Superfusion: Eliminating
Intermediate Data Structures
via Inductive Synthesis

Yingfei Xiong
Peking University

About Me

* Associate Professor at Peking University
* Ph.D. at the University of Tokyo, 2009
* Postdoc at University of Waterloo, 2009-2011

mmy Data-Driven Program Synthesis

¢ L2S: a general framework for data-driven enumerative program synthesis [TOSEM]
* TreeGen: the best code generation model below 50m parameters [AAAI20]

e GrammarT5: the best code generation model below 500m parameters [ICSE24]

® Deepseek-Coder: the best open source code generation model [TechReport24]

s Data-Driven Program Repair

® ACS: the first program repair approach whose precision > 70% [ICSE17]
® Recoder: the first neural approach outperforming traditional approaches [FSE21]

e Probabilistic Fault Localization

* ProbDD: delta-debugging guided by a Bayesian model [FSE21]
* SmartFL: test-based fault localization guided by a Beyesian model [ICSE22]

Simplicity vs. Efficiency

e Task: maximum tail-segment sum (mts)
e mts[1,-2,3,-1,2]=4

Short,
Easy to write,
Easy to understand

mts xs = maximum (map sum (tails xs))

mts' xs = (tails' xs).1
~long, tails' Nil = (0, @)
Difficult to write 1 3 g
Difficult to understand @143 Cons(h, t) =
let (tmts, tsum) = tails' t in
(max tmts (tsum + h), tsum + h)

O(n?)

O(n)

Simplicity vs. Efficiency

(1, -2, 3, -1, 2] tmts=0 tsum=0

mts' xs = (tails' xs).1

tails' Nil = (o, 9)

tails' Cons(h, t) =
let (tmts, tsum) = tails' t in
(max tmts (tsum + h), tsum + h)

tmts=0 tsum=0
tmts=2 tsum=2

mts' xs = (tails' xs).1

tails' Nil = (o, 9)

tails' Cons(h, t) =
let (tmts, tsum) = tails' t in
(max tmts (tsum + h), tsum + h)

1, -2, 3, -1, 2] tmts=0 tsum=0
1,-2, 3, -1, 2] tmts=2 tsum=2
1,-2,3, -1, 2] tmts=2 tsum=1

mts' xs = (tails' xs).1

tails' Nil = (0, @)

tails' Cons(h, t) =
let (tmts, tsum) = tails' t in
(max tmts (tsum + h), tsum + h)

Simplicity vs. Efficiency

tmts=0 tsum=0
tmts=2 tsum=2
tmts=2 tsum=1
tmts=3 tsum=4

NN

-
-

T
NN
w W w w
FH
N

-

1
=
INI L

mts' xs = (tails' xs).1

tails' Nil = (o, 9)

tails' Cons(h, t) =
let (tmts, tsum) = tails' t in
(max tmts (tsum + h), tsum + h)

Simplicity vs. Efficiency

e Task: maximum tail-segment sum (mts)
e mts[1,-2,3,-1,2]=4

Short,
Easy to write,
Easy to understand

mts xs = maximum (map sum (tails xs))

mts' xs = (tails' xs).1
~long, tails' Nil = (0, @)
Difficult to write 1 3 g
Difficult to understand @143 Cons(h, t) =
let (tmts, tsum) = tails' t in
(max tmts (tsum + h), tsum + h)

O(n?)

O(n)

Research Goal: Automatic
Optimization at Algorithm Level

e Task: maximum tail-segment sum (mts)
e mts[1,-2,3,-1,2]=4

Short,
Easy to write,
Easy to understand

mts xs = maximum (map sum (tails xs))

optimize

mts' xs = (tails' xs).1
~long, tails' Nil = (0, @)
Difficult to write 1 3 g
Difficult to understand @143 Cons(h, t) =
let (tmts, tsum) = tails' t in
(max tmts (tsum + h), tsum + h)

O(n?)

O(n)

Previous Progress

* Automatically applying D&C-like algorithm paradigms [TOPLAS24,
WG24-MTG67]
* D&C (Parallelization)
* Incrementalization
e Streaming Algorithms
* Segment Trees

* Longest segment problems

e Automatically applying the dynamic programming paradigm [OOPSLA23]

* Problem:
* [Scalability] A program has to be optimized as a whole
* [Generalizability] Different algorithm paradigms, different approaches

10

Contribution [PLDI'24]

* A new approach that automates the application of
fusion

e Fusion: a functional algorithmic paradigm that eliminates
intermediate data structure

* [Scalability] Automatically finding code pieces to
rewrite

* given a lightweight annotation
* [Generalizability] Capturing more algorithm paradigms

e [Onward] A connecting to abstract interpretation

11

Attempt 1

Using syntax-guided inductive synthesis

mts xs = maximum (map sum (tails xs))

‘ Synthesize an equivalent program in O(n)

O(n) can be enforced by grammar

mts' xs = (tails' xs).1

tails' Nil = (0, @)

tails' Cons(h, t) =
let (tmts, tsum) = tails' t in
(max tmts (tsum + h), tsum + h)

Problem: the target program may be too large to
synthesize

Attempt 2

Rewrite only the key parts return a list of lists
/ return an
mts xs = |maximum (map suml(tails xs))) integer pair
Synthesize in O(n) Synthesize in O(n)
O(1) mts' xs = (tails' xsj;l tails' Nil = (0, @)

tails' Cons(h, t) =
let (tmts, tsum) = tails' t in
o(n) (max tmts (tsum + h), tsum + h)

Problem 1: what key parts need to be rewritten?
Problem 2: different parts cannot be individually synthesized.

13

Intermediate Data Structure

Consuming O(n?)
requires at least O(n?) [[2],
mts xs = [maximum (map sum<«— [1,2], «—(tails xs))
[_31 1) 2]]

Fusion: move computation inside a
structural recursion to eliminate
intermediate data structures

Consuming is at most O(1)

if no operation is related to

the scale of primitive values 0(1) ils' Nil = (@, @)
tails' Nil = ’

mts' xs = (tails' xs).1|«—— (3, 0) «——— tails’ Cons(h, t) =
let (tmts, tsum) = tails' t in
(max tmts (tsum + h), tsum + h)

14

SuFu: SuperFusion

* Synthesize repr function, that converts between
intermediate values

« repr:ret of tails - ret of tails’

 Different parts can be independently synthesized.

[[2],
[1,2], — repr — (3, 0)
[-3, 1, 2]]

mts Xs =

maximum (map sum|(tails Xs))

l

mts' xs = (tails' xsj;l tails' Nil = (@, @)

tails' Cons(h, t) =
let (tmts, tsum) = tails' t in
(max tmts (tsum + h), tsum + h)

How to synthesize repr?

repr provides enough information for the final result

mts xs = maximum (map sum (tails xs))

mts — m,

XSl mtS Y mz If ml i m2

XS,)
tails — repr — 14

thenr; #r,

tails — repr — 1,

Find a small repr that satisfy the specification

16

How to synthesize repr?

repr provides enough information for the final result

mts xs = maximum (map sum (tails xs))

m; <+—— mts

If m; # m, -

r{ «— repr «— tails XS,
thenr; #r,
r, «— repr «— tails

Find a small repr that satisfy the specification

17

What parts need to be
rewritten?

* The user marks the intermediate data structure to
be eliminated

* The system infers the expressions reading/writing

the data structure tails Nil =

NCons(Nil, NNil)
tails Cons(_, t)@xs =

let ts = tails t in

NCons(xs, ts)

tails :: List ->|Packed|NList mts xs =

mts xs = maximum (map sum (tails , let ts = tails xs in
Xs)) maximum (map sum ts)

18

Application: supporting other
algorithmic paradigms

* Many algorithmic paradigms define the ways of
traversing the input data structure

e Capture them as templates

dac_id E1t(_)@xs = xs

dac_id Cons(_, _)@xs =
let (ls, rs) = split xs in
concat (dac_id ls) (dac_id rs)

xs — dac_id —> xs — mts — mts

mts xs = maximum (map sum (tails

Xs))

eliminate

dac_id :: List -> Packed List
dac_mts xs = mts (dac_id xs)

19

Application:
synthesize an interpreter

program B — compiler —— program A —— interpreter —— result

eliminate

20

Evaluation: Benchmarks

Table 4. The profile of our dataset

Source #Task | Size | #Packed
Fusion 16 126.5 1.250
Recursion 178 157.4 1.101
D&C 96 252.2 1.010
Total 290 | 187.1 1.079

21

[Bird 1989; Bird and de Moor 1997]
Synduce [Farzan et al. PLDI 2022]
AutoLifter [Ji et al. TOPLAS 2024]

Evaluation: Results

Table 6. Details on the performance of SuFu.

Sketch Generation Sketch Solving
Time Srewrite Time | Scom press Sextract | Sholes
Fusion 0.015 16.00 14.95 9.071 4.643 | 21.79

Source

Recursion | 0.018 17.65 24.73 7.876 6.759 | 30.41

D&C 0.037 16.39 438.98 11.64 6.563 | 34.66

Total 0.021 17.14 38.06 9.080 6.587 | 46.70

22

Evaluation:
Comparing to specialized solvers

Source Tool #Solved Time
Recursion SuFu 170 11.4
SYNDUCE 125 1.7

Source Tool #Solved Time

SuFu 80 46.8

D&C AUTOLIFTER 82 15.6

23

D emo http://8.140.207.65/new-demo

SuperFusion

Eliminating Intermediate Data Structures via Inductive Synthesis

Reference Program AutoLabel @ Optimized Program
Optimize

vl NonScalar

[OlKnapsack

import “compress”; import “1list”;
import “list”;
fun sumw items = sum (map fst items):
Ttem = Int * Int;
ItemList = List (Ttem); fun sumv items = sum (map snd items) ;

Plan = Reframe (ItemList);

step :: Int = (Int * Int) —> (Int * Int) —> List (Int * Int);:
fun sumw items = sum (map fst items): fun step lim item plan =
fun sumv items = sum (map snd items): if (fst plan) + fst item <= lim
then Cons {

step :: Int —> Item —» Plan —> List (Plan): (let c0 = (fst item) in
fun step lim item plan = let ¢l = (snd item) in

if sumw plan + fst item <= lim then {(fst plan) + c0, (snd plan) + cl}),

Cons {Cons {item, plan}, Cons {plan, Nil}} Cons {plan, Nil unit}
else Cons {plan, Nil}; }

else Cons {plan, Nil unit};
gen :: Int —> ItemList —> List (Plan);
fun gen lim = function gen :: Int - (List (Int * Int)) —> List (Int * Int):

Iz N oD Mzt a1 Lol Vi — o1

24

Connecting to Abstract
Interpretation [Ongoing]

Concrete domain /
_ v
ARSI All Tails
(map sum)

a

Abstract domain

v

T

Question:

1. Is this perspective new?

2. What approaches for automatically designing abstract interpretation exist?
 CEGAR, symbolic abstraction, what else?

Applications to Program e
Equivalence Verification [Ongoing] ©

* Proving program equivalence
e forall (xs:List). sum (rev xs) = sum (sort xs)

* Challenge: inductive data structure and recursion
 Direct induction on this proposition will get stuck

* Some propositions are easier to prove using induction
* One structural recursion call in one hand side

e Synthesize a structural recursion function f
e fxs=sum (sort xs)

* And change the original proposition into two
e sum (rev xs) =fx
e fxs=sum (sort xs)

Applications to Program -
Equivalence Verification [Ongoing] ©

#Solved #Solved #Solved #Fails

(Standard) (Extension) (Total) (Timeout) AvgTime
140 21 161 3.64s
AUTOPROOF 109
(116.67%) (1 600%) (1 30.89%) (1 95.47%)
Cvc4InND 120 3 123 147 80.36s

Yican Sun, Ruyi Ji, Jian Fang, Xuanlin Jiang, Mingshuai Chen, Yingfei Xiong (2024).
Proving Functional Program Equivalence via Directed Lemma Synthesis. Preprint.
https://boyvolcano.github.io/publication/manuscript2/manuscript2.pdf

27

Conclusion

* Intermediate data structures
 are bottlenecks for inefficient algorithms

* Eliminating intermediate data structures
* |leads to efficient programs
* can be automated by program synthesis
* has a connection to abstract interpretation

e Sufu: eliminating intermediate data structures

* by synthesizing a repr function first

* has been used to verify the correctness of the
synthesized programs

Thank you for your
attention!

	幻灯片 1: Superfusion: Eliminating Intermediate Data Structures via Inductive Synthesis
	幻灯片 2: About Me
	幻灯片 3: Simplicity vs. Efficiency
	幻灯片 4: Simplicity vs. Efficiency
	幻灯片 5: Simplicity vs. Efficiency
	幻灯片 6: Simplicity vs. Efficiency
	幻灯片 7: Simplicity vs. Efficiency
	幻灯片 8: Simplicity vs. Efficiency
	幻灯片 9: Research Goal: Automatic Optimization at Algorithm Level
	幻灯片 10: Previous Progress
	幻灯片 11: Contribution [PLDI’24]
	幻灯片 12: Attempt 1
	幻灯片 13: Attempt 2
	幻灯片 14: Intermediate Data Structure
	幻灯片 15: SuFu: SuperFusion
	幻灯片 16: How to synthesize repr?
	幻灯片 17: How to synthesize repr?
	幻灯片 18: What parts need to be rewritten?
	幻灯片 19: Application: supporting other algorithmic paradigms
	幻灯片 20: Application: synthesize an interpreter
	幻灯片 21: Evaluation: Benchmarks
	幻灯片 22: Evaluation: Results
	幻灯片 23: Evaluation: Comparing to specialized solvers
	幻灯片 24: Demo
	幻灯片 25: Connecting to Abstract Interpretation [Ongoing]
	幻灯片 26: Applications to Program Equivalence Verification [Ongoing]
	幻灯片 27: Applications to Program Equivalence Verification [Ongoing]
	幻灯片 28: Conclusion
	幻灯片 29: Thank you for your attention!

