
Superfusion: Eliminating
Intermediate Data Structures

via Inductive Synthesis

Yingfei Xiong

Peking University

About Me

• Associate Professor at Peking University

• Ph.D. at the University of Tokyo, 2009

• Postdoc at University of Waterloo, 2009-2011

2

• L2S: a general framework for data-driven enumerative program synthesis [TOSEM]

• TreeGen: the best code generation model below 50m parameters [AAAI20]

• GrammarT5: the best code generation model below 500m parameters [ICSE24]

• Deepseek-Coder: the best open source code generation model [TechReport24]

Data-Driven Program Synthesis

• ACS: the first program repair approach whose precision > 70% [ICSE17]

• Recoder: the first neural approach outperforming traditional approaches [FSE21]

Data-Driven Program Repair

• ProbDD: delta-debugging guided by a Bayesian model [FSE21]

• SmartFL: test-based fault localization guided by a Beyesian model [ICSE22]

Probabilistic Fault Localization

Simplicity vs. Efficiency

• Task: maximum tail-segment sum (mts)
• mts [1, -2, 3, -1, 2] = 4

3

Short,
Easy to write,

Easy to understand

Long,
Difficult to write

Difficult to understand

O(n2)

O(n)

Simplicity vs. Efficiency

• Task: maximum tail-segment sum (mts)
• mts [1, -2, 3, -1, 2] = 4

4

Short,
Easy to write,

Easy to understand

Long,
Difficult to write

Difficult to understand

O(n2)

O(n)

[1, -2, 3, -1, 2] tmts=0 tsum=0

Simplicity vs. Efficiency

• Task: maximum tail-segment sum (mts)
• mts [1, -2, 3, -1, 2] = 4

5

Short,
Easy to write,

Easy to understand

Long,
Difficult to write

Difficult to understand

O(n2)

O(n)

[1, -2, 3, -1, 2] tmts=0 tsum=0
[1, -2, 3, -1, 2] tmts=2 tsum=2

Simplicity vs. Efficiency

• Task: maximum tail-segment sum (mts)
• mts [1, -2, 3, -1, 2] = 4

6

Short,
Easy to write,

Easy to understand

Long,
Difficult to write

Difficult to understand

O(n2)

O(n)

[1, -2, 3, -1, 2] tmts=0 tsum=0
[1, -2, 3, -1, 2] tmts=2 tsum=2
[1, -2, 3, -1, 2] tmts=2 tsum=1

Simplicity vs. Efficiency

• Task: maximum tail-segment sum (mts)
• mts [1, -2, 3, -1, 2] = 4

7

Short,
Easy to write,

Easy to understand

Long,
Difficult to write

Difficult to understand

O(n2)

O(n)

[1, -2, 3, -1, 2] tmts=0 tsum=0
[1, -2, 3, -1, 2] tmts=2 tsum=2
[1, -2, 3, -1, 2] tmts=2 tsum=1
[1, -2, 3, -1, 2] tmts=3 tsum=4

Simplicity vs. Efficiency

• Task: maximum tail-segment sum (mts)
• mts [1, -2, 3, -1, 2] = 4

8

Short,
Easy to write,

Easy to understand

Long,
Difficult to write

Difficult to understand

O(n2)

O(n)

Research Goal: Automatic
Optimization at Algorithm Level

• Task: maximum tail-segment sum (mts)
• mts [1, -2, 3, -1, 2] = 4

9

Short,
Easy to write,

Easy to understand

Long,
Difficult to write

Difficult to understand

O(n2)

O(n)

optimize

Previous Progress

• Automatically applying D&C-like algorithm paradigms [TOPLAS24,
WG24-MTG67]

• D&C (Parallelization)

• Incrementalization

• Streaming Algorithms

• Segment Trees

• Longest segment problems

• Automatically applying the dynamic programming paradigm [OOPSLA23]

• Problem:

• [Scalability] A program has to be optimized as a whole

• [Generalizability] Different algorithm paradigms, different approaches

10

Contribution [PLDI’24]

• A new approach that automates the application of

fusion

• Fusion: a functional algorithmic paradigm that eliminates

intermediate data structure

• [Scalability] Automatically finding code pieces to

rewrite

• given a lightweight annotation

• [Generalizability] Capturing more algorithm paradigms

• [Onward] A connecting to abstract interpretation

11

Attempt 1

Using syntax-guided inductive synthesis

12

Problem: the target program may be too large to

synthesize

Synthesize an equivalent program in O(n)
O(n) can be enforced by grammar

Attempt 2

Rewrite only the key parts

13

Problem 1: what key parts need to be rewritten?

Problem 2: different parts cannot be individually synthesized.

Synthesize in O(n)Synthesize in O(n)

O(n)

O(1)

return a list of lists

return an
integer pair

Intermediate Data Structure

14

Consuming
requires at least O(n2)

Consuming is at most O(1)
if no operation is related to
the scale of primitive values

move computation inside a
structural recursion to eliminate
intermediate data structures

Fusion:

[[2],
[1, 2],

[-3, 1, 2]]

(3, 0)

O(1)

O(n2)

SuFu: SuperFusion

15

• Synthesize repr function, that converts between
intermediate values
• 𝑟𝑒𝑝𝑟: 𝑟𝑒𝑡 𝑜𝑓 𝑡𝑎𝑖𝑙𝑠 → 𝑟𝑒𝑡 𝑜𝑓 𝑡𝑎𝑖𝑙𝑠′

• Different parts can be independently synthesized.

repr
[[2],

[1, 2],
[-3, 1, 2]]

(3, 0)

How to synthesize repr?

repr provides enough information for the final result

16

mts

xs1

m1

mts

xs2

m2

tails r1

tails r2

repr

repr

If m1 ≠ m2

then r1 ≠ r2

Find a small repr that satisfy the specification

How to synthesize repr?

repr provides enough information for the final result

17

mts

xs1

m1

mts

xs2

m2

tailsr1

tailsr2

repr

repr

If m1 ≠ m2

then r1 ≠ r2

Find a small repr that satisfy the specification

What parts need to be
rewritten?
• The user marks the intermediate data structure to

be eliminated

• The system infers the expressions reading/writing
the data structure

18

Application: supporting other
algorithmic paradigms
• Many algorithmic paradigms define the ways of

traversing the input data structure

• Capture them as templates

19

dac_idxs xs mts mts

eliminate

Application:
synthesize an interpreter

20

compilerprogram B program A interpreter result

eliminate

Evaluation: Benchmarks

21

Synduce [Farzan et al. PLDI 2022]

[Bird 1989; Bird and de Moor 1997]

AutoLifter [Ji et al. TOPLAS 2024]

Evaluation: Results

22

Evaluation:
Comparing to specialized solvers

23

Demo

24

http://8.140.207.65/new-demo

Connecting to Abstract
Interpretation [Ongoing]

All Tails

(tmts, tsum)

tails
maximum.
(map sum)

tails’_.1

𝛼

Concrete domain

Abstract domain

state transformers

Question:
1. Is this perspective new?
2. What approaches for automatically designing abstract interpretation exist?

• CEGAR, symbolic abstraction, what else?

Applications to Program
Equivalence Verification [Ongoing]

• Proving program equivalence
• forall (xs:List). sum (rev xs) = sum (sort xs)

• Challenge: inductive data structure and recursion
• Direct induction on this proposition will get stuck

• Some propositions are easier to prove using induction
• One structural recursion call in one hand side

• Synthesize a structural recursion function f
• f xs = sum (sort xs)

• And change the original proposition into two
• sum (rev xs) = f x
• f xs = sum (sort xs)

26

27

Applications to Program
Equivalence Verification [Ongoing]

Yican Sun, Ruyi Ji, Jian Fang, Xuanlin Jiang, Mingshuai Chen, Yingfei Xiong (2024).
Proving Functional Program Equivalence via Directed Lemma Synthesis. Preprint.
https://boyvolcano.github.io/publication/manuscript2/manuscript2.pdf

Conclusion

• Intermediate data structures
• are bottlenecks for inefficient algorithms

• Eliminating intermediate data structures
• leads to efficient programs

• can be automated by program synthesis

• has a connection to abstract interpretation

• Sufu: eliminating intermediate data structures
• by synthesizing a repr function first

• has been used to verify the correctness of the
synthesized programs

28

Thank you for your
attention!

29

	幻灯片 1: Superfusion: Eliminating Intermediate Data Structures via Inductive Synthesis
	幻灯片 2: About Me
	幻灯片 3: Simplicity vs. Efficiency
	幻灯片 4: Simplicity vs. Efficiency
	幻灯片 5: Simplicity vs. Efficiency
	幻灯片 6: Simplicity vs. Efficiency
	幻灯片 7: Simplicity vs. Efficiency
	幻灯片 8: Simplicity vs. Efficiency
	幻灯片 9: Research Goal: Automatic Optimization at Algorithm Level
	幻灯片 10: Previous Progress
	幻灯片 11: Contribution [PLDI’24]
	幻灯片 12: Attempt 1
	幻灯片 13: Attempt 2
	幻灯片 14: Intermediate Data Structure
	幻灯片 15: SuFu: SuperFusion
	幻灯片 16: How to synthesize repr?
	幻灯片 17: How to synthesize repr?
	幻灯片 18: What parts need to be rewritten?
	幻灯片 19: Application: supporting other algorithmic paradigms
	幻灯片 20: Application: synthesize an interpreter
	幻灯片 21: Evaluation: Benchmarks
	幻灯片 22: Evaluation: Results
	幻灯片 23: Evaluation: Comparing to specialized solvers
	幻灯片 24: Demo
	幻灯片 25: Connecting to Abstract Interpretation [Ongoing]
	幻灯片 26: Applications to Program Equivalence Verification [Ongoing]
	幻灯片 27: Applications to Program Equivalence Verification [Ongoing]
	幻灯片 28: Conclusion
	幻灯片 29: Thank you for your attention!

