RFIRITE SR

REIRK
AERARZTT BN B 5P

$BiRENEE
MIEE SRR

INEFERBIFEAR— N EEE R

TRESHR—EAARSIE. SAT2RYED
. Lhrb, FETEIAEFURAIERH L
PR LECREREESHRIE, RS
SEMEESMEAHREIREMA, L
SITENEFEHENARE SRR,

B®iafrE 7 —EN, lGle. BERE2ENE
. HAEZEIN—LRE, HEXEREEES
BRSMLE, DR EASRY.

MIZVE S MARRIKL

« —1EE A
wﬂml_ THRFIEIT TEREXFZFCOEQWNRNE, &HIF
SBETHRIERGEEHFITEN RAEZ N EXEM T
H45E. RIRESZLinux, ZF1Fg8GCCo

* int* p = (int*)malloc(sizeof(int));

s B IZIBA R ER D EMEIZESINTEY RS
o KELCHIPRAEEMLInux R 1A
o TSR ANAAE RS N
s TRHRIFENNEEENRERENNEEENTE
o T HRImIFIS ks IE RS IE A

RIETE S L X A4+
BN SCHH SRR TR AN 0% 2%

I
HAMERNBE Y, iERREESHXIE S a
REXSITE EIE“P'FE IX LR el eerd DALt
REGHN, BRFEEESXEASBLLEREIE,
iﬂ?ﬂ!ﬁﬁﬂk%fu, B2/ NEFEES
It.

“ ! HSLPLWABRHER Etheory, RIFZEFIE

- oY, M EE, B—NFRAEAZKE, H
SCEMEAEEE R NEnatural . FIERIEFA
o, HEE. R WEEG AL T,

i
>_
i

BN REIESE

Haskell: Avoid success at all cost

Scheme: Idris:
R6RS vs R7RS AN B T2 bR &

6

Rust

o e¥ra, b
20104F, Rustz—IXATF 2 it ownership

type X5 Hi K4

2023: W HRustE 5 Windwos N 4
2024: HE#EFF{F FHRust

sel4

123y N AN S
20094F, SOSP I & Fseldit 3L 7imj,;crertjzz%r IE/Jﬁ

HITLAAT T

20194, seld4fE[H L% 4. HBIZEW
SEAIIER L2 A, 3RSIGOP HoF#
20204, 3 [E [By &1 5o R W EUR

PUE S FFIE AL B E

EAETEBURPERTARNET THR
% SCAYChinaSystt X 3 1F 5 bﬁx—aﬁ)ﬁ’j';a%a‘i'm’?

RIFiRiHE

E7

= HYHAZE,

5

ol

1]}
T
1

=1

RIFiRiHE

E7

ol
el

75

é El\] /:\H -\‘;IEJ? T

=1

RIFiRiHE

ol
el

5

E7

é El\] /:\H -\‘;IEJ? T

=1

LR 552

« B /%_bn = TR TTEV I TRV IR {E
* BERS R 1‘/T\, T EN B SRR
 WNfA[HEIA 1‘/T\'?

- HERIBES#HIR?
e Edsger W.Dijkstra. On the foolishness of “natural language
programming”. 1978

- RFRAASIGE O E fla,b)=arh
ﬁﬁﬁ& _t%ij_(_gl%;& f(a+1, b+1)=a+b-2

ZIEFR .
- BEBRERINEERE sort(in, Out) -

perm(In, Out),

ZEHES AAMBIRRIEIMNT B sorted((;ut).

13

LR 552

- WM BEFRBEIFRFE?

- ATAAEOEHRTHE, TR REEMBIFEE
T

- BRARL: REBMHE—TATENFE
C EHEIES
CBIEIIES

s BRI R2: EMERER, REIFNF
- AR

14

R TIE S 251

* —ITERBAHFF

insort = foldr insert []

 SITHIREHF
quicksort[] =]
quicksort (p:xs) = (quicksort lesser) ++ [p] ++ (quicksort greater)
where
lesser = filter (< p) xs
greater = filter (>= p) xs

* RIRIES
* Lisp, Scheme, Racket
e ML, Ocaml

 Haskell

15

EEM’% >R *& _t-l«lzl = fFT l\l_'

. gEEM’IE . MFERENN, HEEIER
ug
 SEMRE: RKBERZEHRH, BESSHITK

s REFIERT: FEE (1‘E5<TOOE|’JQI_7¥<) %Dﬁ
;:% (*HXTCE'JStFUCt%DUnlon) M ERIR B TR 5

« ZEHJ{LRBIR A ELESR1E S HINominal Type

SystemEE 58 K

s RBTVEEESM . SImmutableX R4S 14 SLHN

TH
It
\l-|
/M
ITH
T

oK 2 TURHE 45 1

print(a[2]); // 5 print(a[2]); //5
al2] =1; b = update(a, 2, 1);
print(a[2]); // 1 print(a[2]); //5

print(b[2]); //1

TR ARG B

Midt

Vector Effective Constant Effective Constant
ScalafFiEfE | ¥ R
HashSet Effective Effective Effective Linear

Constant Constant Constant
TreeSet Log Log Log Log

18

1Z AT RIZ1E = 551

s — (TSR
sort(In, Out) :- perm(In, Out), sorted(Out).

e permAdsortedt A] PAZKIE X
sorted([]).
sorted([_]).
sorted([X,Y|Rest]) :- X =<, sorted([Y|Rest]).

perm([],[]).
perm(List, [H|Perm]) :- delete(H, List, Rest), perm(Rest, Perm).

¢)RFIE= " Prolog, Erlang, Curry

19

O

TR AR

* MARFRNELZE. EHENZENRY
s WA EIELE. HENANIEF
* H i FLVF R

) 175_” \\\\\

R BURFIODESEL
o FMZg: Perm(sort(l), 1) /\ Sorted(sort(l))
- HIEE R SXHFEE

s [AT EmiFEesiie. EERIT BHRITTEIE
* superopt, souper: ZRIFRSEHERESRAINIL
« Sufu (4EX) BWASERER, hheaNEE
* Enlightenment-1 (3T &FT) : BEFEHKIRITHICPU

20

ST ETE 2

« FESIES A NES HIB AT EER
s MIBEEDHIFES . SAL

Il

=
* A IES : TensorFlow/PyTorch

* BERBIZIES © Stan, PyMC

s REESEAR RIRERHEES: LMAL
« HEEEARIZIES : Solidity

e GPUFIAIE=: Triton

« MZIRFZRIZIES . P4, NetKat

21

TS

:[jzfl:_]'/:E.]'IZI =Ptal Z% ; ;‘ﬁéﬁiﬁk?ﬂ%/ﬁ:—_‘in = @WT
= KfhfE

s BE RIS E B SN mEEMA 57
s TT/RFEIES . Racket, Rosette

22

TehmTE 1

+ SATK R 28

f#lang rosette

{define (interpret formula)

(match formula

[(A Lexpr ...} (apply &% (map interpret expr))]
[TV Lexpr ...) (apply || (map interpret expr))]
[(—,expr) (! (interpret expr))]

[1it (constant 1it boolean?}]1))

- This implements a SAT solver
(define (SAT formula)

(solve (assert (interpret formula))))

(saT " (A ro (W se (mt))t (—e)))

23

RIFiRiHE

E7

= HYHAZE,

5

ol

1]}
T
1

=1

5T, &:

quicksort (x:xs) =
quicksort [a | a <- xs, a <=x] ++ [X]
++ quicksort [a | a <-xs, a > X]

25

AT HEIRF 2L

25 Bl T !

Testing shows the presence,

not the absence of bugs.

” Edsger W. Dijkstra

REFSIEBRTE 7 IE T 17

s AR EFEZEUREFEH AR
* Perm(sort(l), 1) /\ Sorted(sort(l))
c Bix: MAREE, F1=55E
- MESHE, UASNEFAMELIERT—F
* QN{AERR?

- BIUE A BINEX: FEFEEMBZENR, &
A ARBFMIZES T AU IEf

« E/RIZEE: B TILRRERF EFAMRIZEE
- HEIZE: HTIEREST TN iE
* Incorrectness Logic: FFUERRIZF AN IETHERYIZAE

SWam
=/\N1Z

[Tl

nindl|

(1)

28 (10)

% 25 IE AH 25451

{{ True }}
->>

{({ n X 0 4+ m
X = m;

{({ n X 0 + X
Y := 0;

{({ n X Y + X

while n < X do

{({n XY + X
->>

{{

m

b}

b}

b}

An <X }}

(X = n) =m }}
X =m }}

b}

A =(n = X) }}

AR 0 T

« ZM: FAATIM1000 5 TR F AN E b AH IE
f
« ML AJIET[E AN
* seld: E5RIBET22AE, SUElAE T20A A5
s B¥E2: EAKMEIEREXT
e https://www.win.tue.nl/~gwoegi/P-versus-NP.htm
« E/DBF62FBILSCIERR TP = NP, 50%I3ER TP # NP

29

https://www.win.tue.nl/~gwoegi/P-versus-NP.htm

30

“é%ﬁ%mﬁfﬁfﬁ%m
— B4 R Tmﬁmﬂ,wmﬁ

“SITFAEHLIX MR, TTwAT a8k, B
F?%%%EE%@UQEH@ 7 ——fE LA, 19364F

“HEF B4R ZHRE M AR — FERE E
k. 7 ——EHrE R, 19534

e PLERRE Y VR AR, A E, WA REE R,

At

2 B/EIERE

E

B Vi [V
/may analysis T AU
H Tk AR 7 e /must analysis

TR RE PP AT

31

5)28 HIT B RAOR

« EiRfIEOR
CHSIRR EAER ST BN RS
CRRRG: ARSI EMMBELLRPFRE—T
s NIEIRR
« BEN/EEEIIR . RGETHE
B RERRE: QRIS E A
 BEHIT REBREBORITEE

32

HES:

24451

o« 28
* atb*c
° yﬂ B
ESTNCIPS
J 1

33

2 7E
NNz HE &
.
,

IE %%
y Z=H 7%—m—
EeIE%
- 2057

£

{FrE R T

10}

SAT -
NS —
—
—

=S
Al

e |
=
W_N
R}~
$E
)
-

« IF ={fTEHIL

E E 3
i ﬁ 3
3 % 3
e
HE&EE
o SR
-

BN, EXNERE

=z
|=|

/700N

e

L
L

IE+1E=1F

2%

RY

A BFERE

HER T
H B FE A 11

RY

=z
|=|

SEIEE RN

n
1T
&

—_
=
W_N
R}~
$E
)
=

111
I_
I
111
.l_
*
O 114
* —
o +
4+ 111
© =
——— ——
]
94 &
N Ny
~NTT STT
Y
— ——
___f_ﬂ __\
r= =
(] [] []

WL

E E 3
4 ﬁ 3
% % 3
ik
& &
b
M

IE+1E=1F

SEIE RN :

o

SERA, ENNEE

ANBHEHER

S H R 5

=r
Ed
V4 &5

JAE
Yai

BRI MR L

L1
L

35

i

ARG

\

* XAMREREDITIEF
* RATERE AT CHERMRET, #iRE
FERBPEIR

e string={FT B FFE}
 int={FTE IE]
 IZEFN:

* string+string=string, int+int=int

* string a, b;
factorial(a+b); //28 BUFH 1R

36

B IR RS
i

Ownership Type Fhrf BUE 2

Refinement Type 1SS 3]

Effect Type il R E

Dependent Type AR I A N\ I 3R [m] S 7Y

Linear Type BEUR— IR A

Session Type B PRIEAS B AYH S A0 A 2 UL AC
Gradual Type RFEIESIE T BB INE A

Union/Insect Type KRR RIGHE

37

Dependent Type

« KB REHFIRER (Coq)

Inductive list : nat -> Type :=
| nil : list ©
| cons : forall n, nat -> list n -> list (S n).

38

Refinement Type

« fRE|Ei A\ IE (LiquidHaskell)

square :: x:{Int | x >= 0} -> Int

39

Effect Type

* IR R ENEITEA (Koka)

add : (int, int) -> total int //¥% A EI1EH
add : (int, int) -> 10 int //£3 125 % N4
add : (int, int) -> int state //S BN L =

40

Session Type

« IR S RYINFE A EHESE R (Rust SessionZE)

type PingPong = Send<String, Recv<String, Eps>>;

41

N

42

\N/

* inta=1;
int b = &a;
int* c = b;
return *c;

- A EHE

T Y A

SHARRRERIE

=)?1 J—_‘ ﬁ%*ifff'— Ell‘] gﬁ?i '—EJI

EE 2T EERUstE H

ALY, TS
thlJ

\l\l/

< FF
N ==

IRGFHEA

1B IR/ N—

BLI'

3

Ald

Hr
IIF

HXER2: EEEDRE
I B 9 TE 7

FHEEERRERERA

L

[
anp>
QY Ay
\H/

Haskell Brooks Curry

“CApAl-iER]T M SRR ZEMFENMN IR R T
— —Curry-Howard Correspondence, 1934-1969

43

LXEHNEEUES

s THXEBEIURIES
* XIHEXFEF npw_%ﬂlﬁﬁﬂ
- BB UL EE UL
- HENRREFRARRE ?—EJﬁiEHH HI &R 5>
« ZNIIES : Isabella. Coq. Lean

X

m]

44

> 01 EIEuE R

IS

Inductive day : Type := Definition pext_weekday (d:day) : day :=

monday match d with
tuesday monday => tuesday
wednesday tuesday => wednesday
thursday wednesday => thgrsday
friday thgrsday => friday
saturday friday => monday
sunday. saturday => monday

sunday => monday

end.

Example test next weekday:
(next_weekday (next weekday saturday)) = tuesday.

Proof. simpl. reflexivity. Qed.

45

AN
e

X EREFERES

- XEXEHIUERES AR AR IEEFRITH
c BABHERFAPEREFIIEEMEX
- AEVARMENEEIEH
- FEEDIE Z
- BEHIER RGN B RHRE S S AR
- FEEFNMEAIA
« Dafny, Frama-C, VST-A (_E%%)
s XFESHRESEFFEILHR
« C* (dEX) ,F*

46

Dafny#2 Fr 2545

method ComputeFib(n: nat) returns (b: nat)
ensures b == fib(n)

function fib(n: nat): nat {
{ vari:=1;
ifn==0then0 vara:=0;
else if n == 1then 1 b = 1;'
else fib(n - 1) + fib(n - 2) whilei<n
} invariant 0 <i<=n
invariant a == fib(i - 1)
invariant b == fib(i)
{
a,b:=b,a+b;
=i+ 1
}

}

47

2518

° $£J$i§l+i3§ SWIRPEIKRA, RIRRZ
BRI RERZEA, 1EBZ7< A BE =8 AHEY

* MH T B2 B TR

* JEE R !

48

?QEEI

j_L/L;\

HE?/TE'T/\—

T

XL

g

	幻灯片 1: 程序设计语言研究概览
	幻灯片 2
	幻灯片 3
	幻灯片 4: 编程语言和系统软件不分家
	幻灯片 5: 编程语言社区和系统软件社区现实世界交流不够多
	幻灯片 6: 修仙的编程语言研究人员
	幻灯片 7: Rust
	幻灯片 8: seL4
	幻灯片 9: 有人拿了修仙界少量技术改变了世界 务实的ChinaSys社区或许能发掘更多技术？
	幻灯片 10: 程序设计语言的期望属性
	幻灯片 11: 程序设计语言的期望属性
	幻灯片 12: 程序设计语言的期望属性
	幻灯片 13: 如何让程序容易写？
	幻灯片 14: 如何让程序容易写？
	幻灯片 15: 函数式语言举例
	幻灯片 16: 现代函数式语言特性
	幻灯片 17: 函数式数据结构
	幻灯片 18: 函数式数据结构：复杂度
	幻灯片 19: 逻辑式编程语言举例
	幻灯片 20: 程序合成
	幻灯片 21: 领域特定语言
	幻灯片 22: 元编程
	幻灯片 23: 元编程例子
	幻灯片 24: 程序设计语言的期望属性
	幻灯片 25: 如何知道程序是正确的？
	幻灯片 26: 如何知道程序是正确的？
	幻灯片 27: 能否证明程序正确性？
	幻灯片 28: 霍尔逻辑证明举例
	幻灯片 29: 论证程序的正确性
	幻灯片 30: 针对困难1：能不能让计算机自动判断程序的正确性？
	幻灯片 31: 妥协：给出近似的答案
	幻灯片 32: 自动给出近似答案的技术
	幻灯片 33: 抽象解释举例
	幻灯片 34: 抽象解释举例
	幻灯片 35: 抽象解释举例
	幻灯片 36: 类型系统
	幻灯片 37: 常见现代类型系统
	幻灯片 38: Dependent Type
	幻灯片 39: Refinement Type
	幻灯片 40: Effect Type
	幻灯片 41: Session Type
	幻灯片 42: 上近似的副作用
	幻灯片 43: 针对困难2：能否自动检查证明的正确性？
	幻灯片 44: 交互式定理证明语言
	幻灯片 45: 交互式定理证明例子
	幻灯片 46: 交互式程序证明语言
	幻灯片 47: Dafny程序举例
	幻灯片 48: 结论

