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« B /%\_bn = TR TTEV I TRV IR {E
* BERS R 1‘/T\, T EN B SRR
 WNfA[HEIA 1‘/T\'?

- HERIBES#HIR?
e Edsger W.Dijkstra. On the foolishness of “natural language
programming”. 1978

- RFRAASIGE O E fla,b)=arh
ﬁﬁﬁ& \_t%ij_(_gl%;& f(a+1, b+1)=a+b-2

ZIEFR .
- BEBRERINEERE sort(in, Out) -

perm(In, Out),

ZEHES AAMBIRRIEIMNT B sorted((;ut).
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* —ITERBAHFF

insort = foldr insert []

 SITHIREHF
quicksort[] =]
quicksort (p:xs) = (quicksort lesser) ++ [p] ++ (quicksort greater)
where
lesser = filter (< p) xs
greater = filter (>= p) xs

* RIRIES
* Lisp, Scheme, Racket
e ML, Ocaml

 Haskell
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print(a[2]); // 5 print(a[2]); //5
al2] =1; b = update(a, 2, 1);
print(a[2]); // 1 print(a[2]); //5

print(b[2]); //1
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Vector Effective Constant Effective Constant
ScalafFiEfE | ¥ R
HashSet Effective Effective Effective Linear

Constant Constant Constant
TreeSet Log Log Log Log
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s — (TSR
sort(In, Out) :- perm(In, Out), sorted(Out).

e permAdsortedt A] PAZKIE X
sorted([]).
sorted([_]).
sorted([X,Y|Rest]) :- X =<, sorted([Y|Rest]).

perm([],[]).
perm(List, [H|Perm]) :- delete(H, List, Rest), perm(Rest, Perm).

¢ )RFIE= " Prolog, Erlang, Curry
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R BURFIODESEL
o FMZg: Perm(sort(l), 1) /\ Sorted(sort(l))
- HIEE R SXHFEE

s [ AT EmiFEesiie. EERIT BHRITTEIE
* superopt, souper: ZRIFRSEHERESRAINIL
« Sufu (4EX) BWASERER, hheaNEE
* Enlightenment-1 (3T &FT) : BEFEHKIRITHICPU
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« FESIES A NES HIB AT EER
s MIBEEDHIFES . SAL

Il

=
* A IES : TensorFlow/PyTorch

* BERBIZIES © Stan, PyMC

s REESEAR RIRERHEES: LMAL
« HEEEARIZIES : Solidity

e GPUFIAIE=: Triton

« MZIRFZRIZIES . P4, NetKat
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f#lang rosette

{define (interpret formula)

(match formula

[ (A Lexpr ...} (apply &% (map interpret expr))]
[TV Lexpr ...) (apply || (map interpret expr))]
[ (—,expr) (! (interpret expr))]

[1it (constant 1it boolean?}]1))

- This implements a SAT solver
(define (SAT formula)

(solve (assert (interpret formula))))

(saT " (A ro (W se (mt))t (—e)))
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5T, &:

quicksort (x:xs) =
quicksort [a | a <- xs, a <=x] ++ [X]
++ quicksort [a | a <-xs, a > X]

25
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Testing shows the presence,

not the absence of bugs.

” Edsger W. Dijkstra
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s AR EFEZEUREFEH AR
* Perm(sort(l), 1) /\ Sorted(sort(l))
c Bix: MAREE, F1=55E
- MESHE, UASNEFAMELIERT—F
* QN{AERR?
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% 25 IE AH 25451

{{ True }}
->>

{({ n X 0 4+ m
X = m;

{({ n X 0 + X
Y := 0;

{({ n X Y + X

while n < X do

{({n XY + X
->>

{{

m

b}

b}

b}

An <X }}

(X = n) =m }}
X =m }}

b}

A =(n = X) }}
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s B¥E2: EAKMEIEREXT
e https://www.win.tue.nl/~gwoegi/P-versus-NP.htm
« E/DBF62FBILSCIERR TP = NP, 50%I3ER TP # NP
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* XAMREREDITIEF
* RATERE AT CHERMRET, #iRE
FERBPEIR

e string={FT B FFE}
 int={FTE IE ]
 IZEFN:

* string+string=string, int+int=int

* string a, b;
factorial(a+b); //28 BUFH 1R

36



B IR RS
i

Ownership Type Fhrf BUE 2

Refinement Type 1SS 3 ]

Effect Type il R E

Dependent Type AR I A N\ I 3R [m] S 7Y

Linear Type BEUR— IR A

Session Type B PRIEAS B AYH S A0 A 2 UL AC
Gradual Type RFEIESIE T BB INE A

Union/Insect Type KRR RIGHE
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Dependent Type

« KB REHFIRER (Coq)

Inductive list : nat -> Type :=
| nil : list ©
| cons : forall n, nat -> list n -> list (S n).
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Refinement Type

« fRE|Ei A\ IE (LiquidHaskell)

square :: x:{Int | x >= 0} -> Int
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Effect Type

* IR R ENEITEA  (Koka)

add : (int, int) -> total int //¥% A EI1EH
add : (int, int) -> 10 int  //£3 125 % N4
add : (int, int) -> int state //S BN L =
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Session Type

« IR S RYINFE A EHESE R (Rust SessionZE )

type PingPong = Send<String, Recv<String, Eps>>;
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* inta=1;
int b = &a;
int* c = b;
return *c;
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Haskell Brooks Curry
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— —Curry-Howard Correspondence, 1934-1969
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Inductive day : Type := Definition pext_weekday (d:day) : day :=

monday match d with
tuesday monday => tuesday
wednesday tuesday => wednesday
thursday wednesday => thgrsday
friday thgrsday => friday
saturday friday => monday
sunday. saturday => monday

sunday => monday

end.

Example test next weekday:
(next_weekday (next weekday saturday)) = tuesday.

Proof. simpl. reflexivity. Qed.
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« C* (dEX) ,F*

46




Dafny#2 Fr 2545

method ComputeFib(n: nat) returns (b: nat)
ensures b == fib(n)

function fib(n: nat): nat {
{ vari:=1;
ifn==0then0 vara:=0;
else if n == 1then 1 b = 1;'
else fib(n - 1) + fib(n - 2) whilei<n
} invariant 0 <i<=n
invariant a == fib(i - 1)
invariant b == fib(i)
{
a,b:=b,a+b;
=i+ 1
}

}
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