
Neural Code Generation
Models with Programming

Language Knowledge

Yingfei Xiong

Peking University

Training Code LLM

• More parameters, more effective, more expensive

• Can we reduce the needed parameters, or improve
performance without using more parameters?

Large model costs
millions and even
billions to train

Neural Code Generation:
Predicting BPE tokens one by one

3

Neural Model

return the maximum
of two integers

if (a > b) then r 0.30

if (a == b) then 0.27

a += 10; b 0.26

if (a > b) then b = 0.21

…

= 0.40

+ 0.25

= a 0.15

is_ 0.06

…

Beam search to find the most
likely program

Problem: Ignoring PL knowledges

• Program languages have knowledge such as
grammar, type system, and semantics, ignoring
them making learning more difficult.

4

Functions between
compilable programs

Functions between
token sequences

Hypothesis space (PAC learning)

Syntactic constraint: ()+5(illegal

Type constraint: 1+true illegal

Semantic constraint:

use without initialization illegal

Problem: Ignoring PL knowledges

• Correct code generation requires PL knowledges

5

bool and(bool a, bool b) {

}

assignment is common
and should be used

all parameters are
Boolean so ‘if’ is more

likely

NN that
does not
know types

NN that
knows types

Problem: Ignoring PL knowledges

• It is hard to learn PL knowledge by end-to-end
training.

6

Huge
code
corpus

C grammar,
type system,
semantics

Can we guide neural
network to learn PL

knowledge?

7

Overview

8

• First program repair
approach whose precision >
70%

ACS [ICSE17]

• First neural program repair
approach outperforming
traditional approaches

Recoder [FSE23]

• Code search engine
significantly outperforming
existing ones

OCoR [ASE20]

• Mutation generation engine
that significantly
outperforming existing ones

LEAM [ASE22]

Implements

Apply

• Representing code as grammar
rule sequences

• Ensuring syntactic correctness

• Allowing easy pruning

L2S Framework [TOSEM22]

• Using transformer to
implement L2S

• The first transformer-based
code generator

TreeGen [AAAI20]

• Guiding NN to learn
grammar rule definitions

Grape [IJCAI22]

• Guide NN to learn typing
rules

Tare [ICSE23]

• Integrating L2S with
pretraining`

GrammarT5 [ICSE24]

Representing programs
as grammar rule lists [TOSEM22]

• Traverse the AST and record the rule ID used to
expand each node

9

root

Module

body

Assign

targets

Name

id

length

Num

n

10

value

1: root -> Module

2: Module -> body

3: body -> Assign

10: Assign ->

targets value

11: targets -> Name

13: Name -> id

64: id -> length

18: value -> Num

19: Num -> n

8: n -> 10

Rule Sequence:

1 2 3 10 11 13 64 18 19 8

Benefits:
Overcoming the problems
• Generate only syntactically correct program

• if (dp[j][i] == -1) {
dp[j][i] = newval;

}}}}}}}

• Much smaller space for more effective learning

10

Functions between
syntactically correct programs

Functions between token sequences

Hypothesis space (PAC learning)

√

Benefits:
Controlling the generation Order

• Different generation order may lead to significantly
different performance

• Generating order can be controlled
• by extending context-free grammar into expansion

grammar

11

⟨𝑇 → 𝐸, 1⟩
E

E >12

hours

E

hours

⟨𝐸 → “ℎ𝑜𝑢𝑟𝑠”, ⊥⟩ ⟨𝐸 → 𝐸“ > 12”, 1⟩

E

E >12

hours

T

Benefits:
Pruning partial solutions
• Design static program analysis for pruning

infeasible partial solutions

• Analyzing partial programs generated by LLM is
hard
• BPE tokens are not even scannable

• Not to mention parsing

• Analyzing partial AST is much easier
• if (BoolExpr) then x else x

• 1 + “x” + Expr

12

Overview

13

• Using transformer to
implement L2S

• The first transformer-based
code generator

TreeGen [AAAI20]

• Guiding NN to learn
grammar rule definitions

Grape [IJCAI22]

• Guide NN to learn typing
rules

Tare [ICSE23]

• Integrating L2S with
pretraining`

GrammarT5 [ICSE24]

• First program repair
approach whose precision >
70%

ACS [ICSE17]

• First neural program repair
approach outperforming
traditional approaches

Recoder [FSE23]

• Code search engine
significantly outperforming
existing ones

OCoR [ASE20]

• Mutation generation engine
that significantly
outperforming existing ones

LEAM [ASE22]

Implements

Apply

• Representing code as grammar
rule sequences

• Ensuring syntactic correctness

• Allowing easy pruning

L2S Framework [TOSEM22]

Using Transformer to
implement L2S [AAAI20]
• The earliest work that applies Transformer for code

generation
• TreeGen: a Transformer model designed for grammar

rule sequences

14

TreeGen has been widely applied to decompilation, program repair,
code search, automating editing by different researchers

Overview

15

• First program repair
approach whose precision >
70%

ACS [ICSE17]

• First neural program repair
approach outperforming
traditional approaches

Recoder [FSE23]

• Code search engine
significantly outperforming
existing ones

OCoR [ASE20]

• Mutation generation engine
that significantly
outperforming existing ones

LEAM [ASE22]

Implements

Apply

• Representing code as grammar
rule sequences

• Ensuring syntactic correctness

• Allowing easy pruning

L2S Framework [TOSEM22]

• Using transformer to
implement L2S

• The first transformer-based
code generator

TreeGen [AAAI20]

• Guiding NN to learn
grammar rule definitions

Grape [IJCAI22]

• Guide NN to learn typing
rules

Tare [ICSE23]

• Integrating L2S with
pretraining`

GrammarT5 [ICSE24]

Existing Neural Program Repair

• Treating a patch as a pair of code

16

Patch Set

Training

Neural Translation
Model

Buggy Code
Repaired

Code

A finding in bidirectional
transformation [Models’11 MIP]

• State-based representation is ineffective

• Delta-based representation is more desirable

17

cfa.createEdge(fromNode, Branch.UNCOND, finallyNode);

cfa.createEdge(fromNode, Branch.ON_EX, finallyNode);

1. Need to learn diff
during training
2. Repr is long (13 tokens)

modify(9, ON_EX)
1. Change is directly given
2. Repr is short (3 tokens)

A grammar of change

18

Ensuring the changed code is still syntactically correct.

Recoder [ESEC/FSE’21]

• TreeGen for generating changes

• Neural program repair outperformed traditional
approaches for the first time

19

Overview

20

• First program repair
approach whose precision >
70%

ACS [ICSE17]

• First neural program repair
approach outperforming
traditional approaches

Recoder [FSE23]

• Code search engine
significantly outperforming
existing ones

OCoR [ASE20]

• Mutation generation engine
that significantly
outperforming existing ones

LEAM [ASE22]

Implements

Apply

• Representing code as grammar
rule sequences

• Ensuring syntactic correctness

• Allowing easy pruning

L2S Framework [TOSEM22]

• Using transformer to
implement L2S

• The first transformer-based
code generator

TreeGen [AAAI20]

• Guiding NN to learn
grammar rule definitions

Grape [IJCAI22]

• Guide NN to learn typing
rules

Tare [ICSE23]

• Integrating L2S with
pretraining`

GrammarT5 [ICSE24]

LEAM [ASE’22 Distinguished]

• From Junjie Chen and Lingming Zhang’s group

• Exchange the input and output of Recoder

• Program Repairer -> Bug Seeder

21

• Using transformer to
implement L2S

• The first transformer-based
code generator

TreeGen [AAAI20]

• Guiding NN to learn
grammar rule definitions

Grape [IJCAI22]

• Guide NN to learn typing
rules

Tare [ICSE23]

• Integrating L2S with
pretraining`

GrammarT5 [ICSE24]

Overview

22

• First program repair
approach whose precision >
70%

ACS [ICSE17]

• First neural program repair
approach outperforming
traditional approaches

Recoder [FSE23]

• Code search engine
significantly outperforming
existing ones

OCoR [ASE20]

• Mutation generation engine
that significantly
outperforming existing ones

LEAM [ASE22]

Implements

Apply

• Representing code as grammar
rule sequences

• Ensuring syntactic correctness

• Allowing easy pruning

L2S Framework [TOSEM22]

Limit of L2S

• Force syntactical and other constraint from outside

• NN does not learn their definitions

23

ifstmt -> ‘if’ ‘(‘ boolExpr ‘)’ stmt 10
whilestat -> ‘while’ ‘(‘ boolExpr ‘)’ stmt 11
boolExpr -> andExpr 12
boolExpr -> orExpr 13

Grammar rules are encoded as numbers without content.
NN could predict impossible sequences such as 10, 11.

Learning Grammar Rules [IJCAI22]

• Guide the NN to learn grammar definitions
• Word2Vec: assign each token a vector
• Grape: assign each grammar rule a vector, learned with

its definition structure

24

1:Root →Module
2:Module → body
3:body → If For Assign …
5:If → test body orelse
9:For → target iter body orelse
11:orelse → …
14:target → orelse …
16:Assign →…
…

1

2 3

5

9

16

11

14

Rule 1

Rule 2

Rule 3

Rule 5

Rule 9

Embedding

Grammar Relation Graph

Rule 1

Rule 2

Rule 3

Rule 5

Rule 9
Grammar Vector

Base

Model

Enhance

GNN

Knowledge

Representation

Extract

Graph

Gating

Neighbor Encode

Gating

Input

Graph
N×

Point

Code

• Improve the performance of TreeGen up to 5
percentage points

• Outperforms larger pre-training models

25
Parameters：TreeGen+Grape: 35M GPT-2、CodeGPT：110M

Learning Grammar Rules [IJCAI22]

• Using transformer to
implement L2S

• The first transformer-based
code generator

TreeGen [AAAI20]

• Guiding NN to learn
grammar rule definitions

Grape [IJCAI22]

• Guide NN to learn typing
rules

Tare [ICSE23]

• Integrating L2S with
pretraining`

GrammarT5 [ICSE24]

Overview

26

• First program repair
approach whose precision >
70%

ACS [ICSE17]

• First neural program repair
approach outperforming
traditional approaches

Recoder [FSE23]

• Code search engine
significantly outperforming
existing ones

OCoR [ASE20]

• Mutation generation engine
that significantly
outperforming existing ones

LEAM [ASE22]

Implements

Apply

• Representing code as grammar
rule sequences

• Ensuring syntactic correctness

• Allowing easy pruning

L2S Framework [TOSEM22]

Learning Typing Rules [ICSE23]

• Full type system is difficult to learn from data

• Only 30%-40% programs generated by Recoder is
typable

27

Learning Typing Rules [ICSE23]

• A single rule is much easier to learn
• T-Graph: present the input of a typing rule to the NN

• T-Grammar: force NN to predict the output of a typing
rule

28

T-Graph: Representing typing relations
• types of AST nodes
• types of variables
• subtyping relations

T-Grammar:
E -> E && E becomes
[Bool]E -> [Bool]E && [Bool]E

Learning Typing Rules [ICSE23]

• Applying to program repair, forming Tare

29

Tare+ExpressAPR(efficient patch validation tool) got the first place in the Java
functional bug track of APR-COMP’24.

• Using transformer to
implement L2S

• The first transformer-based
code generator

TreeGen [AAAI20]

• Guiding NN to learn
grammar rule definitions

Grape [IJCAI22]

• Guide NN to learn typing
rules

Tare [ICSE23]

• Integrating L2S with
pretraining`

GrammarT5 [ICSE24]

Overview

30

• First program repair
approach whose precision >
70%

ACS [ICSE17]

• First neural program repair
approach outperforming
traditional approaches

Recoder [FSE23]

• Code search engine
significantly outperforming
existing ones

OCoR [ASE20]

• Mutation generation engine
that significantly
outperforming existing ones

LEAM [ASE22]

Implements

Apply

• Representing code as grammar
rule sequences

• Ensuring syntactic correctness

• Allowing easy pruning

L2S Framework [TOSEM22]

A Era of LLMs

LLMs (=pretrained large models) exhibit superior
performance

Can we use grammar-based representation in LLMs?
31

Challenges

• Big vocabulary
• User-defined identifiers can be added to the grammar

when the training set is small
• Pre-training sets are too large

• Heterogeneous grammars
• Existing models: One programming language
• Pretraining models: Many programming languages

• Pretraining Tasks
• Self-supervised training tasks are needed
• Tasks are expected to guide the neural network to learn

the grammar structure

32

Big vocabulary

• Existing approaches
• IDEN -> isodd | iseven

• Our approach
• Using BPE (Byte Pair Encoding) to find a small set of

subtokens
• is, odd, even

• Integrating them into the grammar
• IDEN -> is IDEN | odd IDEN | even IDEN

| #is | #odd | #even
• # indicates the ending tokens
• Leads to significantly shorter encoding than the standard sequence

encoding
• IDEN -> is IDEN | odd IDEN | even IDEN

| 𝜖

33

Heterogeneous grammars

• A hyper grammar that includes all grammars
• Root -> Root@Python | Root@Java | …

• Experimentally has better performance than
sharing some of non-terminals
• While -> while ‘(‘ BoolExpr ‘)’ Statements

• BoolExpr -> BoolExpr@Java | BoolExpr@C# | …

34

Pretraining Tasks

• Given a rule sequence, predicting the parent of a
rule
• 1 2 3 10 11 13 64 18 19 8

• Predicting some
subtree of an AST

35

root

Module

body

Assign

targets

Name

id

length

Num

n

10

value

Learning Declarations

• Existing pre-training models sort files randomly

• LLMs may see a function or a variable before its
declaration

• Dependency parsing:
• Extract declaration-use relationship from files

• Sort the files so that declarations appear before use

36

GrammarT5 [ICSE24]

37

Industrial Applications

One of the best open source LLM for
code

Development leaded by my Ph.D.
student Qihao Zhu

Dependency parsing was applied

40

?
Work-in-progress

Cooperating with a
large company to train
a LLM with grammar-
based representation.

Industrial Applications

One of the best open source LLM for
code

Development leaded by my Ph.D.
student Qihao Zhu

Dependency parsing was applied

41

?
Work-in-progress

Cooperating with a
large company to train
a LLM with grammar-
based representation.

Conclusion

• Anxiety: what should we software researchers do if
LLMs learn everything by themselves?

• LLMs do not learn programming languages
knowledge by themselves

• Guiding them to learn improves their performance

• Future: more genetic ways to learn more software
knowledge

42

	幻灯片 1: Neural Code Generation Models with Programming Language Knowledge
	幻灯片 2: Training Code LLM
	幻灯片 3: Neural Code Generation: Predicting BPE tokens one by one
	幻灯片 4: Problem: Ignoring PL knowledges
	幻灯片 5: Problem: Ignoring PL knowledges
	幻灯片 6: Problem: Ignoring PL knowledges
	幻灯片 7: Can we guide neural network to learn PL knowledge?
	幻灯片 8: Overview
	幻灯片 9: Representing programs as grammar rule lists [TOSEM22]
	幻灯片 10: Benefits: Overcoming the problems
	幻灯片 11: Benefits: Controlling the generation Order
	幻灯片 12: Benefits: Pruning partial solutions
	幻灯片 13: Overview
	幻灯片 14: Using Transformer to implement L2S [AAAI20]
	幻灯片 15: Overview
	幻灯片 16: Existing Neural Program Repair
	幻灯片 17: A finding in bidirectional transformation [Models’11 MIP]
	幻灯片 18: A grammar of change
	幻灯片 19: Recoder [ESEC/FSE’21]
	幻灯片 20: Overview
	幻灯片 21: LEAM [ASE’22 Distinguished]
	幻灯片 22: Overview
	幻灯片 23: Limit of L2S
	幻灯片 24: Learning Grammar Rules [IJCAI22]
	幻灯片 25
	幻灯片 26: Overview
	幻灯片 27: Learning Typing Rules [ICSE23]
	幻灯片 28: Learning Typing Rules [ICSE23]
	幻灯片 29: Learning Typing Rules [ICSE23]
	幻灯片 30: Overview
	幻灯片 31: A Era of LLMs
	幻灯片 32: Challenges
	幻灯片 33: Big vocabulary
	幻灯片 34: Heterogeneous grammars
	幻灯片 35: Pretraining Tasks
	幻灯片 36: Learning Declarations
	幻灯片 37: GrammarT5 [ICSE24]
	幻灯片 40: Industrial Applications
	幻灯片 41: Industrial Applications
	幻灯片 42: Conclusion

