Neural Code Generatio
Models with Programmi
Language Knowledge

Yingfei Xiong
Peking University

ﬂ

Training Code LLM

Large model costs
millions and even
billions to train

* Can we reduce the needed parameters, or improve
performance without using more parameters?

Neural Code Generation:

Predicting BPE tokens one by one

return the maximu
of two integers

=R |

+ 0.25
Neural Model ‘)
=a 0.15

if (@>Db)thenr

if (a == b) then
a+=10; b

if (@>b)thenb =

0.30
0.27
0.26
0.21

= 0.40

is 0.06

Beam search to find the most
likely program

Problem: Ignoring PL knowledges

* Program languages have knowledge such as
grammar, type system, and semantics, ignoring
them making learning more difficult.

/Functions between \

token sequences

Syntactic constraint: ()+5(illegal
Type constraint: 1+true illegal

Semantic constraint:

use without initialization illegal

-

_

Functions between
compilable programs

J

\

/

Hypothesis space (PAC learning)

Problem: Ignoring PL knowledges

* Correct code generation requires PL knowledges

assignment is common

and should be used

NN that
bool and(bool a, bool b) { does not

know types
J

all parameters are

Boolean so ‘if’ is more
likely NN that
knows types

Problem: Ignoring PL knowledges

* It is hard to learn PL knowledge by end-to-end

training.
L) C grammar,
Ny Huse type system,
) code semantics
‘ corpus

>

Can we guide neural
network to learn PL
knowledge?

= TreeGen [AAAI20]

Overview

e Using transformer to
implement L2S

e The first transformer-based
code generator

Implements

m ACS [ICSE17] e

e First program repair
approach whose precision >
70%

= Grape [IJCAI22]

e Guiding NN to learn
grammar rule definitions

Tare [ICSE23]

e Guide NN to learn typing
rules

L2S Framework [TOSEM22]

* Representing code as grammar
rule sequences

e Ensuring syntactic correctness
e Allowing easy pruning

= Recoder [FSE23]

e First neural program repair
approach outperforming
traditional approaches

GrammarT5 [ICSE24]

e Integrating L2S with
pretraining’

Apply

m OCOR [ASE20]

e Code search engine
significantly outperforming
existing ones

M | cAM [ASE22]

e Mutation generation engine
that significantly
outperforming existing ones

Representing programs
as grammar rule lists [TOSEM?22]

e Traverse the AST and record the rule ID used to
expand each node

1: root -> Module

2: Module -> body

3: body -> Assign

10: Assign ->
targets value

11: targets -> Name

13: Name ->1d

64: 1d -> length

root
!
Module Rule Sequence:
!
boldy 12310111364 18198
ASK
targets value
l l 18: value -> Num
Name Num
l l 19: Num ->n
1d n
! ! 8:n->10

length 10

Benefits:
Overcoming the problems

* Generate only syntactically correct program
* if (dp[j][i] ==-1) {

dplj][i] = newval;
433443 x
* Much smaller space for more effective learning

4 Functions between token sequences R x
Functions between «
syntactically correct programs

10 Hypothesis space (PAC learning)

Benefits:
Controlling the generation Order

* Different generation order may lead to significantly
different performance

* Generating order can be controlled

* by extending context-free grammar into expansion
grammar

(E = “hours”, 1) (E—>E > 12", 1) (T = E, 1)

hours
hours

11

Benefits:
Pruning partial solutions

* Design static program analysis for pruning
infeasible partial solutions

* Analyzing partial programs generated by LLM is
hard

e BPE tokens are not even scannable
* Not to mention parsing

* Analyzing partial AST is much easier
* if (BoolExpr) then x else x

o, .7

e 1+ " + Expr

Overview

= TreeGen [AAAI20]

e Using transformer to
implement L2S

e The first transformer-based
code generator

= Grape [IJCAI22]

e Guiding NN to learn
grammar rule definitions

= Tare [ICSE23]

e Guide NN to learn typing
rules

Implements

L2S Framework [TOSEM22]

* Representing code as grammar
rule sequences

e Ensuring syntactic correctness
e Allowing easy pruning

m ACS [ICSE17] e

e First program repair
approach whose precision >
70%

= Recoder [FSE23]

e First neural program repair
approach outperforming
traditional approaches

= GrammarT5 [ICSE24]

e Integrating L2S with
pretraining’

13

Apply

m OCOR [ASE20]

e Code search engine
significantly outperforming
existing ones

M | cAM [ASE22]

e Mutation generation engine
that significantly
outperforming existing ones

Using Transformer to
implement L2S [AAAI20]

* The earliest work that applies Transformer for code
generation

* TreeGen: a Transformer model designed for grammar
rule sequences

| Model StrAce Acc+ BLEU

£ | LPN (Ling et al. 2016) 6.1 - 671
= | SEQ2TREE (Dong and Lapata 2016) 1.5 - 534
YNI17 (Yin and Neubig 2017) 16.2 ~18.2 75.8
ASN (Rabinovich, Stern, and Klein 2017) 18.2 - 77.6
ReCode (Hayati et al. 2018) 19.6 - 78.4

| TreeGen-A 258 258 79.3

3 ||ASN+SUPATT (Rabinovich, Stern, and Klein 2017) 227 - [792
;:-:J S/ZMIY (Sun et al. 2019) 271.3 30.5 79.6
£ |[TreeGen-B 318 333 [808

TreeGen has been widely applied to decompilation, program repair,
code search, automating editing by different researchers

14

= TreeGen [AAAI20]

Overview

e Using transformer to
implement L2S

e The first transformer-based
code generator

= Grape [IJCAI22]

e Guiding NN to learn
grammar rule definitions

Tare [ICSE23]

e Guide NN to learn typing
rules

Implements

L2S Framework [TOSEM22]

* Representing code as grammar
rule sequences

e Ensuring syntactic correctness
e Allowing easy pruning

m ACS [ICSE17] e

e First program repair
approach whose precision >
70%

= Recoder [FSE23]

e First neural program repair
approach outperforming
traditional approaches

GrammarT5 [ICSE24]

e Integrating L2S with
pretraining’

15

Apply

m OCOR [ASE20]

e Code search engine
significantly outperforming
existing ones

M | cAM [ASE22]

e Mutation generation engine
that significantly
outperforming existing ones

Existing Neural Program Repair

* Treating a patch as a pair of code

— -
‘ Patch Set
‘ Training
e I
A Neural Translation N
) Model)
- / Repaired

B
uggy Code Code

A finding in bidirectional
transformation [Models’11 MIP]

 State-based representation is ineffective

cfa.createEdge(fromNode, Branch.UNCOND, finallyNode); 1. Need to learn diff
during training

cfa.createEdge(fromNode, Branch.ON_EX, finallyNode); 2. Repris long (13 tokens)

» Delta-based representation is more desirable

1. Change is directly given

modify(9, ON_EX) 2. Repr is short (3 tokens)

17

A grammar of change

1. Edits — Edit; Edits | end

2. Edit — Insert | Modify

3. Insert — insert((HLStatement))
4. Modify — modify(

(ID of an AST Node with a NTS),
(the same NTS as the above NTS))
5. (Any NTS in HL) —
copy({ID of an AST Node with the same NTS))
| (The original production rules in HL)
6. (HLIdentifier) — placeholder
| (Identifiers in the training set)

Ensuring the changed code is still syntactically correct.

18

Recoder [ESEC/FSE’21]

* TreeGen for generating changes

* Neural program repair outperformed traditional
approaches for the first time

Table 2: Comparison without Perfect Fault Localization

Project | jGenProg ‘ HDRepair | Nopol | CapGen | SketchFix | FixMiner | SimFix | TBar | DLFix ‘ PraPR | AVATAR ‘ Recoder

Chart 0/7 0/2 1/6 4/4 6/8 5/8 4/8 9/14 | 5/12 | 4/14 5/12 8/14
Closure 0/0 0/7 0/0 0/0 3/5 5/5 6/8 8/12 | 6/10 | 12/62 8/12 17/31
Lang 0/0 2/6 3/7 5/5 3/4 2/3 9/13 | 5/14 | 5/12 | 3/19 5/11 9/15
Math 5/18 4/7 1/21 12/16 7/8 12/14 14/26 | 18/36 | 12/28 | 6/40 6/13 15/30
Time 0/2 0/1 0/1 0/0 0/1 1/1 1/1 1/3 1/2 0/7 1/3 2/2
Mockito 0/0 0/0 0/0 0/0 0/0 0/0 0/0 1/2 1/1 1/6 2/2 2/2
Total | 527 | 623 | 535 | 2125 | 19/26 | 25531 | 34/56 | 42/81 | 30/65 | 26/148 | 27/53 || 53/94|
P(%) | 185 | 261 | 143 | 840 | 731 | 806 | 607 | 519 | 462 | 176 | 509 | 564

In the cells, x/y:x denotes the number of correct patches, and y denotes the number of patches that can pass all the test cases.

19

= TreeGen [AAAI20]

Overview

e Using transformer to
implement L2S

e The first transformer-based
code generator

= Grape [IJCAI22]

e Guiding NN to learn
grammar rule definitions

Tare [ICSE23]

e Guide NN to learn typing
rules

Implements

L2S Framework [TOSEM22]

* Representing code as grammar
rule sequences

e Ensuring syntactic correctness
e Allowing easy pruning

m ACS [ICSE17] e

e First program repair
approach whose precision >
70%

= Recoder [FSE23]

e First neural program repair
approach outperforming
traditional approaches

GrammarT5 [ICSE24]

e Integrating L2S with
pretraining’

Apply

m OCOR [ASE20]

e Code search engine
significantly outperforming
existing ones

M | cAM [ASE22]

e Mutation generation engine
that significantly
outperforming existing ones

LEAM [ASE’22 Distinguished|]

* From Junjie Chen and Lingming Zhang’s group

* Exchange the input and output of Recoder

* Program Repairer -> Bug Seeder

Table 4: Overall effectiveness in mutation-based FL

FL Tech. | Top-1 | Top-3 | Top-5 | MFR | MAR
Major 35 92 114 | 956 | 12.42

Metallais | PIT 56 102 128 | 816 | 11.83
x DM 19 47 98 | 16.64 | 20.65

LEAM 118 182 188 | 3.86 | 4.57

Major 35 89 111 | 1099 | 13.11

PIT 52 97 124 | 915 | 11.72

MUSE DM 18 53 94 | 18.70 | 22.47
LEAM 126 181 189 | 3.88 | 5.05

21

= TreeGen [AAAI20]

Overview

e Using transformer to
implement L2S

e The first transformer-based
code generator

= Grape [IJCAI22]

e Guiding NN to learn
grammar rule definitions

Tare [ICSE23]

e Guide NN to learn typing
rules

Implements

L2S Framework [TOSEM22]

* Representing code as grammar
rule sequences

e Ensuring syntactic correctness
e Allowing easy pruning

m ACS [ICSE17] e

e First program repair
approach whose precision >
70%

= Recoder [FSE23]

e First neural program repair
approach outperforming
traditional approaches

GrammarT5 [ICSE24]

e Integrating L2S with
pretraining’

Apply

m OCOR [ASE20]

e Code search engine
significantly outperforming
existing ones

M | cAM [ASE22]

e Mutation generation engine
that significantly
outperforming existing ones

Limit of L2S

* Force syntactical and other constraint from outside
* NN does not learn their definitions

ifstmt -> “if” ‘(" boolExpr ‘)" stmt 10
whilestat -> ‘while’ ‘(“ boolExpr ‘) stmt 11
boolExpr -> andExpr 12
boolExpr -> orExpr 13

Grammar rules are encoded as numbers without content.
NN could predict impossible sequences such as 10, 11.

23

Learning Grammar Rules [IJCAI22]

* Guide the NN to learn grammar definitions
* Word2Vec: assign each token a vector

* Grape: assign each grammar rule a vector, learned with
its definition structure

1:Root = Module
2:Module - body

1
I
3:body - If For Assign ... g N j '4_ I
5:1f - test body orelse I) ? hjh |
I
I
I
I

9:For - target iter body orelse v

|

|

I

Il 11:0relse > ...

1] l4:target - orelse ... 2 3 16 14
j| 16:Assign > ...

L

N e am e omm e o e e En o Em o o e D EE EmyEm o o e EE EE EE EE EE EE Ee Em Em Em Em = 7
(Knowledge 1
I Rulel(® @] Representation |
: Rule 2 [) Enhance :
; Rule3 (ee] B‘ I
ase
| Rule5 (@ @] Model J !
! Rule9 (@] Point — |
. Embedding C ook)

24

Learning Grammar Rules [[JCAI22

* Improve the performance of TreeGen up to 5

percentage points

* Qutperforms larger pre-training models

G &
> ?
- w
- <)
&) .

189%

| Code Generation Semantic Parsing Regex Synthesis
| Method HearthStone Django Concode | Atis Job | StrReg
| Metric StrAcc BLEU Acc+ StrAce StrAce | ExeAcc ExeAce | DFAAcc
KCAZ13 [Kwiatkowski ef al., 2013] - - 89.0 -
WKZ14 [Wang ef al., 2014] - - 91.3 90.7
g SEQ2TREE [Dong and Lapata, 2016] - - - 84.6 90.0
§ ASN+SUPATT [Rabinovich et al., 20171 22.7 79.2 - 85.9 92.9
% | TRANX [Yin and Neubig, 2018] - - 73.7 - 86.3 90.0
Z | Tyer-Simp+200 idoms [Iyer et al., 2018] - - 12.20 - -
£ | GNN-Edge [Shaw er al., 2019] - - = 87.1 =
2 SoftReGex [Park et al., 2019] - . - - . . - 28.2
TreeGen [Sun et al., 2020] 30.3%1.061 80.8 33.3 76.4 16.6 89.6+0.329 91.5+0.586 22.5
GPT-2 [Radford et al., 2019] 16.7 71 18.2 62.3 17.3 84.4 92.1 24.6
CodeGPT [Lu ez al., 2021] 27.3 75.4 30.3 68.9 18.3 87.5 92.1 22.49
| TreeGen + Grape 33.6+1.255 854 36.3 77.3 17.6 \ 92.16+0.167 92.55+0.817 | 28.9

Parameters: TreeGen+Grape: 35M GPT-2, CodeGPT: 110M

25

= TreeGen [AAAI20]

Overview

e Using transformer to
implement L2S

e The first transformer-based
code generator

= Grape [IJCAI22]

e Guiding NN to learn
grammar rule definitions

Tare [ICSE23]

e Guide NN to learn typing
rules

Implements

L2S Framework [TOSEM22]

* Representing code as grammar
rule sequences

e Ensuring syntactic correctness
e Allowing easy pruning

m ACS [ICSE17] e

e First program repair
approach whose precision >
70%

= Recoder [FSE23]

e First neural program repair
approach outperforming
traditional approaches

GrammarT5 [ICSE24]

e Integrating L2S with
pretraining’

Apply

m OCOR [ASE20]

e Code search engine
significantly outperforming
existing ones

M | cAM [ASE22]

e Mutation generation engine
that significantly
outperforming existing ones

Learning Typing Rules [ICSE23]

&

UNI P
6\/
'J
N
e
\".

/C
-
N~
@

<t

-189%

e Full type system is difficult to learn from data

Term typing
x:Cel
(T-VAR)
I'=x:C
I'-to:C jelds(Co) =C F
0 0 fields(Co) (T-FIELD)
I+ tu.f,: G
I'-to: Co
mtype(m, Co) = D—C
r-t:C C<:D (TIevE)
-INVK
' tg.m(t) : C
fields(C) =D T
I'-t:C ©C<:D
_ (T-NEW)
I''newC(t) : C
'-1to:D D<:C
(T-UJCAST)
' Oty = C

'-tp:D C<:D C+D

(T-DCAST)
' (COty: C
I'-tp:D C<&D D4&C
stupid warning
(T-SCAST)
' (Oty = C
Method typing MOK in C
X:C, this:C— to : Eo Ep <: Cp

CTiC) =class Cextends D {...}
override(m, D, C—Cy)

Com (CX) {return to;} 0KinC

Class typing C 0K

K=C{@g,CH
{super(@); this.F=F;}
fields(tD) =Dg MOKinC
class C extends D {C F; KM} 0K

Figure 19-4: Featherweight Java (typing)

* Only 30%-40% programs generated by Recoder is

typable

27

C &
A 2
- w
e <,
%\ .
o Dy

-189%

Learning Typing Rules [ICSE23]

* A single rule is much easier to learn

* T-Graph: present the input of a typing rule to the NN

 T-Grammar: force NN to predict the output of a typing
rule

ABC
9

T-Graph: Representing typing relations T-Grammar:
e types of AST nodes E->E && E becomes
* types of variables [Bool]E -> [Bool]E && [Bool]E

,s * subtyping relations

Learning Typing Rules [ICSE23]

* Applying to program repair, forming Tare

d

&
P
¢ 2]
-

>

-189%

Project | Bugs | CapGen | SimFix | TBar | DLFix | Hanabi | Recoder | Recoder-F | Recoder-T | Tare
Chart 26 4/4 4/8 9/14 5/12 3/5 8/14 9/15 8/16 11/16
Closure 133 0/0 6/8 8/12 6/10 -/- 13/33 14/36 15/31 15/29
Lang 64 5/5 9/13 5/14 5/12 4/4 9/15 9/15 11/23 13/22
Math 106 12/16 14/26 18/36 12/28 19/22 15/30 16/31 16/40 19/42
Time 26 0/0 1/1 1/3 1/2 2/2 2/2 2/2 2/4 2/4
Mockito 38 0/0 0/0 172 1/1 -/- 2/2 2/2 2/2 2/2
Total | 393 | 21225 | 34/56 | 42/81 | 30/65 | 28/33 | 49/9 | 52101 | 54/116 | 62/115

Tare+ExpressAPR(efficient patch validation tool) got the first place in the Java

functional bug track of APR-COMP’24.

29

= TreeGen [AAAI20]

Overview

e Using transformer to
implement L2S

e The first transformer-based
code generator

= Grape [IJCAI22]

e Guiding NN to learn
grammar rule definitions

Tare [ICSE23]

e Guide NN to learn typing
rules

Implements

L2S Framework [TOSEM22]

* Representing code as grammar
rule sequences

e Ensuring syntactic correctness
e Allowing easy pruning

m ACS [ICSE17] e

e First program repair
approach whose precision >
70%

= Recoder [FSE23]

e First neural program repair
approach outperforming
traditional approaches

GrammarT5 [ICSE24]

e Integrating L2S with
pretraining’

Apply

m OCOR [ASE20]

e Code search engine
significantly outperforming
existing ones

M | cAM [ASE22]

e Mutation generation engine
that significantly
outperforming existing ones

A Era of LLMs

{7 Bard 0Q Meta Al

LLMs (=pretrained large models) exhibit superior
performance

Can we use grammar-based representation in LLMs?

31

Challenges

* Big vocabulary

* User-defined identifiers can be added to the grammar
when the training set is small

* Pre-training sets are too large

* Heterogeneous grammars
e Existing models: One programming language
* Pretraining models: Many programming languages

* Pretraining Tasks
e Self-supervised training tasks are needed

* Tasks are expected to guide the neural network to learn
the grammar structure

Big vocabulary

 Existing approaches
e IDEN ->isodd | iseven

e Our approach
* Using BPE (Byte Pair Encoding) to find a small set of
subtokens
* is, odd, even
* Integrating them into the grammar

* |IDEN ->is IDEN | odd IDEN | even IDEN
| #is | #odd | #even

* #indicates the ending tokens

* Leads to significantly shorter encoding than the standard sequence
encoding

* |IDEN ->is IDEN | odd IDEN | even IDEN
| €

33

Heterogeneous grammars

* A hyper grammar that includes all grammars
e Root -> Root@Python | Root@Java | ...

* Experimentally has better performance than
sharing some of non-terminals

e While -> while ‘(“ BoolExpr ‘)’ Statements
* BoolExpr -> BoolExpr@Java | BoolExpr@C# | ...

34

Pretraining Tasks

* Given a rule sequence, predicting the parent of a

rule
root

* 123]10/11 13 6418|198 !
Module
'
- bod
* Predicting some T

subtree of an AST Assign

value

35

Learning Declarations

* Existing pre-training models sort files randomly

* LLMs may see a function or a variable before its
declaration

* Dependency parsing:
e Extract declaration-use relationship from files
* Sort the files so that declarations appear before use

36

GrammarT5 [ICSE24]

Natural-Language-Based Code Generation

Models Concode Conala Django MBPP ‘ MathQA
Metric BLEU EM C-BLEU | BLEU EM |BLEU EM | pass@80 | pass@80
TreeGen + Grape(35M) 2645 17.60 30.05 | 20.16 2380 | 7586 7730 | 200 | 2658
GPT-C(110M) 3085 19.85 33.10 | 3032 480 | 7256 6891 | 10.40 58.94
CodeGPT-adapted(110M) 35.94 20.15 3727 | 31.04 460 | 7124 7213 | 12.60 55.90
CoTexT(220M) 1919 1972 3813 | 3145 620 | 7591 7843 | 14.00 58.18
PLBART(220M) 36.69 1875 38.52 | 3244 510 | 7281 7912 | 12.00 57.25
CodeT5-small(60M) 3813 2155 4139 | 3123 600 | 7691 8177 | 19.20 61.58
CodeT5-base(220M) 4073 2230 432 38.91 840 | 8140 84.04 | 24.00 71.52
CodeT5-large(770M) 42.66 2265 4508 | 39.96 740 | 8211 83.16 | 3240 83.14
Unixcoder(110M) 3873 22,65 40.86 | 36.09 1020 | 7842 7535 | 2240 70.16
GrammarT5-small(60M) ~ 38.68 21.25 41.62 | 39.18 800 | 81.20 8277 | 26.00 84.91
GrammarT5-base(220M) 4230 24.75 4538 | 4142 1040 | 82.20 84.27 | 33.20 87.46

37

Industrial Applications

deepsecelk

EvalPlus Tests

Model pass@l
1 W GPT-4-Turbo (April 2024) 86.6
2 % DeepSeek-Coder-V2-Instruct 82.3
3 ¥ GPT-4-Turbo (Nov 2023) 81.7
4 GPT-4 (May 2023) 79.3
5 CodeQwenl.5-7B-Chat 78.7
6 claude-3-opus (Mar 2024) 77.4
7 DeepSeek-Coder-33B-instruct 75

8 OpenCodeInterpreter-DS-33B.4 @ 73.8
9 WizardCoder-33B-V1.1 73.2
10 Artigenz-Coder-DS-6.78 72.6

One of the best open source LLM for

code

Development leaded by my Ph.D.
student Qihao Zhu

Dependency parsing was applied

40

Work-in-progress

Cooperating with a
large company to train
a LLM with grammar-
based representation.

Industrial Applications

Organization Model

% Anthropic claude-3-5-sonnet-20240620
= Google gemini-1.5-pro-002

= OpenAl gpt-40-2024-08-06

= Google gemini-1.5-pro-001

= Meta llama-3.1-405b-instruct

@ DeepSeek deepseek-v2.5

@ Alibaba Cloud gwen-2.5-72b-instruct

deepseel =w mwaeo

= Nvidia llama-3.1-nemotron-70b-instruct

E= OpenAl o1-preview-2024-09-12"

Total (574 bugs)

Plausible @1

39,1%
33.2%
31,7%
28,2%
27,0%
251%
24.2%
23,0%
21,4%

N/A

One of the best open source LLM for

code

Development leaded by my Ph.D.
student Qihao Zhu

Dependency parsing was applied

41

AST Match @1 Cost

11,7% $88.11
14,3% $30.98
83% $30.51
125% $78.65
76% $29.28
65% $19.73

6,6% $4.74

6,6% $47.70 '
3.4% $4.08
N/A N/A

Work-in-progress

Cooperating with a
large company to train
a LLM with grammar-
based representation.

Conclusion

* Anxiety: what should we software researchers do if
LLMs learn everything by themselves?

* LLMs do not learn programming languages
knowledge by themselves

* Guiding them to learn improves their performance

e Future: more genetic ways to learn more software
knowledge

	幻灯片 1: Neural Code Generation Models with Programming Language Knowledge
	幻灯片 2: Training Code LLM
	幻灯片 3: Neural Code Generation: Predicting BPE tokens one by one
	幻灯片 4: Problem: Ignoring PL knowledges
	幻灯片 5: Problem: Ignoring PL knowledges
	幻灯片 6: Problem: Ignoring PL knowledges
	幻灯片 7: Can we guide neural network to learn PL knowledge?
	幻灯片 8: Overview
	幻灯片 9: Representing programs as grammar rule lists [TOSEM22]
	幻灯片 10: Benefits: Overcoming the problems
	幻灯片 11: Benefits: Controlling the generation Order
	幻灯片 12: Benefits: Pruning partial solutions
	幻灯片 13: Overview
	幻灯片 14: Using Transformer to implement L2S [AAAI20]
	幻灯片 15: Overview
	幻灯片 16: Existing Neural Program Repair
	幻灯片 17: A finding in bidirectional transformation [Models’11 MIP]
	幻灯片 18: A grammar of change
	幻灯片 19: Recoder [ESEC/FSE’21]
	幻灯片 20: Overview
	幻灯片 21: LEAM [ASE’22 Distinguished]
	幻灯片 22: Overview
	幻灯片 23: Limit of L2S
	幻灯片 24: Learning Grammar Rules [IJCAI22]
	幻灯片 25
	幻灯片 26: Overview
	幻灯片 27: Learning Typing Rules [ICSE23]
	幻灯片 28: Learning Typing Rules [ICSE23]
	幻灯片 29: Learning Typing Rules [ICSE23]
	幻灯片 30: Overview
	幻灯片 31: A Era of LLMs
	幻灯片 32: Challenges
	幻灯片 33: Big vocabulary
	幻灯片 34: Heterogeneous grammars
	幻灯片 35: Pretraining Tasks
	幻灯片 36: Learning Declarations
	幻灯片 37: GrammarT5 [ICSE24]
	幻灯片 40: Industrial Applications
	幻灯片 41: Industrial Applications
	幻灯片 42: Conclusion

