a group, we pick a random individual from the group.
Based on our experience with a few small programs, we set
p = 0.6.

Mutation Operation. As mentioned before, given a floating-
point number, our mutation operation adds a value v (can be
positive or negative) to its exponent, flip its sign bit with a
probability q, and randomly regenerate its significand. After
mutation, we run the program with the mutated input in
FPDebug to get the relative error on the output.

The value v is decided by a normal distribution N (0, σ2),
where σ2 is the length of the interval in the initial population
which this exponent falls in. This setting ensures that the change
to the exponent is always small, and is even smaller around
the median because the initial population is already condensed
around the median.

To ensure the sign bit is not frequently changed, we set q
as 0.1 in our current implementation.

Number of Iterations. Since the maximum population size in
our algorithm is confined by the number of times that FPDebug
can be executed within a time frame, it is important to properly
balance between the number of initial population (denoted as
n) and the number of mutations (denoted as m). We currently
set n = m in our implementation. This setting is different from
common genetic algorithms where n � m. However, since
our main task is to hit the small interval of exponents that lead
to large errors, it is important to have a large initial population



TABLE II: Sanity Check Results

Newton Inv Root Poly Exp Cos
LSGA 2.8E-16 3.2E-16 8.1E+76 1.7E-11 1.0E+00 9.2E-01
BGRT 1.7E-16 2.5E-16 1.3E-14 4.7E-14 2.1E-15 1.2E-16

to cover the whole space.

V. EVALUATION

A. Sanity Check

We first evaluated our technique on a set of collected test
subjects from related work [10]. These subjects consist of six
classic examples of stable and unstable implementations, as
shown in Table II, where the first two programs are stable
and the rest are unstable. Stable implementations are likely to
produce accurate results than unstable ones.

Our technique is able to confirm those stable implementations
and find relevant inputs that lead to large errors for the unstable
ones. For each of the two stable programs in the set, the
maximal relative error detected by our approach is smaller
than 1 × 10−15. For each of the four unstable programs in
the set, the maximal relative error detected by our approach
is larger than 1 × 10−11. This result provides a preliminary
evidence on the feasibility and usefulness of our approach.

Interestingly, in parallel to our work, Chiang et al. [19] also
explore search algorithms for inputs that cause large errors,
and in their experiments a guided random search algorithm
(BGRT) works best. We also compared our technique with
BGRT on the six subjects. As we can see from Table II, on
none of the subjects BGRT outperforms LSGA, and BGRT also
cannot distinguish stable and unstable subjects. One possible
explanation is that guided random research cannot exploit the
benefit of the fourth observation. Consequently, though BGRT
found relatively large errors, it could not hit the largest one.

B. Experiment Overview and Research Questions

To further understand the performance of our approach on
real world programs, we performed an experimental study using
154 functions from the GNU Scientific Library. In our study,
we experimentally compared our approaches with two standard
search techniques, a random search (RAND) and a standard
genetic algorithm (STD), serving as the control techniques.

To compare the three techniques, a limit should be set to
terminate the search. Based on our testing, executing programs
in FPDebug occupies more than 99.5% of the execution time
in all three search algorithms. For convenience, we set a limit
on the number of times that FPDebug can be invoked by each
algorithm. Then we compared the effectiveness of the three
techniques on each function under this limit.

In general, our experimental study aims to investigate the
following two research questions. The first research question
(RQ1) is concerned with which of the three technique tends to
find larger inaccuracies for each experimented function. The
second research question (RQ2) concerns whether our approach
is able to detect potential accuracy problems in practice.

TABLE III: Subjects with Different Parameters

Total 1-Para 2-Para 3-Para 4-Para
154 104 37 8 5

C. Experimental Setup

We conducted our experimental study on a virtual machine
running the Ubuntu-10.04.4, hosted on a PC with a 2.3GHz
Intel Pentium i5-2410M CPU and 6GB memory.

1) Subjects: Our subjects are also chosen from the latest
version (i.e., version 1.16) of the GNU Scientific Library
(GSL)2 as subjects. GSL is an open-source numerical library
for C and C++ programmers. The library provides a wide range
of mathematical routines such as random number generators,
special functions, and least-squares fitting. GSL has been
used in previous studies [10], [20] on analyzing programs
with floating-point numbers. GSL has in total 210 functions
involving intensive floating-point computations. From these
functions, whose total size is 48K lines of code, we chose
all the functions with all inputs being floating-point numbers
and the output being also a floating-point number. There are
also three functions where FPDebug is reported to not work
properly [9], so we removed the three functions. As a result, we
used 154 functions in our experimental study. Each of the 154
functions has up to 4 parameters. Table III depicts the numbers
of functions having 1, 2, 3, and 4 parameters, respectively. All
the parameters and the return values of the 154 functions are
of double precision.

2) Control Techniques: As mentioned earlier, we use a
random search and a standard genetic algorithm as control
techniques. The random search randomly generates every bit of
the input parameters at each iteration, and returns the maximum
relative error in all iterations. The standard genetic algorithm is
designed by configuring the classic framework for genetic
algorithm [21] using standard operations [21], [22]. More
concretely, the algorithm starts from N randomly generated
inputs as initial generation. For each generation, the algorithms
repeat n/2 reproduction iterations to produce n children for the
next generation, with each iteration producing two children. In
every reproduction iteration, the algorithm picks two individuals
from the current generation based on roulette wheel selection.
The weight of each individual is the logarithm of the relative
error. As recommended by the framework [21], computing
logarithms is suitable for largely different fitnesses. Then each
pair of parameters at the same position in the two individuals are
crossed over with a probability C. The crossover is performed
by treating the numbers as bit vectors, and exchange the first i
bits of the two numbers with a randomly generated i. Finally,
every bit of the two individuals are flipped with probability M .
After a new generation is produced, the process starts with the
new generation. Finally, the individual with the largest error in
all generations is returned. Following the recommendation in
existing papers [21], [22], we set N = 20, C = 0.96,M = 0.1.

2http://www.gnu.org/software/gsl/



3) Experimental Procedure: To answer the first research
question, for each of the subject function, we used each of the
three search techniques to calculate the maximum relative error
that the technique can find. The limit of times for invoking
FPDebug is 200, which are approximately equal to 60 seconds.
In other words, random search will generate 200 inputs, the
standard genetic algorithm will have 10 generations with
20 individuals each, and our algorithm will have 100 initial
individuals and 100 mutations. There are mainly two reasons
for us to use a relatively short iteration limit. Of course, more
experiments are needed to further study the practical iteration
limit for each of the techniques.

First, all the subject functions are library functions, which
are building blocks for real world software. As a result, the
execution time of one test input for a real world program can
be hundreds or even thousands of times of that for a subject
function in our experimental study. Thus, a small iteration limit
for our subjects may be equivalent to a long time execution for
real world programs. In other words, only techniques that can
achieve satisfactory results on our subjects in a short iteration
limit would have more practical value for real world programs.

Second, as the number of subject functions in our experi-
mental study is large, a relatively small iteration limit would
help us control our experimental procedure. Note that each
technique may need to be executed many times against each
subject function due to calibration.

The second research question is difficult to answer because
it is difficult to decide whether a large error is a problem or
not. Large errors may be fundamentally inevitable in many
computations and are not considered problems. Interestingly,
many GSL functions report an estimated absolute error for each
execution. Using this information, we conservatively deem a
large relative error ≥ 0.1% as a potential problem when the
actual absolute error is 10 times larger than the estimated one,
as the large error is probably unexpected by the developer and
may cause serious consequences.

For the generated test inputs that trigger an error larger than
0.1%, we invoke the associated functions with these inputs in
FPDebug, and compare the estimated absolute error with the
actual error reported by FPDebug. When the actual error is 10
times larger than the estimated one, we consider it a potential
problem.

D. Threats to Validity

The main threat to the internal validity lies in the possible
faults in our implementation. To reduce this threat, we reviewed
all our source code before conducting the experiments. Note
that, as Benz et al. [9] have made their tool publicly download-
able, we implemented the three techniques by directly invoking
their tool, helping us further reduce this threat.

The main threat to external validity is concerned with the
representativeness of our subjects. To reduce this threat, we
used a large number of widely used functions (which have also
been used in previous studies [10], [20]) as subjects in our
study. Conducting more experiments using more real world
programs as subjects would help us further reduce these threats.

TABLE IV: Maximum Inaccuracies Detected

Total RAND STD LSGA Tied
154 11 (7%) 24 (16%) 105 (68%) 14 (9%)

TABLE V: Sign Test on Inaccuracy Detection

n+ n− N p
LSGA vs. RAND 127 12 139 <4.14e-22
LSGA vs. STD 110 30 140 <2.46e-11
STD vs. RAND 93 40 133 <6.52e-06

The main threat to construct validity is the limit of times
that FPDebug can be invoked. To reduce this threat, we used
a short limit to make the experimented techniques applicable
for real world programs whose execution time may be much
larger than that of our subjects. Note that, a technique that can
detect inaccuracy in a short time would become more effective
(or at least as effective) when used under a long time limit.

E. Experimental Results

In this subsection, we present the experimental results for the
two research questions. All our experimental data are online.3

1) RQ1: Effectiveness of Inaccuracy Detection: Given a
subject (denoted as s) and a technique (denoted as t), if the
maximum relative error returned by the technique is larger
than both the two maximum relative errors returned by the
other two techniques, we deem that t is the best technique
for s. Therefore, for each of three techniques, we count the
number of subjects for which the technique is the best. For
some subjects, no single technique is superior to both the other
two, we deem that no technique is the best and denoted this
situation as a tie.

The result of this comparison is depicted in Table IV. As
we can see from the table, LSGA finds the maximum errors
in the majority of the subjects, while random search finds the
maximum errors in the least number of subjects. This results
indicates that LSGA are more effective than the other two
algorithms, while standard genetic algorithm is better than
random search.

To further confirm whether the differences between the three
techniques are statistically significant, we perform the sign
test on each pair of techniques. The result of our sign test on
inaccuracy detection is depicted in Table V. From the table we
can see that the differences between each pair of techniques
are significant, as p is much smaller than 0.05, the usual
threshold for significant difference. In particular, LSGA has a
very small p when compared with the other two techniques,
which indicate that LSGA has absolute superiority over the
other two techniques.

The sign test only considers which technique performs better
for each subject, but does not consider whether the differences
of relative errors found by different techniques are significant. If
the relative errors found by two techniques are very close, both
techniques are usable in practice. We deem that the difference
between the two relative errors, e1 and e2 is significant, if

3http://sei.pku.edu.cn/%7exiongyf04/papers/ICSE15.html



TABLE VI: Significantly Larger Inaccuracies Detected

Left Right
LSGA vs. RAND 55 (36%) 3 (2%)
LSGA vs. STD 44 (29%) 5 (3%)
STD vs. RAND 25 (16%) 9 (6%)

e1/e2 or e2/e1 is larger than 10. Then we calculate, for each
pair of techniques, how many significantly larger errors one
techniques found over the other.

The result is shown in Table VI. The “Left” column shows
how many significantly larger inaccuracies the left technique
found than the right. Similarly, the “Right” column shows
how many significantly larger inaccuracies the right technique
found than the left. As we can see from the table, LSGA found
significantly larger errors than the other two techniques in a
large number of subjects, while the other two techniques found
significantly larger errors than LSGA only in rare cases.

Although random search performed the worst among the
three techniques, the above result also suggests that random
search still found relatively large errors on some subjects. To
further understand why this happened, we analyze a sample
function where random search returns a large error. This
function is gsl_sf_bessel_j1, which solves spherical Bessel
function:

j1(x) =
sin(x)

x2
− cos(x)

x

For this function, random search reaches the maximum relative
error of 1.089913e+02, a fairly large error. The implementation
code of this function is listed below:
int gsl_sf_bessel_j1_e(const double x,

gsl_sf_result * result)
{
1: double ax = fabs(x);
2:
3: /* CHECK_POINTER(result) */
4:
5: if(x == 0.0) {
6: result->val = 0.0;
7: result->err = 0.0;
8: return GSL_SUCCESS;
9: }
10: else if(ax < 3.1*GSL_DBL_MIN) {
11: UNDERFLOW_ERROR(result);
12: }
13: else if(ax < 0.25) {
14: const double y = x*x;
15: const double c1 = -1.0/10.0;
16: const double c2 = 1.0/280.0;
17: const double c3 = -1.0/15120.0;
18: const double c4 = 1.0/1330560.0;
19: const double c5 = -1.0/172972800.0;
20: const double sum = 1.0 + y * (c1 + y * (c2 + y *

(c3 + y*(c4 + y*c5))));
21: result->val = x/3.0 * sum;
22: result->err = 2.0 * GSL_DBL_EPSILON *

fabs(result->val);
23: return GSL_SUCCESS;
24: }
25: else {
26: gsl_sf_result cos_result;
27: gsl_sf_result sin_result;
28: const int stat_cos = gsl_sf_cos_e(x, &cos_result);
29: const int stat_sin = gsl_sf_sin_e(x, &sin_result);
30: const double cos_x = cos_result.val;
31: const double sin_x = sin_result.val;
32: result->val = (sin_x/x - cos_x)/x;
33: result->err = (fabs(sin_result.err/x) +

fabs(cos_result.err))/fabs(x);

34: result->err += 2.0 * GSL_DBL_EPSILON *
(fabs(sin_x/(x*x)) + fabs(cos_x/x));

35: result->err += 2.0 * GSL_DBL_EPSILON *
fabs(result->val);

36: return GSL_ERROR_SELECT_2(stat_cos, stat_sin);
37: }
}

In the above code, GSL_DBL_MIN is about 2.22507e-308.
This function divides the input space into four segments,

and returns (1) a constant number (line 6), (2) an underflow
error (line 11), (3) the value calculated by series expansion
(lines 14-21), and (4) the value calculated by standard library
functions (lines 28-32).

Since the program has no loop, the only possibility of
producing such a large error is to subtract two similar numbers,
known as cancellation [16]. Cancellation can happen at addition
and subtraction, which exist on line 20 and line 32. In the case
of line 20, because the path condition (line 13) is |x| < 0.25, y
and each ci produced between lines 14 and 19 will be largely
different on scale, and we will not subtract two similar values.
On the other hand, large error may be triggered on line 32,
e.g., when x is a large number and cos(x) happens to be near
zero.

As a result, the probability of producing a large error for a
random input is decided by the probability of executing line 32
and the probability of producing a large error when line 32 is
executed. We obtain the former by analyzing the path condition
and the latter by sampling. The path condition of line 32 is
|x| ≥ 0.25, and 50.14% of all double-precision floating-point
numbers fall in this range. We then randomly created 100
test inputs satisfying |x| ≥ 0.25, and 15 of them generated
a relative error larger than 1.0. Putting the two probabilities
together, 7.521% of random inputs will trigger an extremely
large error. It is very easy for random search to locate an input
within this range. Since there were 200 test inputs created in
our experiment, there is a probability of 99.99995% to trigger
a large error.

The analysis of this sample function explains why random
search can find large errors in some cases: there exist subjects
for which very significant inaccuracies can be easily triggered
by chance. Nevertheless, our results also suggest most programs
do not belong to this category, and metaheuristic search-based
approaches would be useful in locating large errors in these
programs.

2) RQ2: Ability to Identify Potential Problems: In the
previous experiment, our algorithm generated test inputs for
59 functions where the relative error is larger than 0.1%. We
invoked these functions with the generated test inputs, and
functions returned estimated absolute errors together with
the result. By comparing the actual and estimated absolute
errors, we found 18 functions that have potential problems
of inaccuracy. This result again outperforms the other two
algorithms significantly, where the STD found seven potential
problems and RAND found five.

The detailed result about the 18 functions is shown in
Table VII. Each line is a potential problem our approach
identifies. The first column lists the function names, the second



TABLE VII: Functions with Potential Bugs

Name Relative
Error

Estimated
Absolute
Error

Reported Ab-
solute Error

airy Ai deriv 1.54E+06 1.04E-06 1.35E+00
airy Ai deriv scaled 1.54E+06 1.04E-06 1.35E+00

clausen 5.52E-02 6.37E-17 2.31E-02
eta 9.58E+13 1.27E+37 2.71E+50

exprel 2 2.85E+00 4.44E-16 7.41E-01
gamma 1.07E-02 6.94E-14 1.05E-01

synchrotron 1 5.35E-03 4.47E-14 3.07E-04
synchrotron 2 3.67E-03 6.39E-14 1.86E-04

zeta 9.58E+13 3.41E+18 1.19E+32
zetam1 1.42E-02 1.51E+19 7.42E+30

bessel Knu 6.08E-03 3.33E+22 9.05E+34
bessel Knu scaled 6.08E-03 2.66E+22 9.05E+34

beta 9.21E-03 4.91E-13 2.04E-01
ellint E 8.92E-03 1.58E-16 3.14E-03
ellint F 8.79E-03 1.86E-16 3.64E-03

gamma inc Q 1.36E+13 8.88E-16 1.25E-12
hyperg 0F1 5.80E+06 2.08E+37 7.33E+49
hyperg 2F0 4.35E-03 5.20E+02 3.19E+12

column lists the relative errors reported by FPDebug, the third
column lists the estimated absolute errors reported by the
subject functions, and the last column lists the absolute errors
reported by FPDebug.

We can see that in most cases the actual errors are many
orders of magnitudes larger than the estimated ones, indicating
potentially serious problems in practice. By searching the
GSL repository, we found that none of problems in the 18
functions has been reported as bugs, while there exist bug
reports reporting relative errors in a few orders of magnitude.
We have submitted bug reports for the identified functions, but
have not received any feedback yet (possibly due to the fact
that there is only one programmer actively maintaining GSL
now).

VI. LIMITATIONS AND FUTURE WORK

First, our approach relies on FPDebug to detect the accuracy
of the output, and FPDebug detects the accuracy through
promoting the precision of floating-point numbers. For ex-
ample, if the original program uses single-precision numbers,
FPDebug will use double-precision numbers to perform the
same computation, and compare the results to get the relative
error. In theory, this approach may not always produce the
correct result, because precision-specific treatments may be
used in programs. For example, the original program may
predict some large error for the precision it used and add
to the result a pre-defined value to compensate the error, or
the original program may use bit operators to accelerate the
computation, which usually works only for a certain precision.
Raising precision on these programs may not lead to more
accurate results. As a result, the inaccuracies reported by our
approach are only indications of potential accuracy problems
and are not guaranteed to be bugs. However, this probably
is not a problem in practice. First, programmers are able to
identify the false positives easily, as they know whether any
precision-specific treatment is used in their programs. Second,
precision-specific treatments are not very commonly used in

practice. As a matter of fact, precision adjustment has been
used in different approaches [6], [23]–[25], and no problem is
reported as far as we know.

Second, as our approach is based on testing, we cannot
guarantee the inaccuracy detected by our approach to be always
the maximum inaccuracy the program under test can produce.
Similarly, when there are several inputs in the input domain
of the program under test to trigger significant inaccuracy, our
approach may find only one of them. Note that, when there
are several independent inaccuracy-related faults, it is very
likely that these faults lead to multiple unrelated inaccuracy-
inducing inputs. In fact, as we do not know the maximum
inaccuracy of the program under test, we also do not know
how close the inaccuracy produced by our approach is to the
maximum inaccuracy. In future work, we need to establish
some benchmarks of maximum inaccuracy through exhaustive
search, and use the maximum inaccuracy to evaluate our
approach. Furthermore, we should also investigate the injection
of inaccuracy faults to create subject programs with controllable
inaccuracy.

Third, although FPDebug provided by Benz et al. [9] needs
to instrument the binary code of the program under test, our
approach itself is in principle a black-box approach. That is to
say, our approach does not analyze the code of the program
under test, but completely relies on the results produced
by FPDebug. This strategy should be suitable for programs
with simple control structures like the function discussed in
Section III. But there are also programs with both complex
control structures and intensive floating-point computations.
In future work, we plan to investigate approaches that can
also utilize information (e.g., coverage information) obtained
from code analysis. One possible benefit of using coverage
information is that, as collecting coverage information is much
cheaper than executing Benz et al.’s tool, using coverage
information to avoid always executing Benz et al.’s tool could
make our approach more efficient. Another possible benefit of
using coverage information is that coverage information may
guide our approach to explore more paths to find more than
one independent inaccuracy-related faults.

Fourth, our approach is currently applicable to only floating-
point parameters. If the function has other type of parameters,
the user has to specify pre-defined values for them. In future
work, we plan to investigate approaches that can also deal with
other types of parameters. One possible way is to consider
suitable representations of other types of parameters in our
genetic algorithm. Thus, our genetic algorithm can be naturally
extended to these types. Another possible way is to use different
heuristics (e.g., a heuristic based on coverage) for other types to
consider that they may play different roles from floating-point
numbers in programs with intensive floating-point calculation.

Finally, it would be interesting to compare our approach with
static analysis approaches that give an upper bound of errors.
However, it is hard to be done at the current stage because
we do not know the maximum possible errors of our subjects.
Furthermore, to the best of our knowledge, there exists no
nontrivial benchmark with precious bounds of errors. When a



static analysis produces a large upper bound while our approach
finds only a small error, we cannot decide which approach
performs better. In future work, benchmarks of floating-point
error can be developed so that different approaches can be
compared.

VII. RELATED WORK

Static analysis. Many approaches have been proposed to
statically analyze the possible upper bound of errors. These
approaches are typically built upon interval arithmetic [4] or
affine arithmetic [5]. Interval arithmetic presents each number
as a pair of a lower bound and a upper bound of values,
and replaces basic arithmetic operations as operations between
intervals. For example, adding two intervals resulting in another
interval presenting the maximally possible range of the result:
[a, b]+[c, d] = [a+c, b+d]. Affine arithmetic enhances interval
arithmetic by distinguishing errors coming from different
sources. In affine arithmetic, each number is represented as an
affine: v+x1ε1+x2ε2+ . . . where v is the precise value, xi is
the error coming from a source and εi is a symbol representing
the source. By differentiating errors by their sources, affine
arithmetic can produce better result in operations such as n−n
where the operands contain errors from the same sources.

Typical static analysis approaches replace the numbers and
operations in the target program in their interval/affine form,
and use standard program analysis techniques such as symbolic
execution and data-flow analysis to obtain the possible errors
on the output. For example, Putot et al. [2] present a static
analysis that relies on abstract interpretation by interval form.
Goubault and Martel [3] also propose an approach based on
affine arithmetic to analyze nontrivial numerical computations.
However, these approaches usually consider the possible errors
for the whole input space, and cannot identify which input
could produce a large error. Furthermore, due to the nature of
static analysis, a large interval on the output does not guarantee
the existence of a large error.

Static verification. Another branch of approaches try to verify
the precision of floating-point programs. Given a property
about the floating-point accuracy, these approaches try to verify,
automatically or interactively, whether the property holds in
a program. Boldo et al. [26], [27] build support for floating-
point C programs in Coq, allowing one to easily build proofs
for floating-point C program. Ayad and Marché [28] propose
the use of multiple provers to try to automatically generate
proofs of floating-point properties. Darulova and Kuncak [1]
propose a type system to guarantee the precision of floating-
point programs. However, the verification-based approaches
suffer from the same problem as static analysis: failing to
prove a properties does not necessarily implies the existence
of a large error, and no input could be provided for further
debugging.

Precision tuning. FPDebug [9], the key component enabling
our approach, dynamically analyzes the program by performing
all floating-point computation side by side in higher precision.
The difference between the standard result and the result in

high-precision is the error of the result. Bao and Zhang [6]
proposes to reduce the cost of detection by not computing the
precise error but marking and tracking potentially inaccurate
values. Based on similar ideas of tuning precision, Lam et
al. [24], Rubio-González [25], and Schkufza et al. [23] propose
approaches that automatically reduce the precision of floating-
point computation to enhance performance with an acceptable
loss of precision. These approaches serve as evidences that
changing precision is a feasible technique for various purposes.

External errors. Our approach focuses on internal errors,
which is about how much inaccuracy may be introduced
during the computation of the program. External errors are
errors from the sources outside the scope of the program.
Such external errors in the input may be magnified during the
computation of the program and result in significant inaccurate
output. Different approaches have been proposed to analyze
how robust a program is under an inaccurate input. Recent
work include static verification of robustness by Chaudhuri et
al. [29], dynamic analysis by Tang et al. [10], and dynamic
sampling by Bao et al. [30]. However, these approaches cannot
be used for internal errors as they are concerned with the
execution of the subject program but not the precise output.

Test generation for floating-point programs. Test input gen-
eration is an important research topic and has been approached
in different angles [22], [31], [32]. A typical approach [33] is to
use symbolic execution to explore different paths and generate
test inputs by solving path constraints. However, constraints
with floating-point operations are usually difficult to solve.
Miller and Spooner [7] first propose the use of search-based
techniques instead of symbolic execution to generate test input
data. Recently, Bagnara et al. [8] propose to use several search
heuristics to enhance constraint-solving in concolic testing for
floating-point programs. However, their goal of test generation
is to increase path coverage, but not to detect floating-point
inaccuracies. As far as we are aware, our approach is the
first test generation approach to the detection of floating-point
inaccuracies. Besides test input, test oracle generation is also
an important problem in test automation. Recently, Zhang et
al. [34] propose to infer metamorphic relations for regression
testing. However, their approach only works for regression
testing but not for initial testing.

VIII. CONCLUSION

In this paper we have shown that, with the recent advance
in the dynamic analysis of floating-point errors, it has become
possible for search-based test generation aiming at maximizing
the likely errors. By exploiting the statistical characteristics
of large floating-point inaccuracies, we have designed a
specialized genetic algorithm in order to efficiently search for
large inaccuracies in numerical programs. Our experimental
results demonstrate that our approach is able to find many large
inaccuracies in a widely-used library, indicating the proneness
of numerical programs to large inaccuracies in practice.
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[26] S. Boldo and J.-C. Filliâtre, “Formal verification of floating-point
programs,” in Proc. ARITH, 2007, pp. 187–194.

[27] S. Boldo and G. Melquiond, “Flocq: A unified library for proving floating-
point algorithms in coq,” in Proc. ARITH, 2011, pp. 243–252.
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