
Identifying Patch Correctness 
in Test-based Program Repair

Yingfei Xiong, Xinyuan Liu, Muhan Zeng, Lu Zhang, Gang Huang

Peking University



Test-based Program Repair

Program
(Buggy)

Program’
(Fixed)

Patch

Passing test

Passing test

Failing 
test

Passing test

Passing test

Passing test



Program repair: The cure

Bug Disease

Test Symptom

Patch Therapy



Workflow : Program repair & hospital

Feel bad Bug discovered

Feel better Test passed

Cured? Correct?

Go to hospital Program repair



Symptoms are gone == cured?

Plausible patches 

• Pass all the tests

• Can still be 
incorrect (overfit)

Therapy 

• Makes you free of 
pain

• Disease may still 
be there



Tools: Hospitals

• Precision: Correct / (Correct + Incorrect) 

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

45.00%

Prophet Angelix Nopol Kali Genprog



Approach overview

Test suite

Buggy program

Test-based program repair Patch

Identifying patch 
correctness

Patch
High-quality

patch

Low precision

High precision



Plausible patches: Wrong cure

An incorrect patch produced by jKali[1]

A test checking for null dataset.
Test oracle: function draw returns normally (without exception) [1]Martinez M, Durieux T, Sommerard R, et al. 

Automatic repair of real bugs in java: A large-scale 

experiment on the defects4j dataset[J]. Empirical 

Software Engineering, 2017, 22(4): 1936-1964.



Bad therapy: What’s wrong here?

Passing test

Failing test
(Null dataset)

Nothing is done

Exception not thrown

Passing test

Failing test
(Null dataset)

Something is drawn

Exception thrown

The original draw

Should fail!



Wrong cure

• All symptoms are cured but in a bad way
• Problems are solved but not in a satisfying way

• “My leg is wounded” 

• “Cut it off so you no longer have a hurt leg”

• Weak test oracle

No exceptionDirectly return



Weak test oracle

• No exception ≠ correct patch

Weak test oracle



Plausible patches : Incomplete cure

An incorrect patch with wrong condition generated by Nopol[1]

Correct developer patch with correct null guard
[1]Xuan J, Martinez M, Demarco F, et al. Nopol: 

Automatic repair of conditional statement bugs in java 

programs[J]. IEEE Transactions on Software Engineering, 

2017, 43(1): 34-55.



Bad therapy: What’s wrong here?

Same as original 
program

The whole loop is 
skipped

increase = 0

The whole loop 
skipped

Passing test
repeat=false

Passing test
repeat=true

Failing test
repeat=false

increase should be 0

increase calculated

Expecting: increase=0
Get: Exception thrown

The original program

Passing test
repeat=true

Failing test
repeat=false

increase should be 0 This test is not 
in the test 

suite!



Incomplete cure

• Incomplete cure: concerned symptoms are cured, but some other 
symptoms are not.
• Bugs that covered by tests is fixed while others not

• “We cured your left leg and cut off your right leg”

• “So what about my right leg?”

• “Well, we only care about your left leg”

• Weak test input

Wrong condition

Missing test inputs

Existing test inputs



Test suites and heuristics

• Test suites are weak on both input and oracle.

• Two heuristics to save weak test suites:
• PATCH-SIM: compensate for weak test oracle
• TEST-SIM: compensate for weak test input

Test Test Input Test Oracle



PATCH-SIM: heuristic for test oracle

Passing tests Behavior on 
original program

Behavior on 
patched 
program

Similar

Failing tests Behavior on 
original program

Behavior on 
patched 
program

Different

“What’s more, the wound (which was bad) should be cured”

“Well, you should keep my legs (which were good) as good as before”



Bad cure identified!

Passing test Nothing happens

Passing test Something is drawnThe original draw

Different!

“Well, you should keep my legs (which were good) as good as before”



TEST-SIM: heuristic for test input
• PATCH-SIM on newly generated tests: pass or fail?

• Classification result can be used by PATCH-SIM

Behavior of the 
new test

Behavior of a 
passing testSimilar

The new test 
probably 
passes

Behavior of the 
new test

Behavior of a 
failing testSimilar

The new test 
probably 
fails

“My left leg is just like my right leg. 
My right leg is good, so my left leg is also good”



Bad cure identified!

Classified as 
passing test

The whole loop 
skipped

Passing test
repeat=false
Passing test
repeat=true

“Check my left leg, it’s good and I want it as good as before”

Different with 
original 
behavior



Workflow

• “Check my left leg, it’s good and I want it as good as before”

Test generation Classification 
by TEST-SIM

Oracle of 
PATCH-SIM

Test generation

New test inputs

TEST-SIM

Classification

PATCH-SIM

Correctness



Similar? Different?

• Test oracle: output

• Result is not all: the process is also important

• Runtime information: Behavior similarity

Not so 
reliable



Details for ‘Behavior similarity’

• Complete-path spectrum[1]: the sequence of executed statements

• Distance and similarity:

{1,2,3,2,3,2,3,2,4}

[1]Harrold M J, Rothermel G, Wu R, et al. An empirical investigation of program spectra, Acm Sigplan

Notices. ACM, 1998, 33(7): 83-90



‘Similar’ is relative, not absolute

• Behaviors on passing tests should be more similar

Common cold

• Easy cure
• Slightly affect your 

body

Cancer

• Big surgery
• Greatly affect your 

body

Simple bug

• Small patch
• Slightly affect original 

program behavior

Complex bug

• Big patch
• Greatly affect original 

program behavior



Effectiveness

• Dataset: 139 Patches from jGenProg, Nopol, jKali, ACS and HDRepair
• Defects4J benchmark

• 56.3% of incorrect patches filtered out without losing any of the correct 
patches.

Anti-pattern: pre-defined patterns

Opad: patches shouldn’t introduce crash 
or memory safety problem (designed 
for C)0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

Ours Anti-pattern Opad

Incorrect filtered Correct filtered



Summary

• Many program repair tools have low precision

• Patch correctness can be identified based on behavior similarity
• 2 heuristics: PATCH-SIM and TEST-SIM 

• 56.3% incorrect patches filtered, 0 loss on correct patches



Discussion: complicate patches

• Patches from APR are simple (for now).

• Will our approach still be effective in the future?
• E.g. on more complicate patches



Developer patches

• 194 correct patches from Defects4J benchmark

• 178(91.75%) still classified as correct

• Reason for misclassification:
• Significant behavior change

• Calling a different method with the same functionality


