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Status Update 1

• Our group have been working on solving competitive programming problems for 

the last four years

• Without using neural networks

• Talked about this in Meetings 67 and 69

• Our plan: to win a silver medal in the national competition in 2025

• Sep, 2024: o1-IOI won a silver medal in IOI

• Dec, 2024: o3 won a gold medal in IOI, Top 200 in Codeforce

• We surrendered.

• Switched to use LLMs to solve SE problems.

• Program repair / generation / analysis / verification



Status Update 2

• The grammar-based code representation for neural models

• which I introduced in 

• IFIP meeting 68

• Dagstuhl on program synthesis and repair

• was evaluated in 1.3B and 1.5B models in Kuaishou

• 4.2-17.7 percentage points higher than token-based 

representation in accuracy

• The preprint will be released soon



Fault Localization

• A faulty program

• A set of tests with at least one failing test

• The suspiciousness score of each program element

Input

Output



Coverage-based Fault Localization

• An element covered more by failing tests rather than passing tests is more likely to be faulty

• Count the number of passing/failing tests covering the element

• Calculate the suspiciousness score of each program element

Idea

Spectrum-based fault localization



How a Buggy Element Causes the Failure

Test

Assertion

1. Coverage

2. Errors in program state

3. Propagation of errors

4. Capture

Coverage-based methods only consider 1

2,3,4 correspond to the semantics of the program

How to model the latter three conditions? 

PIE model



Existing Research

• Generates many mutations on each element

• Watches whether the test result changes

• If a change is more likely to change the results in failing tests, and less likely in 

passing tests, the corresponding statement is likely to be faulty

• Uses symbolic analysis 

• Modify the result of an expression

• If an expression can be modified to reverse the results of failing tests while maintaining 

the results of passing tests, the expression is considered more likely to be faulty

Full Program Semantics Heavy

Mutation-based fault localization

Angelic debugging (by Satish et al.)



Our Approach: SmartFL

• The probability of each statement introducing an error

• The probability of each statement propagating an error

• Introduce random variables to represent the correctness of each statement and runtime variable value

• Transform program semantics into probabilistic constraints between random variables 

Efficient Probabilistic Modeling of Program Semantics

How a fault leads to the current test results

Abstracts the full program semantics



𝑃 𝑆3= 0 | 𝑉𝑝,4 = 1 ∧ 𝑉4,𝑓 = 0 ≈ 0.707

𝑃 𝑆4= 0 | 𝑉𝑝,4 = 1 ∧ 𝑉4,𝑓 = 0 ≈ 0.270

𝑃 𝑆3= 0 | 𝑉𝑝,4 = 1 ∧ 𝑉4,𝑓 = 0 =?

𝑃 𝑆4= 0 | 𝑉𝑝,4 = 1 ∧ 𝑉4,𝑓 = 0 =?

Running Example

Bernoulli random variables:

𝑆i: representing the correctness of line I

𝑉𝑡,𝑖: representing whether the value defined at line i is correct for test 𝑡 ∈ 𝑝, 𝑓

𝑃 𝑆3= 1 = 0.5 𝑃 𝑆4= 1 = 0.5

𝑃(𝑉𝑝,4 = 1 | 𝑆4= 1 ∧ 𝑉𝑝,2 = 1 ∧ 𝑉𝑝,3 = 1) = 1

𝑃(𝑉𝑝,4 = 1 | 𝑆4= 0 ∨ 𝑉𝑝,2 = 0 ∨ 𝑉𝑝,3 = 0) = 0.01

𝑃(𝑉𝑝,3 = 1 | 𝑆3= 1 ∧ 𝑉𝑝,2 = 1) = 1

𝑃(𝑉𝑝,3 = 1 | 𝑆3= 0 ∨ 𝑉𝑝,2 = 0) = 0.5

𝑃(𝑉𝑝,2 = 1) = 1



Bayesian Network



SmartFL Workflow [ICSE22]

Dynamic Dependency Graph

Probabilistic Graph Model

Inference Results

Faulty Program and Tests

Steps

Dynamic Dependency Analysis

Probabilistic Modeling

Probabilistic Inference



Results [ICSE22]

• Results on 4 

projects from 

Defects4j 1.0

• Outperforming 

both SBFL and 

MBFL

• Time consumption 

between SBFL and 

MBFL



Bottleneck on Performance [In Submission]

• Traces are too long

• Probabilistic models would be too large for existing probabilistic 

• Drop part of the traces

• Optimize the probabilistic inference algorithm



SmartFL Workflow [In Submission]

Inference Optimization

Dynamic Dependency Graph

Scaling

Probabilistic Graph Model

Inference Results

Faulty Program and Tests

Drop part of the traces

Steps

Dynamic Dependency Analysis

Probabilistic Modeling

Probabilistic Inference



Drop part of traces

Methods not covered by the 

failing test

F

P1

P2

m1 m2 m3

m1 m4 m2

m4 m2 m5 m3

1k

2k

4k

8k

P1

P2

P3

P4

Drop large passing tests

m1 = 1k m2 = 9k m3 = 0.5k

Drop large methods in failing tests



Reducing Redundant Methods

S:  a = untraced(b);

Atomic statement Side effects

𝑽𝒃

𝑽𝒂

𝑺𝟑

S1:  List l = new ArrayList();

S2:  l.add(1); // untraced lib method

S3:  x = l.size(); // untraced lib method

𝑽𝒍

𝑺𝟏

𝑽𝒍_𝒐𝟏 𝑺𝟐

𝑽𝒍_𝒐𝟐 𝑺𝟑

𝑽𝒍_𝒐𝟑𝑽𝒙

Virtual call edge

S1:  a = untracedlib(b);

overloaded "equals()" of b

"equals()" return

𝑺𝟏

𝑽𝒂

𝑽𝒓𝒆𝒕

𝑽𝒃

𝑽𝒑𝒂

equals()

𝑺𝟏

m

1
untracedlib()

m

1
equals()

m

1

𝑺𝟏

untracedlib()

Assuming access to and only to 

the object referenced



Reducing Redundant Loops

Loop

S1:  while(i<n){

S2: s = s+i;

S3: i = i +1;

}

𝑽𝒊_𝟎

𝑽𝒑_𝟏

𝑺𝟏𝑽𝒏

𝑺𝟐𝑽𝒔_𝟎

𝑽𝒔_𝟏 𝑺𝟑

𝑽𝒊_𝟏

Sequence

𝑆1 𝑆2 𝑆3 𝑛 𝑆1

Same graph structure

𝑽𝒊_𝟏

𝑽𝒑_𝟐

𝑺𝟏𝑽𝒏

𝑺𝟐𝑽𝒔_𝟏

𝑽𝒔_𝟐 𝑺𝟑

𝑽𝒊_𝟐

𝑽𝒑_𝟏

𝑆1 𝑆2 𝑆3 𝑆1

𝑆1 𝑆2 100 𝑆1𝑆3 𝑆1 𝑆2 100 ⇒ 𝑆1 𝑆2 𝑆1𝑆3 𝑆1 𝑆2



SmartFL Workflow

Inference Optimization

Dynamic Dependency Graph

Scaling

Probabilistic Graph Model

Inference Results

Faulty Program and Tests

Drop part of the traces

Steps

Dynamic Dependency Analysis

Probabilistic Modeling

Probabilistic Inference



Inference Optimization

complexity =𝑂 2𝑛

Tabular encoding

complexity =𝑂 𝑛

Local structure

𝑿 = 𝑥1 ∧ 𝑥2⋯∧ 𝑥𝑛 𝑝 𝑥𝑣 = 𝑡𝑟𝑢𝑒 𝑿) = ቊ
1, 𝑿 = 𝑡𝑟𝑢𝑒
𝑝0, 𝑿 = 𝑓𝑎𝑙𝑠𝑒

𝑝 𝑥𝑣 = 𝑡𝑟𝑢𝑒 𝑥1, 𝑥2, ⋯ , 𝑥𝑛) = ቊ
1, 𝑥1 ∧ 𝑥2⋯∧ 𝑥𝑛 = 𝑡𝑟𝑢𝑒
𝑝0, 𝑥1 ∧ 𝑥2⋯∧ 𝑥𝑛 = 𝑓𝑎𝑙𝑠𝑒



Effectiveness of SmartFL

Benchmark Results



Efficiency of SmartFL

a) Profiling (coarse-grained instrumentation to get method-level coverage)

b) Tracing (getting fine-grained traces of selected tests)

c) Modeling (building the probabilistic graph and probabilistic inference



On combining with LLMs

• Neural networks utilize informal information sources, 

e.g., method names

• SmartFL better captures formal semantic connections

• Potential to be combined

• Attempts

• Use LLM scores as prior probabilities in SmartFL

• LLM scores are not really probabilities and tend to dominate

• Use SmartFL scores in LLMs

• LLMs do not know how to use them



Conclusion

1. A fault localization approach by efficient approximation of program semantics.

2. Novel techniques to reduce the size of the model and to efficiently infer posterior probabilities for 

addressing the scalability challenge.

3. An evaluation on the Defects4J dataset to show the effectiveness and the efficiency of our approach.

https://github.com/toledosakasa/SMARTFL

Main Contributions

Tool and Data

https://github.com/toledosakasa/SMARTFL
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