
Algorithm Synthesis
Synthesizing Efficient Programs by Automatically

Applying Algorithmic Paradigms

Yingfei Xiong

Peking University

About Me

• Associate Professor at Peking University

• Ph.D. at the University of Tokyo, 2009

• Postdoc at University of Waterloo, 2009-2011

2

• L2S: a general framework for data-driven enumerative program synthesis [TOSEM]

• TreeGen: the first transformer-based program synthesis work [AAAI20]

Data-Driven Program Synthesis

• ACS: the first program repair approach whose precision > 70% [ICSE17]

• Recoder: the first neural approach outperforming traditional approaches [FSE21]

Data-Driven Program Repair

• ProbDD: delta-debugging guided by a Bayesian model [FSE21]

• SmartFL: test-based fault localization guided by a Beyesian model [ICSE22]

Probabilistic Fault Localization

Quora Questions

Algorithms are nominated in all answer with ≥ 10 votes

Algorithms are also frequently nominated.

Why Difficult: An Example.

• Maximum segment sum (mss) problem
• Given an integer list

• Select a contiguous segment from the list

• Maximize the sum of elements in the segment

• [1, -2, 3, -2, 3] → 4

• An exhaustive program in Python
• Time complexity: O(n3)

• Any optimization?

Why Difficult: An Example.

• Apply divide-and-conquer (D&C), a well-known paradigm.

• Time complexity: O(n/m) on m ≤ n/logn processors

• Much longer and much more difficult to write
• D&C only suggests to divide the problem into sub-problems.

• How to combine the sub-results remains unknown.

Research Goal: Automatic
Application of Paradigms

Apply D&C

Does LLM solve this problem?

7

Can you optimize this program as a parallel program using D&C? The expected
time complexity is O(n/p), where n is the length of the input list x, and p is the
number of CPU cores.
mss = -INF
for i in range(len(x)):

for j in range(i, len(x)):
mss = min(mss, sum(x[i: j+1]))

return mss

min instead
of max

Our Current Progress

8

• A general automatic approach for applying D&C-like paradigms
• D&C (parallelization), incremenalization, streaming algorithms,

segment trees, algorithms for longest segment problems, etc.

• Can be instantiated to different paradigms.

• Example: A synthesizer for O(n/m)-time D&C programs on lists

• Input: An executable that produces a value from a list
• Can be implemented using any language in any way.

• Output: An O(n/m)-time D&C program
• Keep the same input-output behavior as the input

Framework Overview

9

D&C/
Parallelization

Incrementaliz
ation

Streaming
Algorithms

Segment Tree

An abstracted
program synthesis

problem
Lifting Problem

An efficient
program synthesizer
for lifting problems

AutoLifter

Specification Solving

Manual Application of D&C

• Second minimum (sndmin) problem.
• Given an integer list

• Calculate the second minimum in the list

• Input Program

• Time complexity: O(nlogn)

• Goal: Apply D&C to this program
• Get an O(n/m)-time parallel program

10

return sorted(xs)[l]

Manual Application of D&C

• Three steps of D&C:
1. Divide the input list 𝑥𝑠 into two halves

𝑥𝑠𝐿 + 𝑥𝑠𝑅

2. Recursively calculate the sndmin of the
two halves

3. Combine the sub-results to the sndmin
of 𝑥𝑠

• However, such a combinator does not
exist.

11

[1, 3, 5] [2, 4, 6]

[1, 3, 5, 2, 4, 6]

3 4

sndmin sndmin

2

sndmin

comb

Manual Application of D&C

• Produce auxiliary values
from the lists

• Find a combinator for
both the original result
and the auxiliary values

12

[1, 3, 5] [2, 4, 6]

[1, 3, 5, 2, 4, 6]

3 4

sndmin
sndmin

2

sndmin

comb

1

fstmin

2

fstmin

1

fstmin

𝑐𝑜𝑚𝑏 𝑠𝑛𝑑𝐿, 𝑓𝑠𝑡𝐿 , 𝑠𝑛𝑑𝑅, 𝑓𝑠𝑡𝑅

= (min 𝑠𝑛𝑑𝐿, 𝑠𝑛𝑑𝑅, max 𝑓𝑠𝑡𝐿, 𝑓𝑠𝑡𝑅 ,
min(𝑓𝑠𝑡𝐿, 𝑓𝑠𝑡𝑅))

𝑎𝑢𝑥 𝑥𝑠 = min(𝑥𝑠)

Find auxiliary values and a combinator for merging the sub-results
on half lists into the whole results.

Manual Application of
Incrementalization
• Problem:

• Given a long list whose second
minimum is known.

• Now an integer is appended to this list.

• How to efficiently update the second
minimum?

• Similar to the D&C case, such a
combinator does not exist.
• The incremenalization paradigm

suggests extra values from the original
input to enable efficient update.

13

[2, 4, 6]

4

sndmin

[2, 4, 6]++[1]

2

sndmin

1

comb

Manual Application of
Incrementalization
• Produce auxiliary values

from the lists

• Find a combinator for
both the original result
and the auxiliary values

14

𝑐𝑜𝑚𝑏 𝑠𝑛𝑑, 𝑓𝑠𝑡 , 𝑣

= (min 𝑠𝑛𝑑, max 𝑓𝑠𝑡, 𝑣 , min(𝑓𝑠𝑡, 𝑣))

𝑎𝑢𝑥 𝑥𝑠 = min(𝑥𝑠)

Find auxiliary values and a combinator for updating the results
using the previous results and the new integer.

[2, 4, 6]

4

sndmin

[2, 4, 6]++[1]

1

comb

2

fstmin

2

sndmin

1

fstmin

Lifting Problem
• Input:

1. a: instances of a data structure

2. c: extra values

3. orig: calculating results from the data structure

4. op: constructing a new data structure from existing ones

• Goal: find an auxiliary program 𝑎𝑢𝑥 and a combinator 𝑐𝑜𝑚𝑏
such that
• 𝑜𝑟𝑖𝑔′ 𝑜𝑝 𝑐, 𝑎1, … , 𝑎𝑛 = 𝑐𝑜𝑚𝑏 𝑐, 𝑜𝑟𝑖𝑔′ 𝑎1 , … , 𝑜𝑟𝑖𝑔′ 𝑎𝑛

𝑤ℎ𝑒𝑟𝑒 𝑜𝑟𝑖𝑔′ 𝑎 = (𝑜𝑟𝑖𝑔 𝑎 , 𝑎𝑢𝑥 𝑎)

15

Lifting Problem
• Input:

1. a: instances of a data structure

2. c: extra values

3. orig: calculating results from the data structure

4. op: constructing a new data structure from existing ones

• Goal: find an auxiliary program 𝑎𝑢𝑥 and a combinator 𝑐𝑜𝑚𝑏
such that
• 𝑜𝑟𝑖𝑔′ 𝑜𝑝 𝑐, 𝑎1, … , 𝑎𝑛 = 𝑐𝑜𝑚𝑏 𝑐, 𝑜𝑟𝑖𝑔′ 𝑎1 , … , 𝑜𝑟𝑖𝑔′ 𝑎𝑛

𝑤ℎ𝑒𝑟𝑒 𝑜𝑟𝑖𝑔′ 𝑎 = (𝑜𝑟𝑖𝑔 𝑎 , 𝑎𝑢𝑥 𝑎)

16

𝑐 = ()
𝑎1 = 1, 3, 5
𝑎2 = [2, 4, 6]

𝑜𝑝: 𝑎1 + 𝑎2

𝑜𝑟𝑖𝑔: 𝑠𝑛𝑑𝑚𝑖𝑛
D&C on lists

Lifting Problem
• Input:

1. a: instances of a data structure

2. c: extra values

3. orig: calculating results from the data structure

4. op: constructing a new data structure from existing ones

• Goal: find an auxiliary program 𝑎𝑢𝑥 and a combinator 𝑐𝑜𝑚𝑏
such that
• 𝑜𝑟𝑖𝑔′ 𝑜𝑝 𝑐, 𝑎1, … , 𝑎𝑛 = 𝑐𝑜𝑚𝑏 𝑐, 𝑜𝑟𝑖𝑔′ 𝑎1 , … , 𝑜𝑟𝑖𝑔′ 𝑎𝑛

𝑤ℎ𝑒𝑟𝑒 𝑜𝑟𝑖𝑔′ 𝑎 = (𝑜𝑟𝑖𝑔 𝑎 , 𝑎𝑢𝑥 𝑎)

17

𝑐 = 1
𝑎1 = 2, 4, 6

𝑜𝑝: 𝑎1 + [𝑐]

𝑜𝑟𝑖𝑔: 𝑠𝑛𝑑𝑚𝑖𝑛
Incrementalization

Lifting Problem

• Applications of multiple algorithmic paradigms are
instances of the lifting problem
• D&C (Parallelization)

• Incrementalization

• Streaming Algorithms

• Segment Trees

• Longest segment problems

• ……

18

Solving Lifting Problems as
Program Synthesis Tasks

19

• Input
• Specification:

• 𝑜𝑟𝑖𝑔′ 𝑜𝑝 𝑐, 𝑎1, … , 𝑎𝑛 = 𝑐𝑜𝑚𝑏 𝑐, 𝑜𝑟𝑖𝑔′ 𝑎1 , … , 𝑜𝑟𝑖𝑔′ 𝑎𝑛

𝑤ℎ𝑒𝑟𝑒 𝑜𝑟𝑖𝑔′ 𝑎 = (𝑜𝑟𝑖𝑔 𝑎 , 𝑎𝑢𝑥 𝑎)

• Grammars of 𝑎𝑢𝑥 and 𝑐𝑜𝑚𝑏

• Including only O(1) operators to ensure the efficiency of the
result

• Output
• The implementation of 𝑎𝑢𝑥 and 𝑐𝑜𝑚𝑏

Challenge: Scalability

• The scale of the solutions can be large.

20

sndmin

Minimum
segment
sum

Addressing Scalability

• Divide and conquer the lifting problem
• Derive a specification on a subpart of the target program
• Synthesize this subpart
• Synthesize the rest based on the subpart

• Two techniques
• Variable Elimination
• Component Elimination

21

𝑎𝑢𝑥(𝑥𝑠) = 𝑚𝑖𝑛 𝑥𝑠

𝑐𝑜𝑚𝑏 𝑠𝑛𝑑1, 𝑓𝑠𝑡1 , 𝑠𝑛𝑑2, 𝑓𝑠𝑡2

= min 𝑠𝑛𝑑1, 𝑠𝑛𝑑2, max 𝑓𝑠𝑡1, 𝑓𝑠𝑡2 , min 𝑓𝑠𝑡1, 𝑓𝑠𝑡2

Variable Elimination

• In the specification, 𝑎𝑢𝑥 and 𝑐𝑜𝑚𝑏 are mixed.

• Can we derive a specification only on 𝑎𝑢𝑥?

22

𝑠𝑛𝑑𝑚𝑖𝑛 𝑥𝑠𝐿 + 𝑥𝑠𝑅 = 𝑐𝑜𝑚𝑏 𝑠𝑛𝑑𝑚𝑖𝑛′(𝑥𝑠𝐿), 𝑠𝑛𝑑𝑚𝑖𝑛′(𝑥𝑠𝑅)
 where 𝑠𝑛𝑑𝑚𝑖𝑛′ 𝑥𝑠 = (𝑠𝑛𝑑𝑚𝑖𝑛 𝑥𝑠, 𝑎𝑢𝑥 𝑥𝑠)

Variable Elimination

• 𝑐𝑜𝑚𝑏 is a function
• The same input leads to the same output

• which equals

• The specification includes only 𝑎𝑢𝑥 and can be solved by
traditional synthesis techniques

23

𝑠𝑛𝑑𝑚𝑖𝑛 𝑥𝑠𝐿 + 𝑥𝑠𝑅 = 𝑐𝑜𝑚𝑏 𝑠𝑛𝑑𝑚𝑖𝑛′(𝑥𝑠𝐿), 𝑠𝑛𝑑𝑚𝑖𝑛′(𝑥𝑠𝑅)
 where 𝑠𝑛𝑑𝑚𝑖𝑛′ 𝑥𝑠 = (𝑠𝑛𝑑𝑚𝑖𝑛 𝑥𝑠, 𝑎𝑢𝑥 𝑥𝑠)

𝑠𝑛𝑑𝑚𝑖𝑛′ 𝑥𝑠𝐿 = 𝑠𝑛𝑑𝑚𝑖𝑛′ 𝑥𝑠𝐿
′ ∧ 𝑠𝑛𝑑𝑚𝑖𝑛′ 𝑥𝑠𝑅 = 𝑠𝑛𝑑𝑚𝑖𝑛′ 𝑥𝑠𝑅

′

→ 𝑠𝑛𝑑𝑚𝑖𝑛 𝑥𝑠𝐿 + 𝑥𝑠𝑅 = 𝑠𝑛𝑑𝑚𝑖𝑛(𝑥𝑠𝐿
′ + 𝑥𝑠𝑅

′)

𝑠𝑛𝑑𝑚𝑖𝑛 𝑥𝑠𝐿 + 𝑥𝑠𝑅 ≠ 𝑠𝑛𝑑𝑚𝑖𝑛 𝑥𝑠𝐿
′ + 𝑥𝑠𝑅

′

∧ 𝑠𝑛𝑑𝑚𝑖𝑛 𝑥𝑠𝐿 = 𝑠𝑛𝑑𝑚𝑖𝑛 𝑥𝑠𝐿
′ ∧ 𝑠𝑛𝑑𝑚𝑖𝑛 𝑥𝑠𝑅 = 𝑠𝑛𝑑𝑚𝑖𝑛 𝑥𝑠𝑅

′

⟹ 𝑎𝑢𝑥 𝑥𝑠𝐿 ≠ 𝑎𝑢𝑥 𝑥𝑠𝐿
′ ∨ 𝑎𝑢𝑥 𝑥𝑠𝑅 ≠ 𝑎𝑢𝑥 𝑥𝑠𝑅

′

Properties of
Variable Elimination
• The decomposed specification is an approximation

• It only ensures the existence of function 𝑐𝑜𝑚𝑏

• The function may not be implementable in the target
program space

• In such a case, the synthesis of 𝑐𝑜𝑚𝑏 would fail, and
backtracking is needed

• We prove that such failure is rare
• Backtracking is seldomly needed

24

Current Result

25

• 96 tasks collected from existing datasets, existing publications
for formulating algorithms, and codeforces.com.
• maximum segment sum

• conversion from strings to integers

• parenthesis matching

• a problem in 2020-2021 Winter Petrozavodsk Camp (solved only by
26 out of 243 participating teams)

• AutoLifter solves 82 out of 96 tasks with an average time cost
of 6.53 tasks.
• Significantly outperforms previous related approaches.

An online platform for
competitive programming

Summary

• Applying algorithmic paradigms is important

• Applying algorithmic paradigms is difficult
• A paradigm only provides a high-level template.

• The application depends on the ability of programmers.

• Is it possible to automate the application of paradigms?
• Yes, at least for a class of paradigms similar to D&C

• A general problem: the lifting problem.

• The scalability challenge can be addressed by divide-and-conquer
and proper approximate specifications.

• Reference
• https://arxiv.org/abs/2202.12193

26

Thank you for your
attention!

27

	幻灯片 1: Algorithm Synthesis Synthesizing Efficient Programs by Automatically Applying Algorithmic Paradigms
	幻灯片 2: About Me
	幻灯片 3: Quora Questions
	幻灯片 4: Why Difficult: An Example.
	幻灯片 5: Why Difficult: An Example.
	幻灯片 6: Research Goal: Automatic Application of Paradigms
	幻灯片 7: Does LLM solve this problem?
	幻灯片 8: Our Current Progress
	幻灯片 9: Framework Overview
	幻灯片 10: Manual Application of D&C
	幻灯片 11: Manual Application of D&C
	幻灯片 12: Manual Application of D&C
	幻灯片 13: Manual Application of Incrementalization
	幻灯片 14: Manual Application of Incrementalization
	幻灯片 15: Lifting Problem
	幻灯片 16: Lifting Problem
	幻灯片 17: Lifting Problem
	幻灯片 18: Lifting Problem
	幻灯片 19: Solving Lifting Problems as Program Synthesis Tasks
	幻灯片 20: Challenge: Scalability
	幻灯片 21: Addressing Scalability
	幻灯片 22: Variable Elimination
	幻灯片 23: Variable Elimination
	幻灯片 24: Properties of Variable Elimination
	幻灯片 25: Current Result
	幻灯片 26: Summary
	幻灯片 27: Thank you for your attention!

