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• L2S: a general framework for data-driven enumerative program synthesis [TOSEM]

• TreeGen: the best code generation model below 50m parameters [AAAI20]

• GrammarT5: the best code generation model below 500m parameters [ICSE24]

• Deepseek-Coder: the best open source code generation model [TechReport24]

Data-Driven Program Synthesis

• ACS: the first program repair approach whose precision > 70% [ICSE17]

• Recoder: the first neural approach outperforming traditional approaches [FSE21]

Data-Driven Program Repair

• ProbDD: delta-debugging guided by a Bayesian model [FSE21]

• SmartFL: test-based fault localization guided by a Beyesian model [ICSE22]

Probabilistic Fault Localization



Simplicity vs. Efficiency

• Task: maximum tail-segment sum (mts) 
• mts [1, -2, 3, -1, 2] = 4
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Research Goal: Automatic 
Optimization at Algorithm Level

• Task: maximum tail-segment sum (mts) 
• mts [1, -2, 3, -1, 2] = 4
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Previous Progress

• Automatically applying D&C-like algorithm paradigms [TOPLAS24, 
WG24-MTG67]

• D&C (Parallelization)

• Incrementalization

• Streaming Algorithms

• Segment Trees

• Longest segment problems

• Automatically applying the dynamic programming paradigm [OOPSLA23]

• Problem:

• [Scalability] A program has to be optimized as a whole

• [Generalizability] Different algorithm paradigms, different approaches
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Contribution [PLDI’24]

• A new approach that automates the application of 

fusion

• Fusion: a functional algorithmic paradigm that eliminates 

intermediate data structure

• [Scalability] Automatically finding code pieces to 

rewrite 

• given a lightweight annotation

• [Generalizability] Capturing more algorithm paradigms

• [Onward] A connecting to abstract interpretation
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Attempt 1

Using syntax-guided inductive synthesis
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Problem: the target program may be too large to 

synthesize 

Synthesize an equivalent program in O(n)
O(n) can be enforced by grammar



Attempt 2

Rewrite only the key parts
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Problem 1: what key parts need to be rewritten?

Problem 2: different parts cannot be individually synthesized.

Synthesize in O(n)Synthesize in O(n)

O(n)

O(1)

return a list of lists

return an 
integer pair



Intermediate Data Structure
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Consuming
requires at least O(n2)

Consuming is at most O(1) 
if no operation is related to 
the scale of primitive values

move computation inside a 
structural recursion to eliminate
intermediate data structures

Fusion: 

[         [2],
[1, 2],

[-3, 1, 2]]

(3, 0)

O(1)

O(n2)



SuFu: SuperFusion
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• Synthesize repr function, that converts between 
intermediate values
• 𝑟𝑒𝑝𝑟: 𝑟𝑒𝑡 𝑜𝑓 𝑡𝑎𝑖𝑙𝑠 → 𝑟𝑒𝑡 𝑜𝑓 𝑡𝑎𝑖𝑙𝑠′

• Different parts can be independently synthesized.

repr
[         [2],

[1, 2],
[-3, 1, 2]]

(3, 0)



How to synthesize repr? 

repr provides enough information for the final result
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What parts need to be 
rewritten?
• The user marks the intermediate data structure to 

be eliminated

• The system infers the expressions reading/writing 
the data structure
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Application: supporting other 
algorithmic paradigms
• Many algorithmic paradigms define the ways of 

traversing the input data structure

• Capture them as templates
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dac_idxs xs mts mts

eliminate



Application: 
synthesize an interpreter
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compilerprogram B program A interpreter result

eliminate



Evaluation: Benchmarks
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Synduce [Farzan et al. PLDI 2022]

[Bird 1989; Bird and de Moor 1997]

AutoLifter [Ji et al. TOPLAS 2024]



Evaluation: Results
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Evaluation:
Comparing to specialized solvers
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Demo 
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http://8.140.207.65/new-demo



Connecting to Abstract 
Interpretation [Ongoing]

All Tails

(tmts, tsum)

tails
maximum. 
(map sum)

tails’_.1

𝛼

Concrete domain

Abstract domain

state transformers

Question:
1. Is this perspective new?
2. What approaches for automatically designing abstract interpretation exist?

• CEGAR, symbolic abstraction, what else?



Applications to Program 
Equivalence Verification [Ongoing]

• Proving program equivalence
• forall (xs:List). sum (rev xs) = sum (sort xs)

• Challenge: inductive data structure and recursion
• Direct induction on this proposition will get stuck

• Some propositions are easier to prove using induction
• One structural recursion call in one hand side

• Synthesize a structural recursion function f
• f xs = sum (sort xs)

• And change the original proposition into two
• sum (rev xs) = f x
• f xs = sum (sort xs)
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Applications to Program 
Equivalence Verification [Ongoing]

Yican Sun, Ruyi Ji, Jian Fang, Xuanlin Jiang, Mingshuai Chen, Yingfei Xiong (2024). 
Proving Functional Program Equivalence via Directed Lemma Synthesis. Preprint.
https://boyvolcano.github.io/publication/manuscript2/manuscript2.pdf



Conclusion

• Intermediate data structures
• are bottlenecks for inefficient algorithms

• Eliminating intermediate data structures
• leads to efficient programs

• can be automated by program synthesis

• has a connection to abstract interpretation

• Sufu: eliminating intermediate data structures
• by synthesizing a repr function first

• has been used to verify the correctness of the 
synthesized programs
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Thank you for your 
attention!
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