
程序设计语言研究概览

熊英飞

北京大学计算机学院软件研究所

2

3

编程语言和系统软件不分家

•一道常用面试题：
• 请描述一下当编译运行下面这条C语句的时候，编译
器运行时操作系统硬件等计算机系统各个层次都做了
什么事。假设系统是Linux，编译器GCC。
• int* p = (int*)malloc(sizeof(int));

• 理解该语句需要充分理解编程语言和计算机系统
• 关联C的标准库和Linux系统调用

• 了解高级代码如何和汇编代码对应

• 了解编译器的内存管理和操作系统的内存管理的交互

• 了解编译器和链接器如何处理系统调用

4

编程语言社区和系统软件社
区现实世界交流不够多

5

修仙的编程语言研究人员

6

Haskell：Avoid success at all cost

Scheme:
R6RS vs R7RS

Idris:
不希望用于实际开发

现实世界 PL研究人员

Rust

7

2010年，Rust第一次公开
啥玩意，上个世
纪的ownership

type又拿出来炒

2023：微软用Rust重写Windwos内核
2024：白宫推荐使用Rust

现实世界 PL研究人员

seL4

8

2009年，SOSP上发表seL4论文
有啥大惊小怪的，
CompCert好几年

前就发布了

2019年，seL4在国防安全、自动驾驶
等领域已广泛使用，获SIGOP HoF奖
2020年，美国国防部改进采购政策，
以便支持形式化验证

有人拿了修仙界少量技术改变了世界
务实的ChinaSys社区或许能发掘更多技术？

9

程序设计语言的期望属性

10

易写

正确 高效

程序设计语言的期望属性

11

易写

正确 高效

程序设计语言的期望属性

12

易写

正确 高效

如何让程序容易写？

•常见命令式语言描述计算机执行的操作

•能否只描述目标，让计算机自动写程序？

•如何描述目标？
• 用自然语言描述？

• Edsger W.Dijkstra. On the foolishness of “natural language
programming”. 1978

• 数学家：
• 程序是从输入到输出的函数
• 用数学公式表达函数

• 逻辑学家：
• 程序的目标由其外部属性决定
• 用逻辑推导式和谓词表达外部属性

13

f(a, b)=a+b
f(a+1, b+1)=a+b-2

sort(In, Out) :-
 perm(In, Out),
 sorted(Out).

如何让程序容易写？

•如何从目标得到程序？
• 由于有大量问题都不可判定，无法保证能从目标得到
程序

•解决方案1：限定目标在一个可计算的子集
• 函数式语言

• 逻辑式语言

•解决方案2：尝试生成程序，没成功就放弃
• 程序合成

14

函数式语言举例

• 一行写插入排序
insort = foldr insert []

• 5行写快速排序
quicksort [] = []
quicksort (p:xs) = (quicksort lesser) ++ [p] ++ (quicksort greater)
 where
 lesser = filter (< p) xs
 greater = filter (>= p) xs

• 代表语言
• Lisp, Scheme, Racket
• ML, Ocaml
• Haskell

15

现代函数式语言特性

•无副作用：和数学函数对应，避免副作用带来的
Bug

•高阶函数：代码更容易复用，也更容易并行化

•代数数据类型：更简洁（相对OO的继承）和安
全（相对C的Struct和Union）地表示各种数据结
构

•结构化类型系统：比传统语言的Nominal Type
System更强大

•函数式数据结构：高效Immutable数据结构实现

16

函数式数据结构

print(a[2]); // 5

a[2] = 1;

print(a[2]); // 1

print(a[2]); //5

b = update(a, 2, 1);

print(a[2]); //5

print(b[2]); //1

17

函数式数据结构：复杂度

18

Scala标准库 更新 随机访问

Vector Effective Constant Effective Constant

Scala标准库 添加 删除 查找 找最小

HashSet Effective
Constant

Effective
Constant

Effective
Constant

Linear

TreeSet Log Log Log Log

逻辑式编程语言举例

• 一行写排序
sort(In, Out) :- perm(In, Out), sorted(Out).

• perm和sorted也可以类似定义
sorted([]).
sorted([_]).
sorted([X,Y|Rest]) :- X =< Y, sorted([Y|Rest]).

perm([],[]).
perm(List, [H|Perm]) :- delete(H, List, Rest), perm(Rest, Perm).

• 代表语言：Prolog, Erlang, Curry

19

程序合成

• 输入程序的语法空间、要满足的逻辑规约

• 输出符合语法、满足规约的程序

• 输出允许失败

• 例：
• 语法：常见程序设计语言语法
• 规约：Perm(sort(l), l) /\ Sorted(sort(l))
• 期望答案：高效排序算法

• 广泛用于编译器优化、算法设计、硬件设计等领域
• superopt, souper：编译时自动搜索更高效优化
• Sufu（北大）: 输入穷举程序，输出高效算法
• Enlightenment-1（计算所）：程序合成设计的CPU

20

领域特定语言

•特定领域的任务未必适合用通用方法描述
• 数据库查询语言：SQL

• 可微分语言：TensorFlow/PyTorch

• 概率编程语言：Stan, PyMC

• 大型语言模型提示工程编程语言：LMQL

• 智能合约编程语言：Solidity

• GPU描述语言：Triton

• 网络设备编程语言：P4, NetKat

21

元编程

•领域特定语言这么多，开发领域特定语言也成了
巨大负担

•能否让领域特定语言的编写更加容易？

•元编程语言：Racket, Rosette

22

元编程例子

• SAT求解器

23

程序设计语言的期望属性

24

易写

正确 高效

如何知道程序是正确的？

25

给我写一个排序

写好了，看：
quicksort (x:xs) =

quicksort [a | a <- xs, a <= x] ++ [x]
++ quicksort [a | a <- xs, a > x]

写对了吗？

老板程序员

如何知道程序是正确的？

• 程序员：我测试了！

26

Testing shows the presence,
not the absence of bugs.

Edsger W. Dijkstra

能否证明程序正确性？

•本质上需要证明程序是满足规约的：
• Perm(sort(l), l) /\ Sorted(sort(l))

• 假设：规约很简单，不会写错
• 就算写错，也不会刚好和实现错得一样

•如何证明？
• 形式语法、形式语义：将程序转换成数学对象，使得
可以用数学和逻辑学方法论证正确性

• 霍尔逻辑：用于证明程序正确性的逻辑

• 分离逻辑：用于证明指针正确性的逻辑

• Incorrectness Logic：用于证明程序不正确性的逻辑

27

霍尔逻辑证明举例

28

(1) {{ True }}

->>

(2) {{ n × 0 + m = m }}

X := m;

(3) {{ n × 0 + X = m }}

Y := 0;

(4) {{ n × Y + X = m }}

while n ≤ X do

(5) {{ n × Y + X = m ∧ n ≤ X }}

->>

(6) {{ n × (Y + 1) + (X - n) = m }}

X := X - n;

(7) {{ n × (Y + 1) + X = m }}

Y := Y + 1

(8) {{ n × Y + X = m }}

end

(9) {{ n × Y + X = m ∧ ¬(n ≤ X) }}

->>

(10) {{ n × Y + X = m ∧ X < n }}

论证程序的正确性

https://www.win.tue.nl/~gwoegi/P-versus-NP.htm

•老板：我们公司的1000万行程序都需要证明正
确性

•困难1：人力时间成本
• seL4：写代码用了2.2人年，写证明用了20人年

•困难2：怎么知道证明写对了
• https://www.win.tue.nl/~gwoegi/P-versus-NP.htm

• 至少有62篇论文证明了𝑃 = 𝑁𝑃，50篇论文证明了𝑃 ≠ 𝑁𝑃

29

https://www.win.tue.nl/~gwoegi/P-versus-NP.htm

针对困难1：能不能让计算
机自动判断程序的正确性？
•能否让计算机自动证明程序正确性或不正确性？

30

哥德尔

“总是有些定理不存在证明的。”
——哥德尔不完备定理，1931年

图灵

“对于停机这个性质，无论什么算法，总是有程
序没法自动证的。”——停机问题，1936年

“世界上绝大多数程序性质都跟停机一样没法自
动证。”——莱斯定理，1953年

莱斯
注：以上说法是为了方便理解，均不严谨，也不是作者原话。

否定三联

妥协：给出近似的答案

31

上近似
/may analysis
用于证明程序没错

有内
存泄
露的
程序

没有
内存
泄露
的程
序

下近似
/must analysis

用于证明程序有错

自动给出近似答案的技术

•上近似技术
• 抽象解释：将分析在容易计算的抽象域进行

• 类型系统：不容易计算的地方再让用户标记一下

•下近似技术
• 随机/模糊测试：只检查部分输入

• 有界模型检查：只检查特定范围内的输入

• 符号执行：只检查部分执行路径

32

抽象解释举例

•给定四则运算表达式，如
• a+b*c

•如果输入都为正数，结果也一定是正数吗？

33

抽象解释举例

• 正 ={所有的正数}

• 零={0}

• 负= {所有的负数}

• 乘法运算规则：

• 加法运算规则：正+正=正

• 对任意抽象输入包括的任意具体输入，其对应具体
输出包括在抽象输出中

34

• 正*正=正
• 正*负=负
• 正*零=零

• 负*正=负
• 负*负=正
• 负*零=零

• 零*正=零
• 零*负=零
• 零*零=零

抽象解释举例

• 正 ={所有的正数}

• 零={0}

• 负= {所有的负数}

• 乘法运算规则：

• 加法运算规则：正+正=正

• 对任意抽象输入包括的任意具体输入，其对应具体
输出包括在抽象输出中

35

• 正*正=正
• 正*负=负
• 正*零=零

• 负*正=负
• 负*负=正
• 负*零=零

• 零*正=零
• 零*负=零
• 零*零=零

a+b*c
正+正*正=正

类型系统

•采用抽象解释分析程序

•采用特定语法标记已知信息和检查项，确保没有
特定类型的错误

• string={所有的字符串}

• int={所有的整数}

•运算规则：
• string+string=string, int+int=int

• string a, b;
factorial(a+b); //类型错误

36

常见现代类型系统

类型系统 作用

Ownership Type 所有权管理

Refinement Type 细化类型范围

Effect Type 控制副作用

Dependent Type 根据输入细化返回类型

Linear Type 资源一次性使用管理

Session Type 确保通信协议的消息顺序和种类匹配

Gradual Type 允许动态语言逐步添加类型

Union/Insect Type 类型的灵活组合

37

Dependent Type

•长度固定的列表类型（Coq）

38

Inductive list : nat -> Type :=
| nil : list 0
| cons : forall n, nat -> list n -> list (S n).

Refinement Type

•限制输入为正（LiquidHaskell）

39

square :: x:{Int | x >= 0} -> Int

Effect Type

•描述函数副作用（Koka）

40

add : (int, int) -> total int //没有副作用
add : (int, int) -> IO int //会读写输入输出
add : (int, int) -> int state //会修改变量

Session Type

•描述通信的顺序和数据类型（Rust Session库）

41

type PingPong = Send<String, Recv<String, Eps>>;

上近似的副作用

•类型系统会禁止部分正确程序的编写
• int a = 1;

int b = &a;
int* c = b;
return *c;

• 部分高效算法已经无法在Rust写出

•因此，现代类型系统也只能避免很小一部分错误
类别

42

针对困难2：能否自动检查
证明的正确性？
•能，并且能套用类型检查算法

43

“‘命题-证明’和‘类型-值’之间存在对应关系。”
——Curry-Howard Correspondence，1934-1969

交互式定理证明语言

•交互式定理证明语言
• 支持定义程序、命题和证明

• 自动检查证明是否证明命题
• 并随时提示程序员还没有完成证明的部分

•常见语言：Isabella、Coq、Lean

44

交互式定理证明例子

45

Inductive day : Type :=
| monday
| tuesday
| wednesday
| thursday
| friday
| saturday
| sunday.

Definition next_weekday (d:day) : day :=
match d with
| monday => tuesday
| tuesday => wednesday
| wednesday => thursday
| thursday => friday
| friday => monday
| saturday => monday
| sunday => monday
end.

Example test_next_weekday:
(next_weekday (next_weekday saturday)) = tuesday.

Proof. simpl. reflexivity. Qed.

交互式程序证明语言

•交互式定理证明语言不是为验证程序设计的
• 首先要在系统中建模程序的语法和语义

• 然后调用相应定理证明

• 非常繁琐复杂

•直接将证明系统和高级编程语言结合起来
• 绑定自动证明工具

• Dafny, Frama-C, VST-A（上交）

• 支持在高级语言中手写证明
• C*（北大）, F*

46

Dafny程序举例

47

function fib(n: nat): nat
{
if n == 0 then 0
else if n == 1 then 1
else fib(n - 1) + fib(n - 2)

}

method ComputeFib(n: nat) returns (b: nat)
ensures b == fib(n)

{
var i := 1;
var a := 0;
b := 1;
while i < n
invariant 0 < i <= n
invariant a == fib(i - 1)
invariant b == fib(i)

{
a, b := b, a + b;
i := i + 1;

}
}

结论

•程序设计语言研究历史悠久，流派众多

•虽然研究者大多修仙，但成果可能是有用的

•从中挖矿是可行的研究思路

•希望今天的报告能提供一个矿区概览

•非常感谢！

48

	幻灯片 1: 程序设计语言研究概览
	幻灯片 2
	幻灯片 3
	幻灯片 4: 编程语言和系统软件不分家
	幻灯片 5: 编程语言社区和系统软件社区现实世界交流不够多
	幻灯片 6: 修仙的编程语言研究人员
	幻灯片 7: Rust
	幻灯片 8: seL4
	幻灯片 9: 有人拿了修仙界少量技术改变了世界 务实的ChinaSys社区或许能发掘更多技术？
	幻灯片 10: 程序设计语言的期望属性
	幻灯片 11: 程序设计语言的期望属性
	幻灯片 12: 程序设计语言的期望属性
	幻灯片 13: 如何让程序容易写？
	幻灯片 14: 如何让程序容易写？
	幻灯片 15: 函数式语言举例
	幻灯片 16: 现代函数式语言特性
	幻灯片 17: 函数式数据结构
	幻灯片 18: 函数式数据结构：复杂度
	幻灯片 19: 逻辑式编程语言举例
	幻灯片 20: 程序合成
	幻灯片 21: 领域特定语言
	幻灯片 22: 元编程
	幻灯片 23: 元编程例子
	幻灯片 24: 程序设计语言的期望属性
	幻灯片 25: 如何知道程序是正确的？
	幻灯片 26: 如何知道程序是正确的？
	幻灯片 27: 能否证明程序正确性？
	幻灯片 28: 霍尔逻辑证明举例
	幻灯片 29: 论证程序的正确性
	幻灯片 30: 针对困难1：能不能让计算机自动判断程序的正确性？
	幻灯片 31: 妥协：给出近似的答案
	幻灯片 32: 自动给出近似答案的技术
	幻灯片 33: 抽象解释举例
	幻灯片 34: 抽象解释举例
	幻灯片 35: 抽象解释举例
	幻灯片 36: 类型系统
	幻灯片 37: 常见现代类型系统
	幻灯片 38: Dependent Type
	幻灯片 39: Refinement Type
	幻灯片 40: Effect Type
	幻灯片 41: Session Type
	幻灯片 42: 上近似的副作用
	幻灯片 43: 针对困难2：能否自动检查证明的正确性？
	幻灯片 44: 交互式定理证明语言
	幻灯片 45: 交互式定理证明例子
	幻灯片 46: 交互式程序证明语言
	幻灯片 47: Dafny程序举例
	幻灯片 48: 结论

