
PredicateFix：利用桥接谓词
修复静态分析警报

熊英飞 北京大学

• 静态分析工具在实践中被广泛用于
安全漏洞扫描
• 如：CodeQL

• 修复静态分析工具的漏洞警报耗费
程序员大量精力
• 大模型出现后，修复任务可以交给大
模型完成

• 真的吗？

2

背景

静态分析警报分类

“长尾分布”

↓ 根据CVE分类的CodeQL警报数

3

常见类型：
大模型可较好修复

不常见类型（但总数多）：
大模型常常产生幻觉

修复示例

CVE-2020-13946 for Apache Cassandra

4

CodeQL alert: InsecureRmiJmxAuthenticationEnvironment

“This query detects if a JMX/RMI server is created with a potentially dangerous environment,
which could lead to code execution through insecure deserialization.”

修复示例

CVE-2020-13946 for Apache Cassandra

5

开发人员修复 (commit 63f4da9)：
+ env.put(“jmx.remote.rmi.server.credential.types”,

new String[] { String[].class.getName(), String.class.getName() });

通过设置配置项，保证只有字符串能用于JMX验证

尝试1：直接提示

[System]
You are a helpful programming assistant to fix security vulnerabilities in Java code. You are given a
code snippet and a description of the vulnerability. You should briefly describe how to fix the
vulnerability, and finally output the modification.

[User]

Vulnerability description: (alert name): (alert description)
Code snippet: (10 lines of context)

[Assistant] (GPT-4o)

To fix the vulnerability, we need to ensure that the environment map used to create the
RMIConnectorServer does not include any potentially dangerous attributes that could lead to
insecure deserialization. Specifically, we should avoid using RMI_SERVER_SOCKET_FACTORY_
ATTRIBUTE directly and instead use a more secure configuration.
……

6

大模型修复（删除原有配置项，完全不正确）:
- Map<String, ?> env = Collections.singletonMap(
- RMIConnectorServer.RMI_SERVER_SOCKET_FACTORY_ATTRIBUTE, serverFactory
-);
+ Map<String, Object> env = new HashMap<>();

尝试2：提示CodeQL分析规则

7

• 分析规则过于复杂，大模型难以正
确理解

• 在本示例上，GPT 4o直接摆烂：
• 删除原有验证机制
• 添加todo，让程序员修复

尝试3：提示CodeQL文档

8

• 大模型确实有较好的文档理解能力

• 但
• 文档常常不全，不包含修复方法
• 文档的修复方法不适用于当前项目

• 当前项目有特殊的编译环境
• 当前项目有项目级别的安全规范

• 在本示例上，
• 大模型产生一个Java 10支持的修复，
• 但项目采用Java 8

尝试4: 检索增强的生成 (RAG)-1

• 检索相关的历史补丁，提示给大模型

• 对于少见的漏洞，基本找不到历史补丁

9

尝试5: 检索增强的生成 (RAG)-2

• 检索相关的相似安全代码，提示给大模型

• 因为合适代码数量少，目前方法很难精准匹配对应代码

10

出错代码:
RMIServerSocketFactory serverFactory = new RMIServerSocketFactoryImpl();
Map<String, ?> env = Collections.singletonMap(

RMIConnectorServer.RMI_SERVER_SOCKET_FACTORY_ATTRIBUTE, serverFactory);
......
jmxServer = new RMIConnectorServer(url, env, server,

ManagementFactory.getPlatformMBeanServer());

BM25匹配:
final MBeanServer jmxServer = ManagementFactory.getPlatformMBeanServer();
try {

jmxServer.unregisterMBean(new ObjectName(this.getMBeanName()));
}
……

观察

11

该谓词包含修复关键元素，可用来寻找样例
修复规则是否总是存在这样的谓词？

分析：如何撰写规则漏洞检查代码漏洞？

• 要么检查某种危险代码存在

• 修复方法1：删除危险代码

• 大模型通常不需要额外信息就能完成

• 修复方法2：换成安全代码，如将不安全的函数调用换成安全调用

• 大模型通常能从名字找到安全调用：XXX->XXX_Safe

• 要么检查某种安全机制不存在

• 修复方法：添加安全机制

• 需要添加全新代码，对大模型比较困难

• 添加的关键代码一定包含在静态分析规则中！

12

我们的方法

• 找到规则中用来匹配关键元素的部分
• 称为“桥接谓词”

• 采用桥接谓词找到对应的样例
• 称为“关键样例”

13

分析规则 桥接谓词 关键样例 大模型修复

桥接谓词和关键样例

• 给定谓词p和样例s， p是桥接谓词且s是关键样例，当且仅当

• 条件1: p匹配s

• 条件2: 在出错代码上翻转p → 漏洞警报消失

• 条件3: 在s上翻转p → 新漏洞警报出现

 p 是漏洞代码和安全代码的关键区分

首先用条件2找到桥接谓词候选，然后用条件1和3找到关键样例

14

整体流程

15

被扫描
代码

安全警报

分析
规则

参考代码库 关键样例

补丁 正确
补丁

静态扫描 大模型 验证

匹配和排序

验证

数据集:

• 收集6027带修复的CVE漏洞

• 运行CodeQL检查修复前后代码
• 修复前代码有漏洞警报
• 修复之后代码没有

• 获得117个验证数据

16

17

• Basic: 直接提示

• Similar: bm25查找相似代码

• History: bm25查找历史补丁

• Docs: 提示CodeQL文档

－－－－－－－－－－－－－－－

• Rule Src: 提示CodeQL规则源码

• Rule Expl: 大模型解释后的规则源码

－－－－－－－－－－－－－－－

• PredicateFix: 我们的方法

验证结果

中兴的部署

• GoInsight：中兴内部的Go语言静态分析工具

• 基于命令式语言编写静态分析规则

• 中兴工程师将本项目方法实现在GoInsight上

• Predicate：If语句中的条件

• 工具的修复比例从40.9%提升到69.2%

• 部署一个月支持了16个项目，修复了280个缺陷

18

中兴操作系统工具平台
程圣宇经理

大模型自己会写静态分析规则吗？

20

大模型做优化

• 大模型打算法竞赛已经超越人类

• AlphaEvolve已经设计出新算法

• 为什么大模型还没有大规模自动帮我们优化软件性能？

• 问题：大模型找不到优化方向

• 已有解决方法：通过例子提示优化策略

• 收集历史优化补丁，用BM25寻找最合适的优化补丁

• 但BM25常常不能准确匹配

• 思路：遍历所有的优化示例

• 软件中有n段代码，补丁库中有m个示例，就要至少提示n*m次

• n和m都巨大，考虑LLM开销和时间，几乎不可能完成

我们的方法SemOpt

• 静态分析规则可以低层本扫描大量代码

• 让大模型生成静态分析规则，捕获优化策略的应用条件

• 对于匹配上的代码，再让大模型进行优化

22

我们的方法SemOpt

23

实验结果

• 复现程序员的历史优化

24

实验结果

• 直接优化大型项目的结果

25

小结

程序分析和大模型能力互补

整合二者可以达到更好效果

26

程序分析 大模型

增强

生成

	intro
	幻灯片 1: PredicateFix：利用桥接谓词 修复静态分析警报

	motivation
	幻灯片 2: 背景
	幻灯片 3: 静态分析警报分类
	幻灯片 4: 修复示例
	幻灯片 5: 修复示例
	幻灯片 6: 尝试1：直接提示
	幻灯片 7: 尝试2：提示CodeQL分析规则
	幻灯片 8: 尝试3：提示CodeQL文档
	幻灯片 9: 尝试4: 检索增强的生成 (RAG)-1
	幻灯片 10: 尝试5: 检索增强的生成 (RAG)-2
	幻灯片 11: 观察
	幻灯片 12: 分析：如何撰写规则漏洞检查代码漏洞？

	approach
	幻灯片 13: 我们的方法
	幻灯片 14: 桥接谓词和关键样例
	幻灯片 15: 整体流程

	eval
	幻灯片 16: 验证
	幻灯片 17: 验证结果
	幻灯片 18: 中兴的部署
	幻灯片 20: 大模型自己会写静态分析规则吗？
	幻灯片 21: 大模型做优化
	幻灯片 22: 我们的方法SemOpt
	幻灯片 23: 我们的方法SemOpt
	幻灯片 24: 实验结果
	幻灯片 25: 实验结果
	幻灯片 26: 小结

