Algorithm Synthesis

Synthesizing Efficient Programs by Automatically
Applying Algorithmic Paradigms

Yingfei Xiong
Peking University

About Me

* Associate Professor at Peking University
* Ph.D. at the University of Tokyo, 2009
* Postdoc at University of Waterloo, 2009-2011

mmme Data-Driven Program Synthesis

¢ L2S: a general framework for data-driven enumerative program synthesis [TOSEM]
* TreeGen: the first transformer-based program synthesis work [AAAI20]

s Data-Driven Program Repair

* ACS: the first program repair approach whose precision > 70% [ICSE17]
e Recoder: the first neural approach outperforming traditional approaches [FSE21]

= Probabilistic Fault Localization

* ProbDD: delta-debugging guided by a Bayesian model [FSE21]
e SmartFL: test-based fault localization guided by a Beyesian model [ICSE22]

Quora Questions

What are the 5 most important CS courses that every computer
science student must take?

Algorithms are nominated in all answer with > 10 votes

1. Data structures and algorithms: Every company asks questions from this class in
coding interviews and you need to know the basics to build good software.

1. Data Structures and Algorithms - actually everyone should have two or three
courses on this subject because it is the core knowledge for every type of software
developer.

3. Something mathematical. Logic, set theory, algorithms.

What is the hardest CS undergrad course?

Algorithms are also frequently nominated.
students who are really adept with code or hardware may find classes in algorithms or
cryptography to be challenging because of the math involved.

However, theory courses such as Algorithms can be really tough if you're in a challenging
version of the course. It is difficult if you do not have a background in mathematical proofs.

Honorable mentions are Data Structures and Algorithms,

Why Difficult: An Example.

* Maximum segment sum (mss) problem
* Given an integer list
e Select a contiguous segment from the list

* Maximize the sum of elements in the segment
* [1) _2) 3; _2) 3] 9 4

* An exhaustive program in Python
* Time complexity: O(n3) I
* Any optimization? for i in range(len(xs)):

for j in range(i, len(xs)):
mss = max(mss, sum(xs[i: j + 1]))

return mss

Why Difficult: An Example.

* Apply divide-and-conquer (D&C), a well-known paradigm.

def dac(xs, 1, r): def comb(resL, resR):
if 1 + 1 <= x (mssL, (mpsL, mtsL, sumL)) = resL
return (xs[l], (xs[l], xs[l], xs[1l])) (mssR, (mpsR, mtsR, sumR)) = resR
mid = (1 + r) // 2 mss = max(mssL, mssR, mtsL + mpsR)
parallel: mps = max(mpsL, sumL + mpsR)
resL = dac(x, 1, mid) mts = max(mtsL + sumR, mtsR)
resR = dac(x, mid, r) sumx = sumlL + sumR
return comb(resL, resR) return (mss, (mps, mts, sumx))

return dac(xs, 0, len)[0]

* Time complexity: O(n/m) on m < n/logn processors

* Much longer and much more difficult to write
* D&C only suggests to divide the problem into sub-problems.
* How to combine the sub-results remains unknown.

Research Goal: Automatic
Application of Paradigms

mss = =INF
for i in range(len(xs)):
for j in range(i, len(xs)):
mss = max(mss, sum(xs[i: j + 11])) Apply D&C

return mss

def dac(xs, 1, r): def comb(resL, resR):
3f <= (mssL, (mpsL, mtsL, sumL)) = resL
return (xs[l], (xs[l], xs[l], xs[1l])) (mssR, (mpsR, mtsR, sumR)) = resR
mid = (1L + r) // 2 mss = max(mssL, mssR, mtsL + mpsR)
parallel: mps = max(mpsL, sumL + mpsR)
resL = dac(x, 1, mid) mts = max(mtsL + sumR, mtsR)
resR = dac(x, mid, r) sumx = sumL + sumR
return comb(resL, resR) return (mss, (mps, mts, sumx))

return dac(xs, 0, len)[0]

Does LLM solve this problem?

Can you optimize this program as a parallel program using D&C? The expected

time complexity is O(n/p), where n is the length of the input list x, and p is the

number of CPU cores.

mss = -INF

foriin range(len(x)):
forjin range(i, le

mss = min(mss, sum(x[| j+11))
return mss

import threading # Find niddle index
nid = (low + highy // 2

min instead

of max

Define a global » ariable for infinity

INF = float(ini’) # Create two threads for left and right halves
t1 = threading. Thread(target=nss, args=(x, low,mid))
Define a helper function that returns min(a, b) t2 = threading. Thread(target=mss, args={(x, nid+1 , high))
def ninfa, b):
if a < b: # Start both threads
return a tl.start()
else: t2.start()
return b
Vait for both threads to finish
Define a recursive function that returns t1. joinQ
#the minimum sum subarray of x[low:high®1] 2. join()

def mss(x, low, high):

Base case: only one element
if low == high: left_mss = tl.result

Get their results

return x[low] right_mss = t2.result

LEQII VIS, 1. ICUINCUCHYHLLUITT £, YOERSIVIYSTRS.UIY 24 IR OPHHYSHGUIT 10f15

Our Current Progress

* A general automatic approach for applying D&C-like paradigms

* D&C (parallelization), incremenalization, streaming algorithms,
segment trees, algorithms for longest segment problems, etc.

* Can be instantiated to different paradigms.

e Example: A synthesizer for O(n/m)-time D&C programs on lists
* Input: An executable that produces a value from a list
* Can be implemented using any language in any way.
e Output: An O(n/m)-time D&C program
» Keep the same input-output behavior as the input

Framework Overview

D&C/
Parallelization \

Incrementaliz
ation

& B

An abstracted An efficient
program synthesizer
» for lifting problems

: problem
Streaming L .
Algorithms / Lifting Problem o Autolifter
/
Specification Solving

program synthesis

Manual Application of D&C

e Second minimum (sndmin) problem.
* Given an integer list
* Calculate the second minimum in the list

* [nput Program

return sorted(xs)[1]

* Time complexity: O(nlogn)

* Goal: Apply D&C to this program
* Get an O(n/m)-time parallel program

10

Manual Application of D&C

[1I 3[5[2I 4I 6]
* Three steps of D&C: .
1. Divide the input list xs into two halves >namin
XS; + XSg 2
2. Recursively calculate the sndmin of the
two halves
3. Combine the sub-results to the sndmin comb fp
of xs °
3 4

 However, such a combinator does not
exist. sndmin sndmin

[1, 3, 5] [2, 4, 6]

11

Manual Application of D&C

[ll 3/ 5[2I 4I 6]

* Produce auxiliary values
from the lists

sndmin fstmin

aux(xs) = min(xs)

* Find a combinator for oy T
both the original result @
and the auxiliary values

1 3 4 2
COTI.’Lb (Gsndu, fst,), (snd, fstz)) fstmin sndmin fstmin
= (min(snd;, sndg, max(fst;, fstg)), sndmin
min(fsty, fstg))
[1, 3, 5] [2, 4, 6]

Find auxiliary values and a combinator for merging the sub-results

. on half lists into the whole results.

Manual Application of
Incrementalization

13

Problem:

* Given a long list whose second
minimum is known.

* Now an integer is appended to this list.

* How to efficiently update the second
minimum?

Similar to the D&C case, such a
combinator does not exist.
* The incremenalization paradigm

suggests extra values from the original
input to enable efficient update.

[2, 4, 6]

[2, 4, 6]++[1]

sndmin
2
comb rP
[
4 1
sndmin

Manual Application of
Incrementalization

[2, 4, 6]++[1]

* Produce auxiliary values
from the lists

aux(xs) = min(xs)

* Find a combinator for
both the original result

and the auxiliary values .

comb((snd, fst), v) .
= (min(snd, max(fst, v)), min(fst, v)) fstmin sndmin

[2, 4, 6]

Find auxiliary values and a combinator for updating the results

y using the previous results and the new integer.

sndmin fstmin

comb @

1

Lifting Problem

* Input:
1. a:instances of a data structure
2. c:extravalues
3. orig: calculating results from the data structure
4. op: constructing a new data structure from existing ones

e Goal: find an auxiliary program aux and a combinator comb
such that

. orig’(op(c, aq, ...,an)) = comb(c, orig’'(ay), ...,orig’(an))
where orig’'(a) = (orig(a), aux(a))

15

Lifting Problem

* Input:
1. a:instances of a data structure
2. c:extravalues
3. orig: calculating results from the data structure
4. op: constructing a new data structure from existing ones

e Goal: find an auxiliary program aux and a combinator comb
such that

. orig’(op(c, aq, ...,an)) = comb(c, orig’'(ay), ...,orig’(an))
where orig’'(a) = (orig(a), aux(a))

c=()
_ a, = [1,3,5] orig: sndmin
D&C on lists a, = [2,4,6]

Op: a1 + az

16

Lifting Problem

* Input:
1. a:instances of a data structure
2. c:extravalues
3. orig: calculating results from the data structure
4. op: constructing a new data structure from existing ones

e Goal: find an auxiliary program aux and a combinator comb
such that
. orig’(op(c, aq, ...,an)) = comb(c, orig’'(ay), ...,orig’(an))
where orig’'(a) = (orig(a), aux(a))

c=1

. . a, = 2’4’6 ria: .
Incrementalization 1 =1] orig: sndmin

op:a; + [c]

17

Lifting Problem

* Applications of multiple algorithmic paradigms are
instances of the lifting problem
e D&C (Parallelization)
* Incrementalization
e Streaming Algorithms
* Segment Trees
Longest segment problems

18

Solving Lifting Problems as
Program Synthesis Tasks

* Input
* Specification:

« orig'(op(c,ay, ..., a,)) = comb(c,orig'(ay), ..., orig’(a,))
where orig’'(a) = (orig(a), aux(a))

e Grammars of aux and comb

* Including only O(1) operators to ensure the efficiency of the
result

* Output
* The implementation of aux and comb

19

Challenge: Scalability

* The scale of the solutions can be large.

aux(xs) = min(xs)
comb((snd, fsty), (sndy, fst;)) sndmin
= (min(sndy, sndy, max(fsty, fst;)), min(fsty, fst;))

def aux(x):

mps = max([sum(x[:i+1]) for i in range(lens(x))1])
mts = max([sum(x[i:]) for i in range(lens(x))]1)
sumx = sum(x)

return (mps, mts, sumx)

def comb(L, R): Minimum
(mssL, (mpsL, mtsL, sumL)) = L segment
(mssR, (mpsr, mtsR, sumR)) = R sum

mss = max(mssL, mssR, mtsL + mpsR)
mps = max(mpsL, sumL + mpsR)
mts = max(mtsL + sumR, mtsR)

sumx = sumL + sumR
return (mss, (mps, mts, sumx))

20

Addressing Scalability

* Divide and conquer the lifting problem
* Derive a specification on a subpart of the target program
e Synthesize this subpart
e Synthesize the rest based on the subpart

* Two techniques
e Variable Elimination
* Component Elimination

aux(xs) = min(xs)
comb((sndy, fsty), (sndy, fst,))
= (min(snd,, snd,, max(fstq, fst,)), min(fsty, fst,))

21

Variable Elimination

sndmin (xs; + xsg) = comb (sndmin’(xs;), sndmin’(xsg))
where sndmin’(xs) = (sndmin xs, aux xs)

* In the specification, aux and comb are mixed.
* Can we derive a specification only on aux?

22

Variable Elimination

sndmin (xs; + xsg) = comb (sndmin’(xs;), sndmin’(xsg))
where sndmin’(xs) = (sndmin xs, aux xs)

e comb is a function
 The same input leads to the same output

sndmin' (xs;) = sndmin'(xs;) A sndmin'(xsg) = sndmin'(xsg)
— sndmin(xs; + xsg) = sndmin(xs; + xsg)

* which equals

sndmin (xs; + xsg) # sndmin (xs; + xsg)
A sndmin (xs;) = sndmin (xs;) A sndmin (xsg) = sndmin (xsg)
= aux(xs;) # aux(xs;) V aux(xsg) # aux(xsg)

* The specification includes only aux and can be solved by
traditional synthesis techniques

23

Properties of
Variable Elimination

* The decomposed specification is an approximation
* It only ensures the existence of function comb

e The function may not be implementable in the target
program space

* In such a case, the synthesis of comb would fail, and
backtracking is needed

* We prove that such failure is rare
* Backtracking is seldomly needed

24

Current Result

* 96 tasks collected from existing datasets, existing publications
for formulating algorithms, and codeforces.com.
* maximum segment sum
e conversion from strings to integers
e parenthesis matching

e aproblem in 2020-2021 Winter Petrozavodsk Camp (solved only by
26 out of 243 participating teams)

An online platform for
competitive programming

Problem | D&C | Single-pass | Longest Segment | Segment Tree | Total
#Task 36 39 & 13 96

e Autolifter solves 82 out of 96 tasks with an average time cost
of 6.53 tasks.

 Significantly outperforms previous related approaches.

25

Summary

* Applying algorithmic paradigms is important
* Applying algorithmic paradigms is difficult

* A paradigm only provides a high-level template.
* The application depends on the ability of programmers.

* |Is it possible to automate the application of paradigms?
* Yes, at least for a class of paradigms similar to D&C
* A general problem: the lifting problem.

* The scalability challenge can be addressed by divide-and-conquer
and proper approximate specifications.

* Reference
* https://arxiv.org/abs/2202.12193

26

Thank you for your
attention!

	幻灯片 1: Algorithm Synthesis Synthesizing Efficient Programs by Automatically Applying Algorithmic Paradigms
	幻灯片 2: About Me
	幻灯片 3: Quora Questions
	幻灯片 4: Why Difficult: An Example.
	幻灯片 5: Why Difficult: An Example.
	幻灯片 6: Research Goal: Automatic Application of Paradigms
	幻灯片 7: Does LLM solve this problem?
	幻灯片 8: Our Current Progress
	幻灯片 9: Framework Overview
	幻灯片 10: Manual Application of D&C
	幻灯片 11: Manual Application of D&C
	幻灯片 12: Manual Application of D&C
	幻灯片 13: Manual Application of Incrementalization
	幻灯片 14: Manual Application of Incrementalization
	幻灯片 15: Lifting Problem
	幻灯片 16: Lifting Problem
	幻灯片 17: Lifting Problem
	幻灯片 18: Lifting Problem
	幻灯片 19: Solving Lifting Problems as Program Synthesis Tasks
	幻灯片 20: Challenge: Scalability
	幻灯片 21: Addressing Scalability
	幻灯片 22: Variable Elimination
	幻灯片 23: Variable Elimination
	幻灯片 24: Properties of Variable Elimination
	幻灯片 25: Current Result
	幻灯片 26: Summary
	幻灯片 27: Thank you for your attention!

