
How Does Web Service API Evolution Affect Clients? 1

Jun Li1,2, Yingfei Xiong1,2, Xuanzhe Liu1,2, Lu Zhang1,2

1Key Laboratory of High Confidence Software Technologies, Ministry of Education
2Software Engineering Institute, Peking University, Beijing, 100871, China

Email: {lijun09, xiongyf04, liuxzh, zhanglu}@sei.pku.edu.cn

1 This work is supported by the National Natural Science Foundation of China under Grant No.61121063 and No.61202071, the High-Tech

Research and Development Program of China under Grant No.2012AA011207, the National Basic Research Program of China (973) under

Grant No. 2011CB302604, the Key Program of Ministry of Education, China under Grant No.313004 and NCET.

Abstract—Like traditional local APIs, web service APIs (web

APIs for short) evolve, bringing new and improved functionali-

ty as well as incompatibilities. Client programs have to be

modified according to these changes in order to use the new

APIs. Unlike client programs of a local API, which could con-

tinue to use the old API, clients of a web API often do not have

the option not to upgrade, since the old version of the API may

not be provided as a service anymore. Therefore, migrating

clients of web APIs is a more critical task. Research has been

done in the evolution of local APIs and different approaches

have been proposed to support the migration of client applica-

tions. However, in practice, we seldom observe that web API

providers release automated tools or services to assist the mi-

gration of client applications.

In this paper, we report an empirical study on web API evo-

lution to address this issue. We analyzed the evolution of five

popular web APIs, in total 256 changed API elements, and

carefully compared our results with existing empirical study on

API evolution. Our findings are threefold: 1) We summarize

the API changes into 16 change patterns, which provide

grounded supports for future research; 2) We identify 6 com-

pletely new challenges in migrating web API clients, which do

not exist in the migration of local API clients; 3) We also iden-

tify several unique characteristics in web API evolution.

Keywords—Software Engineering, Software Maintenance,

Web Service API Evolution

I. INTRODUCTION

With the popularity of service computing, web services
are being published by companies and organizations. Client
programs access these services via their APIs (called web
service APIs, or web APIs for short), forming web applica-
tions. Today, many important applications in our daily life
belong to this type of web applications. For example, Gmail
is such a web application where the JavaScript client pro-
gram invokes web APIs to get the mail data.

Ideally, the API elements (such as methods) of web ser-
vices should not change, and the client and the server could
evolve independently without affecting the other side. How-
ever, in reality, web APIs evolve due to various reasons,
such as bringing new functionality and fixing bugs, and the
client applications may have to be changed to adapt to the
new APIs.

In traditional local applications, when some API ele-
ments (such as classes and methods) of a local API (an API

without network interactions) change, the client may choose
to continue using the old API if client developers do not
want to upgrade. However, in the service paradigm, the ser-
vice of an old API is often shut down after a certain period,
and the client has to be upgraded to adapt to the new API,
otherwise the client will stop working. Thus, dealing with
API evolution should be a much more serious problem in
web applications than local applications (desktop applica-
tions that only invoke local APIs).

Given the importance of migrating client programs, a lot
of research has been devoted into this area and different ap-
proaches [5-11] have been proposed to automate the migra-
tion process. However, in practice, we seldom observe these
approaches be adopted in the migration of web API clients.
Most migrations are still performed manually, with no auto-
mated supports.

To support the migration of web API clients in practice,
we believe that understanding how web APIs evolve is a
necessity. On one hand, understanding web API evolution
helps us identify the gap between existing approaches and
the need of web application migrations, knowing where to
put research efforts in. On the other hand, the characteristics
of web API evolution could be useful in building effective
approaches that make use of these characteristics.

Some researchers have realized the importance of under-
standing API evolution, and conducted systematic empirical
studies on API evolution [1][2][3][4][13]. However, some of
these studies focus on local APIs [1][2][4]. Other studies
focus on automatic differing of WSDL interfaces [3][13].
We believe that studying the changes at WSDL level is not
enough for guiding the migration of the clients. To really
understand how web API evolution affects clients, we need
an in-depth study of API changes on the semantic level.

In this paper we report our empirical study on web API
migration, focusing on how API changes affect the clients.
Our subjects are five popular web APIs, ranging from a per-
sonal calendar to twitter, from global service to local service
in China. We carefully analyze their change history by read-
ing the migrating guide, comparing reference documents,
and experimenting with prototype clients, and identify in
total 256 changed API elements that will cause incompatibil-
ities. We then classify these changes and compare the results
with existing empirical studies on local APIs. We also sur-
vey existing approaches to client migration and identify
problems not considered in existing approaches. Web APIs

are often provided in two levels: low level APIs as direct
HTTP requests and high level APIs in popular programming
languages such as Java and JavaScript. If no confusion will
be caused, we may refer to both as API libraries. Our study
focuses on the low level, while we also compare the results
with the changes on the Java library for one of our subjects.

Our findings can be summarized as follows.
1) We summarize 16 patterns for web API evolution

and count their frequency in the evolution. These
data provide grounded guidance for designing ap-
proaches to migrating web API clients. (Section
IV)

2) We identify 6 new problems in migrating web API
clients. These problems are not considered by ex-
isting work or do not exist in local API evolution.
(Section V)

3) We identify two unique characteristics of web API
evolution. First, web APIs change much more fre-
quently at the Java wrapper library level (short for
Java level) than at the HTTP request level (short
for HTTP level). Second, web API evolution re-
duces functionality much less often, but seems to
affect more methods than local API upgrade. (Sec-
tion VI)

We also compare our findings with existing empirical
studies (Section VII).

In the rest of the paper, before jumping to our finding, we
will first briefly introduce the background of web APIs in
Section II and describe our experiment setup in Section III.
We also discuss the threats to validity in Section VIII and
conclude the paper in Section X.

II. BACKGROUND: WEB APIS AND WRAPPER LIBRARIES

As mentioned before, web APIs are often provided in
two levels, the core is at the HTTP level. In this level, the
client accesses the services via direct HTTP requests and
responses, and the formats of the requests and responses are
defined in various protocols, such as SOAP, XML-RPC, and
REST. A typical RESTful HTTP request is a GET request in
the following format.

http://domain/methodname.format?access=¶1=&p

ara2=&...¶N=

domain: the address of server
methodname: name of the method
format: the format of return data
access: developer’s unique ‘Access Token’
para1…paraN: parameters of the method

When a server receives such a request, it performs the opera-
tions defined by the service, and then returns an HTTP re-
sponse message, usually in JSON or XML. An HTTP re-
quest may also be protected under secure authorization, and
has to be accessed via authorization protocols such as OAuth.
In such a case, the client first obtains an access token and
then sends the token along with the HTTP request to access
the service.

Since HTTP level access requires many low level opera-
tions and the knowledge of various protocols, high-level
libraries in popular languages are often provided. For exam-
ple, Google provides its API in Java, Python, .Net, and many
other languages. These libraries are usually provided as
wrappers of APIs at the HTTP level, transforming the high-
level method invocations into HTTP requests and parsing the
HTTP response messages as in-memory objects.

III. DATA SET

A. Web APIs

We choose five popular web services as our subjects:
Google Calendar API2, Google Gadgets API3, Amazon Mar-
ketplace Web Service4 (Amazon MWS), Twitter API5 and
Sina Weibo API6. Google Calendar API provides access to
Google Calendar, a popular online calendar service. It has
three versions, and we choose the latest two versions (ver-
sions 2 and 3). Google Gadgets API allows the creation of
Google Gadgets, and has only two versions (1 and 2). Ama-
zon MWS facilitates the programming of data exchange, and
has two versions (1 and 2). Twitter API allows the access of
tweets and relationships among users, and has two versions
(1.0 and 1.1). Sina Weibo API allows access to Sina Weibo
data, a Twitter-like service in China, which is reported to
have more messages published per second than Twitter. It
has two versions (1 and 2)

Most of these APIs are in RESTful APIs, and services are
provided in both HTTP level and in wrapper libraries using
popular languages. One exception is Google Gadgets, where
only a JavaScript library is provided, and many API methods
execute locally within the browser. However, since the local
executions still depend on the execution environment dy-
namically downloaded from Google, we still consider these
methods web API methods. Another exception is Amazon
MWS, which was provided as a SOAP service in version 1,
and evolved into a RESTful API in version 2.

We choose these services according to four selection cri-
teria. First, the API should have a large amount of clients;
otherwise the API changes may be too random to be repre-
sentative. Second, the services should cover different appli-
cation areas. These APIs we chose cover tweet, calendar,
online transaction, and gadgets in web. Third, the APIs
should come from different companies and countries. Since
API change is human behavior, we believe that the culture
from different companies and different countries would in-
fluence the API evolution. The API libraries we chose are
from four companies and two countries. Finally, the APIs
must have good API reference documents and API migration
guides, otherwise we need to find the semantics of all API
elements before and after update using reverse engineering,
which is infeasible given the resources we have.

2 https://developers.google.com/google-apps/calendar/
3 https://developers.google.com/gadgets/
4 https://developer.amazonservices.com/index.html/
5 https://dev.twitter.com/
6 http://open.weibo.com/

B. Collecting the Changes

In order to obtain the accurate API evolution relations,

we follow the steps listed below.

1) We downloaded API reference documents and API

migration guide between two versions.

2) For each deprecated API element mentioned in the

migration guide, we find the element and its replacement (if

available) in both reference documents, and acquire the

detailed changes between two elements by comapring the

text description in the reference documents. If the text

description is unclear, we write client programs to interact

with the server to verify the functionality of these API

elements.

3) When the migration guide could not include all

changes or have some mistakes, we also compare the two

reference documents directly to find whether there are more

changes between the two versions. We perform this

comparison by first matching API elements by name, then

comparing the description text of matched elements, and

finally checking all unmatched elements. By applying this

step in Sina Weibo API, we found an omission and a

mistake in the migration guide.

For all RESTful APIs, we perform the above process on

the HTTP level. We also perform the above process on the

Java wrapper library of Google Calendar API, in order to

compare the changes on different levels. For Google Gadget,

we perform the above process on the JavaScript library. For

Amazon MWS, we ignore the protocol differences between

SOAP and REST, and only focus on the essential difference

between the abstract methods. At the HTTP level and the

JavaScript level, the API elements we compare are mainly

methods (as defined in Section II).

An API change is a specific change on part of an API el-

ement, such as HTTP request domain or the input parame-

ters. API changes can be classified into breaking changes

and non-breaking changes. Breaking changes are changes

that will cause failures in client applications, including both

compile-time failure and runtime failure. Changing the

name of a method and changing preconditions of a method

belong to this category. Non-breaking changes are changes

that do not affect client applications. In other words, appli-

cations are compatible with new API. Adding a new method

belongs to this category. In this paper we only consider

breaking changes.

Table I summarizes the APIs and their changed elements.

The first column presents the APIs we chose, and next col-

umn presents the versions of each API for comparing. We

present the amount of total API elements of each API in the

third column, the amount of changed API elements are pre-

sented in the fourth column. Last column presents the pro-

portion of changed elements in total API. If there is an API

change in one API element, we call this element changed

API element. There can be more than one API change in a

changed API element.

We can see in Table I, in average, more than half of the

API elements become incompatible in the new version. This

indicates a possible huge amount of work in migrating the

client programs. This number is also quite distinct from an

existing study on local APIs evolution [1][4], which shows

only 30% of the API elements change in average in API

evolution. We will discuss more about the discrepancies

from existing studies on local API evolution in section VII

TABLE I. SUBJECTS

Projects Versions
Total API

elements

Changed API

elements
Proportion

Google Calendar version 2-3 47 38 80.1%

Google Gadgets version 1-2 72 33 45.8%

Amazon MWS version 1-2 31 21 67.7%

Twitter API version 1-1.1 106 91 85.8%

Sina Weibo API version 1-2 95 73 76.8%

IV. APIS CHANGE PATTERNS

In this section, we specify how API elements change. We

further classify breaking changes into changes causing com-

pile-time error and changes causing runtime-error. The for-

mer includes method signature changes and type changes in

the high-level library, and the clients using this API will

receive a compile-time error. At the HTTP level, since no

compilation stage is involved, this means the changes on

format of the HTTP requests and response messages, and an

error code will be returned immediately if invoking the API

with the old format. The second category means that the

change will not have a visual effect at compile-time in the

high-level library, but the client application may crash or

misbehave after sending the HTTP request.

The classification of API changes is shown in Table II.

Except the last three rows, the column headers are change

patterns. The row headers are the web APIs. The cells are

the number of the change APIs in the corresponding Web

APIs. We summarize the API changes into 16 change pat-

terns, where 12 of them are changes causing compile-time

errors and 4 of them are changes causing runtime errors. In

the following we discuss the change patterns one by one.

Following the work of Dig and Johnson [1][4], we also

classify change patterns as refactorings and non-refactorings.

Last three rows show the amount of refactorings and non-

refactorings in all the breaking changes, and the proportions

of refactorings. These numbers will be discussed in Section

VII.

A. Changes Causing Compile-Time Errors

Add or Remove Parameter The number of parameters may
be changed in API evolution. Usually, the reason of adding
parameters is to enhance the ability of a method, e.g., query-
ing more information from the database, while the reason of
removing parameters is to weaken the ability of a method.
Another reason of removing a parameter is that the parame-
ter is no longer needed. For example, the provider of Sina
Weibo API removes parameters of several methods during
the upgrade, because these parameters are used in an old

security protocol that has been replaced by another one in the
new version.

Both adding and removing parameters can cause prob-
lems in migration. When the removed parameters represent
an important functionality, developers need to find the re-
placement of the missing functionality. When a parameter is
added, developers need to decide the value for the parameter.
Change Type of Parameter This kind of change only ap-
pears in Amazon MWS API evolution, such as merging sev-
eral independent simple parameters into one complex com-
posite parameter.

For changes in this category, developers can easily mi-
grate the client application in most cases. Usually, the new
parameter can be synthesized by old parameters directly, and
this process can be done automatically if developers know
the synthesis rule from old parameters to new parameters.
Change Type of Return Value This pattern is similar to
“Change Type of Parameter,” and appears in Google API
and Amazon API.
Delete Method For most cases, methods are deleted because
their functionality is subsumed by other methods. However,
there are cases where a method is removed and no replace-
ment can be found. In the latter case, the migration of clients
relying on the method becomes a big problem. This is also
quite different from local API migration, as clients of local
API could run with a copy of the old library and call the de-
leted method in the old library. We will discuss more on this
issue in Section V.
 An interesting issue we notice is that one method in Sina
Weibo API version 1.0 is removed and the migration guide
also claims the functionality of this method is removed and
no replacement will be provided. However, actually we find
that the functionality of this method can be achieved by
combining the return value of several other methods which
are not deleted. In other words, the functionality of this
method is actually subsumed by other methods, but the API
provider does not realize it.
Rename Method, Rename Parameter These two patterns
are quite common in all APIs we surveyed. The main reason
is to give self-explanatory names to methods and parameters.
The migration for such changes is relatively easy comparing
with other change patterns, and it can be fully automated
with existing tools.
Change Format of Parameter, Change Format of Return
Value These two patterns mean the type of a parameter or a
return value does not change, but the format of them changes.
For example, in Google Calendar API, a method accepts a
string type parameter that needs to be encoded using UR-
LEncode in the version 2.0. But in version 3.0, developers
need only pass a string type parameter without encoding.
These patterns are discovered in four APIs except Twitter
API. In most cases, the goal of the changes is to facilitate the
development of new client applications.

Migrating client programs can be partially automated in
this category if the preprocessing step can be detected and
removed.
Change XML Tag This pattern only occurs in Google Cal-
endar API, where the value name used in the new JSON

format differ from the original tags used in the XML mes-
sages. This pattern can be solved automatically.
Combine Methods This pattern means several methods are
combined into one method. We find this pattern in the evolu-
tion of Amazon API. Amazon MWS API is a data-intensive
API, there are a large amount of data need to be exchanged.
In the old version of this API, developers need to interact
with the server more than one times to get required data. But
after evolution, developers can acquire the data from only
one invocation. This decreases the latency in communication.
However, the migration for this change is hardly automatable,
since we need to find out possible consecutive invocations to
the involved methods and group them into one.
Split Method We find this pattern in Amazon API evolution.
It does not mean that one method split into several methods,
but that one method was replaced by two different methods
in different conditions. In Amazon API, the functionality of a
method named 'PutInboundShipment' is to create or update
an item about shipment in the database. If the item already
exists, its record is updated; otherwise is created. In the new
version, if the user wants to create an item, they should use
the method named 'CreateInboundShipment', otherwise they
should use 'UpdateInboundShipment' for updating the record
of that item.
Expose Data This pattern appears in Google Calendar API,
which provides data service. Data can be placed in a deep
hierarchy, or can be organized in a flatter hierarchy. For ex-
ample, in version 2.0 of Google Calendar API the resource
path of ‘originalEventId’ and ‘originalStartTime’ are repre-
sented in the Atom format as follows:

<atom:entry>
<gd:originalEvent href="originalEventAtomId"

 id="originalEventId">
 <gd:when startTime="originalStartTime"/>

 </gd:originalEvent>
</atom:entry>

And in version 3.0 the resource path of these two methods
represented as JSON format as follows:

{

"recurringEventId": originalEventId,
 "originalStartTime": originalStartTime,
}

B. Changes Causing Runtime-Errors

Unsupport Request Method HTTP request methods in-

clude get, post, put and delete. In Sina Weibo API and Twit-

ter API evolution, some methods in these APIs change from

supporting two request methods in old version to supporting

only one request method.If client applications just use a

request mode that is supported by new version of an API,

we need to do nothing. But if we use other unsupported re-

quest methods, we should modify the request method in our

applications.
Change Default Value of Parameter This pattern appears
in Sina Weibo API evolution. In an HTTP request,

TABLE II. API CHANGE PATTERNS

Type of change
Google Calendar

(GC)

Google Gadgets

（GG）
Amazon MWS

(AM)
Twitter API

(TA)
Sina Weibo

(SW)

Decrease or Increase Number
of Parameter

0 2 5 15 5

Change Type of Parameter 0 0 17 0 2

Change Type of Return Value 0 3 18 0 0

Delete Method 9 12 0 17 18

Rename Method 13 18 12 8 38

Change XML Tag 7 0 0 0 0

Rename Parameter 0 0 0 3 14

Change Format of Parameter 0 3 10 0 0

Change Format of Return
Value

7 0 8 0 3

Combine Methods 0 0 1 0 0

Split Method 1 0 1 0 0

Expose Data 10 0 0 0 0

Unsupport Request Method 0 0 0 4 5

Change Default Value of Pa-
rameter

0 0 0 0 7

Change Upper Bound of Pa-
rameter

0 0 0 0 4

Restrict Access to API 0 0 0 0 3

Refactoring 29 35 52 43 76

Non-refactoring 18 3 20 4 23

Proportion 61.7% 92.1% 72.2% 91.5% 76.8%

parameters may have default values. Most of these parame-

ters are about quantity, such as how many tweets can be

displayed in one page. When the default values of such pa-

rameters change, we classify these changes in this category.

The reason is that changes of default values may break the

(potentially well-designed) layouts of a page, and such prob-

lems can only be captured at runtime.

Change Default Value of Parameter This pattern appears

in Sina Weibo API evolution. In an HTTP request, parame-

ters may have default values. Most of these parameters are

about quantity, such as how many tweets can be displayed

in one page. When the default values of such parameters

change, we classify these changes in this category. The rea-

son is that changes of default values may break the (poten-

tially well-designed) layouts of a page, and such problems

can only be captured at runtime.

To migrate the clients affected by this pattern, developers

can explicitly specify the values of arguments when invok-

ing the changed methods.

Change Upper Bound of Parameter This pattern only

appears in Sina Weibo API evolution. Some particular pa-

rameters have upper bounds, e.g., a parameter may indicate

how many tweets should be returned in one method invoca-

tion, and the upper bound is set for the maximum number of

tweets that can be returned. When an upper bound becomes

smaller, we classify this change as this pattern. Note that

when an upper bound becomes larger, it is not a breaking

change. Whether this pattern will cause problem in migra-

tion depends on the argument passed to the corresponding

methods. If the argument is always smaller than the new

upper bounds, nothing needs to be done for the migration.

Otherwise, several invocations may be needed to retrieve all

the needed data.

Restrict Access to API This pattern appears in Sina Weibo

API evolution. Some methods are sensitive to information

such as a method acquiring the private message of a person.

So in new version of Sina Weibo API, the API providers

improve the access authority of these methods. If developers

want to access these methods, they should apply the author-

ization from API providers.

In this case, automatically migrating client applications is

almost impossible, but a good migrating tool could provide

useful help for developers.

TABLE III. GOOGLE CALENDAR EVOLUTION AT JAVA LEVEL

Type of Change Frequency

Change Type of Return Value 7

Rename Class 6

Delete Class 10

Replace Class 3

Delete Method 4

Rename Method 20

Move Method 4

Expose Data 16

V. NEW CHALLENGES IN WEB API MIGRATION

There are a lot of approaches [5-12] to automating mi-

gration of clients for API evolution, and all we know are

designed for local APIs. Although in principle these ap-

proaches should also work on web APIs, it is still an open

question whether any new problems will emerge if they are

actually applied. In this section, we try to partially answer

this question by comparing the changes we discovered with

the existing approaches, and checking whether there are any

problems not considered in these approaches. Our findings

are summarized as six challenges listed below.

1) Transformation between JSON and XML: Unlike

local APIs, web APIs usually provide data services other

than function services, so how to orgnize the data is an

important issue. As mentiond before, the two most popular

data formats are JSON and XML. JSON is a lightweight

data format. It is usually much shorter than XML when

desribing the same amount of data. In the web API

evolution, many API providers replace the XML format

with the JSON format. In such cases, the client applications

also need to be updated to adapt to the new data format. The

transformation between XML and JSON does not exsit in

local API evolution, and thus is not considered by existing

approaches.

2) M to N Mapping: Unlike local API, each invocation

of a web API needs to access the remote web server, and the

network latency will constitute a major part of the API

invocation time. When mutiple API invocations are needed

in one task, the accumulative latency will possibly become

unacceptable. Acordingly, a typical type of API update is to

merge several API methods into one big method, e.g., the

“Combine Methods” pattern described in the previous

section. However, as far as we know, all existing

approaches that automatically migrate the client could only

replace one method invocation into multiple method calls,

but cannot replace multiple method invocations into one.

3) Delete Method: In local API evolution, if we need to

use a method that exsits in the former version but removed

in the new version, existing approaches either run both

versions of the library together, or copy the code of former

version to the client side [6]. But in web API evolution, the

old version of the API will be shut down after a certain

period, and developers have no way to access the deleted

methods. The deletion of obsoleted methods is a new

problem in migrating web API clients and new approaches

need to be investigated.

4) Authorization Protocol Change: In the 1.0 version of

Sina Weibo API, OAuth 7 1.0 protocol for authorizing

developers to access this API is used. In Sina Weibo API

2.0, the authorization protocol is also upgraded to OAuth

2.0. As a result, all API invocations on the client side need

7 http://oauth.net/

to be changed in accordance with the new version of the

authorization protocol. All existing approaches we surveyed

focus on changes on individual API methods, and could not

handle such protocol change that affects all API invocations.

5) Rate limit: Responding an API invocation could be

expensive. Since many services can be accessed for free,

API providers often add a limit to the rate that the service

can be invoked, and this limit can be changed from version

to version. For example, Sina Weibo API 1.0 did not have a

rate limit, but API 2.0 allows only 1000 invocations per

hour. As a result, client programs that invokes the API too

frequently need to be changed, by prefetching the needed

data and/or pending the invocations into the server. Existing

appraoches do not consider this problem because this

problem does not exist in local API evolution.

6) Authorization of API Access: In Sina Weibo 1.0, any

client applications can invoke any API methods. Realizing

this actually opens doors to malicious applications, the

providers of Sina Weibo 2.0 only allow authorized

applications to access sensitive API methods. As a result,

even if the client application has been authorized to access

sensitive methods, all calls to those methods have to be

changed to pass an additional access key. Existing

approaches do not support changes at the authorization level

as most local APIs do not involve authorization.

VI. CHARACTERISTICS OF WEB API MIGRATION

By comparing the changes of web APIs and local APIs,

and between different levels of web APIs, we identify sev-

eral unique characteristics of web API migration, as follows.

1) Web APIs change less frequently at the HTTP level

than wrapper library level.

To compare the changes between wrapper library level

and HTTP level, we summarize the API changes of Google

Calendar API in Java level and the results are shown in

TABLE III. An interesting observation is that there are

many more API changes at the Java level than at the HTTP

level—there are 70 changes at the Java level, but only 47

changes at the HTTP level. The main reason of this phe-

nomenon is that input and output parameters in the HTTP

level are organized into classes in the Java level, resulting a

lot of changes in classes. First, there are purely refactoring

changes on classes that have no counterparts on the HTTP

level. Some changes in “Move Method”, “Rename Class”

and “Delete Class” patterns belong to this category. Second,

one change on the parameters of an HTTP method may

cause several changes on the classes. For example, a change

in the “Expose Data” pattern often lifts a data item higher in

the hierarchy in an HTTP input, but this may result in the

change of several “getXXX” methods, and, sometimes, de-

letion and introduction of new methods and classes.

This finding indicates that developing a migration tool at

HTTP level is potentially easier than at Java level. In addi-

tion, migrating clients at HTTP level is potentially more

universal: wrapper libraries in different languages all invoke

the HTTP level API, and a migration tool at the HTTP level

works for all wrapper libraries.

2) More correct replacements can be eaiser found for

web APIs than local APIs.
Cossette and Walker’s empirical study on local API [2]

where one experiment is to identify replacements of incom-
patible API elements using six recommendation techniques,
including reading release documents. The paper reports that,
a single recommendation technique could only find in aver-
age 20% of cases, and there are 21.2% cases where no re-
placements can be found by any of the six techniques. Our
result on web API is quite different. On our data set, we
found replacements for the vast majority of the incompatible
API methods by only reading the migration guides. In addi-
tion, for some methods that are claimed to be no longer sup-
ported in the migration documents, we still found that these
methods can be simulated by combining the return values of
several other methods. This indicates that web APIs have
possibly better release documents.

3) Web API evolution affects more methods than local

API changes.
Dig and Johnson’s empirical study on local API [1][4]

reports that no more than 30% of the API elements will
change in one upgrade. However, in our study, as shown in
Table I, at least half of the API elements are changed. This
indicates that potentially web API evolution has a more
widely impact on the applications than that of local API evo-
lution. The reason for this discrepancy is not clear yet. Since
the number of changed methods is affected by many issues
such as the goal of the upgrade and the business decisions of
the service provider, this discrepancy is also possible an oc-
casional correlation due to the small number of upgrades in
the data set, not a universal property of web API evolution.

VII. RELATED WORK

As mentioned before, there are several studies on local
API evolution [1][2][4]. We have already discussed two dis-
crepancies between our findings and their results in Section
VI. Here we discuss other important findings that are con-
firmed or contradicted in our work.

An important result in [1][4] is that more than 80% API
changes are refactorings. This conclusion is verified in our
work (see last three rows in Table II), we can see in average
more than 80% API changes are refactorings in those APIs
evolution. This result indicates that the tools solving refac-
toring in local API evolution can potentially be also applied
in web API evolution. However, please also note that being
refactorings does not mean that the migration is fully autom-
able, as already pointed by Cossette and Walker [2].

Cossette and Walker [2] report several important findings
in their study. Besides the “correct replacements are hard to
be discovered” finding which we already discussed in Sec-
tion VI, another important finding is that as low as 12.8%
client applications influenced by API evolution can be auto-
matically migrated from the old API to the new API. Our
result presents some similarities from this finding. We classi-
fied the API changes on their automatability in a similar way
in [2], and the details are described in Table IV. We found

that the lowest proportion of automatically migrating web
applications is 16.7%. This result indicates that automatically
migrating client applications is a hard problem, even if at the
HTTP level.

There are existing studies on the evolution of web APIs
[3][13]. However, these studies explore how to automatically
obtain the service changes by comparing WSDL definitions,
focusing on the development history of web API rather than
the effects on the clients. Furthermore, WSDL describes the
syntax of web API methods. It is not enough to know the
effect on the clients by looking at the syntax. For example,
we cannot know precisely whether one method is a replace-
ment of another method if we do not read the API documents
and try out the methods with experiments. In addition, a lot
of services nowadays are provided in RESTful style, where
no WSDL is provided. Some change patterns are also sum-
marized in the studies. However, these patterns are more
coarse-gained architectural patterns compared to our fine-
gained patterns. For example, one pattern is called “Aggres-
sive Evolution”, indicating a lot of elements are changed in
one upgrade. Such pattern does not tell how the clients are
affected, as an aggressive evolution could still be non-
breaking changes.

Many efforts have been put in automating client migra-

tion in API evolution. In general, we can classify the migra-

tion into two steps: 1) find out how API changes; 2) modify

the client applications accordingly. Existing approaches

focus on automating the two steps.

Existing approaches that automate the first step can be

classified into two categories. One is to record the changes

by tools [5][6], called operation-based method [7]. Catchup!

[5] and ReBA[6] provides an eclipse plugin to record the

API changes when API providers update the library in

eclipse. All the changes are represented as refactorings, and

the process is automatic. The second way is to compute API

changes by comparing the source code and documents of

two releases [7][8][10][12][14].

Depending on the dependability of API changes, the ap-

proaches for the second step can also be classified into two

categories. First, when the API changes are stable and pre-

cise, such as the recorded refactorings or change rules de-

scribed by the API providers, the corresponding approaches

[5][6][9][11] modify the client code automatically. Second,

when the API changes are discovered by heuristic rules, the

corresponding approaches [8][10] suggest updates on the

client programs, and the developers will make the final de-

cision based on the suggestions. Nevertheless, none of the

approaches address the challenges discussed in Section V.

TABLE IV. AUTOMATABLE ON MIGRATION

 GC GG AM TA SW

Fully Au-

tomatable

20 18 12 11 52

Others 27 20 60 36 47

Proportion 42.6% 47.4% 16.7% 23.4% 52.5%

VIII. THREATS TO VALIDITY

The main threat to external validity is that our study is
based on a small data set, with five projects and 256 changed
API elements. However, since we need to manually investi-
gate API documents and conduct experiments with prototype
code, it is very hard to increase the size of the data set. The
data sets in existing empirical studies [1][2][4] reported in
literature are also in comparable sizes. To alleviate this threat,
we focused on increases the variety of projects, and our pro-
jects are chosen from different application domains and from
companies with different cultures.

The main threat to internal validity is that our study heav-
ily relies on the migration guide and reference documents,
and these documents may contain mistakes. To see how
large this threat was, we manually constructed a migration
guide of Sina Weibo by only reading its reference documents,
and then compared our migration guide with the official mi-
gration guide. As a result, we found one omission and one
error in the migration guide. This shows that although errors
do exist in the documents, their proportion may be small.

IX. CONCLUSION

In this paper, we have carefully analyzed five popular

web service APIs, and draw some conclusions which are

useful for application developers. First, we have summa-

rized 16 patterns in web API evolution and given the fre-

quency of each pattern in each web API evolution. This

indicates web API evolves in limited patterns, and a tool

addressing all these patterns could potentially automate the

migration of clients. Second, we have described some new

challenges that cannot be solved well by existing methods,

and shown some unique characteristics in web API evolu-

tion. These challenges indicate where we should put re-

search efforts in, and the characteristics could be helpful in

attacking these challenges. Finally, we have discovered that

some important conclusions derived from local API evolu-

tion also exist in web API evolution, e.g., more than 80% of

API changes are refactoring, and some conclusions in local

API no longer hold in web API evolution, e.g., when identi-

fying the replacements of incompatible API elements, using

migration guide could resolve the vast majority of the cases,

rather than around 20% in local APIs. These findings could

be useful to design migration tools.

REFERENCES

[1] D. Dig and R. E. Johnson, “The role of refactorings in api evolution,”
Proceedings of International Conference on Software Maintenance
(ICSM05), pp. 389-398.

[2] B. E. Cossette and R. J. Walker, “Seeking the ground truth: a
retroactive study on the evolution and migration of software
libraries,” Proceedings of the ACM SIGSOFT 20th International
Symposium on the Foundations of Software Engineering (FSE12), no.
55.

[3] M. Fokaefs, R. Mikhaiel, N. Tsantalis, E. Stroulia, and A. Lau, “An
Empirical Study on Web Service Evolution,” Proceedings of
International Conference on Web Services (ICWS11), pp. 49-56.

[4] D. Dig and R. E. Johnson, “How do APIs evolve? A story of
refactoring,” Journal of Software Maintenance 18(2), 2006, pp. 83-
107.

[5] J. Henkel and A. Diwan, “CatchUp!: Capturing and replaying
refactorings to support API evolution,” Proceedings of International
Conference on Software Engineering (ICSE05), pp. 274-283.

[6] D. Dig, S. Negara, and R. Johnson, “ReBA: Refactoring-aware binary
adaptation of evolving libraries,” Proceedings of International
Conference on Software Engineering (ICSE08), pp. 441-450.

[7] S. Meng, X. Wang, L. Zhang, and H. Mei, “A History-Based
Matching Approach to Identification of Framework Evolution,”
Proceedings of International Conference on Software Engineering
(ICSE12), pp. 353-362.

[8] B. Dagenais and M. Robillard, “Recommending adaptive changes for
framework evolution,” Proceedings of International Conference on
Software Engineering (ICSE08), pp. 481-490.

[9] I. Balaban, F. Tip, and R. Fuhrer, “Refactoring support for class
library migration,” Proceedings of ACM SIGPLAN conference on
Object—oriented programming systems languages and applications
(OOPSLA05), pp. 265-279.

[10] H. A. Nguyen, T. T. Nguyen, G. W. Jr., A. T. Nguyen, M. Kim, and T.
N. Nguyen, “A graph-based approach to api usage adaptation,”
Proceedings of ACM SIGPLAN conference on Object—oriented
programming systems languages and applications (OOPSLA10), pp.
302-321.

[11] M. Nita and D. Notkin, “Using twinning to adapt programs to
alternative APIs ,” Proceedings of International Conference on
Software Engineering (ICSE10), pp. 205-214.

[12] H. Zhong, S. Thummalapenta, T. Xie, L. Zhang, and Q. Wang,
“Mining API mapping for language migration,” Proceedings of
International Conference on Software Engineering (ICSE10), pp.
195-204.

[13] D. Romano and M. Pinzger, “Analyzing the Evolution of Web
Services using Fine-Grained Changes,” Proceedings of International
Conference on Web Services (ICWS12), pp. 392-399.

[14] D. Dig, C Comertoglu, D. Marinov, and R. E. Johnson, “Automated
detection of refactorings in evolving components,” Proceedings of
European Conference on Object-Oriented Programming (ECOOP06),
pp. 404-428.

