
SmartFL: Semantics Based Probabilistic Fault Localization

Yiqian Wu, Zeng Muhan, Yujie Liu, Yi Yin,
Xin Zhang, Yingfei Xiong, and Lu Zhang

Status Update 1

• Our group have been working on solving competitive programming problems for

the last four years

• Without using neural networks

• Talked about this in Meetings 67 and 69

• Our plan: to win a silver medal in the national competition in 2025

• Sep, 2024: o1-IOI won a silver medal in IOI

• Dec, 2024: o3 won a gold medal in IOI, Top 200 in Codeforce

• We surrendered.

• Switched to use LLMs to solve SE problems.

• Program repair / generation / analysis / verification

Status Update 2

• The grammar-based code representation for neural models

• which I introduced in

• IFIP meeting 68

• Dagstuhl on program synthesis and repair

• was evaluated in 1.3B and 1.5B models in Kuaishou

• 4.2-17.7 percentage points higher than token-based

representation in accuracy

• The preprint will be released soon

Fault Localization

• A faulty program

• A set of tests with at least one failing test

• The suspiciousness score of each program element

Input

Output

Coverage-based Fault Localization

• An element covered more by failing tests rather than passing tests is more likely to be faulty

• Count the number of passing/failing tests covering the element

• Calculate the suspiciousness score of each program element

Idea

Spectrum-based fault localization

How a Buggy Element Causes the Failure

Test

Assertion

1. Coverage

2. Errors in program state

3. Propagation of errors

4. Capture

Coverage-based methods only consider 1

2,3,4 correspond to the semantics of the program

How to model the latter three conditions?

PIE model

Existing Research

• Generates many mutations on each element

• Watches whether the test result changes

• If a change is more likely to change the results in failing tests, and less likely in

passing tests, the corresponding statement is likely to be faulty

• Uses symbolic analysis

• Modify the result of an expression

• If an expression can be modified to reverse the results of failing tests while maintaining

the results of passing tests, the expression is considered more likely to be faulty

Full Program Semantics Heavy

Mutation-based fault localization

Angelic debugging (by Satish et al.)

Our Approach: SmartFL

• The probability of each statement introducing an error

• The probability of each statement propagating an error

• Introduce random variables to represent the correctness of each statement and runtime variable value

• Transform program semantics into probabilistic constraints between random variables

Efficient Probabilistic Modeling of Program Semantics

How a fault leads to the current test results

Abstracts the full program semantics

𝑃 𝑆3= 0 | 𝑉𝑝,4 = 1 ∧ 𝑉4,𝑓 = 0 ≈ 0.707

𝑃 𝑆4= 0 | 𝑉𝑝,4 = 1 ∧ 𝑉4,𝑓 = 0 ≈ 0.270

𝑃 𝑆3= 0 | 𝑉𝑝,4 = 1 ∧ 𝑉4,𝑓 = 0 =?

𝑃 𝑆4= 0 | 𝑉𝑝,4 = 1 ∧ 𝑉4,𝑓 = 0 =?

Running Example

Bernoulli random variables:

𝑆i: representing the correctness of line I

𝑉𝑡,𝑖: representing whether the value defined at line i is correct for test 𝑡 ∈ 𝑝, 𝑓

𝑃 𝑆3= 1 = 0.5 𝑃 𝑆4= 1 = 0.5

𝑃(𝑉𝑝,4 = 1 | 𝑆4= 1 ∧ 𝑉𝑝,2 = 1 ∧ 𝑉𝑝,3 = 1) = 1

𝑃(𝑉𝑝,4 = 1 | 𝑆4= 0 ∨ 𝑉𝑝,2 = 0 ∨ 𝑉𝑝,3 = 0) = 0.01

𝑃(𝑉𝑝,3 = 1 | 𝑆3= 1 ∧ 𝑉𝑝,2 = 1) = 1

𝑃(𝑉𝑝,3 = 1 | 𝑆3= 0 ∨ 𝑉𝑝,2 = 0) = 0.5

𝑃(𝑉𝑝,2 = 1) = 1

Bayesian Network

SmartFL Workflow [ICSE22]

Dynamic Dependency Graph

Probabilistic Graph Model

Inference Results

Faulty Program and Tests

Steps

Dynamic Dependency Analysis

Probabilistic Modeling

Probabilistic Inference

Results [ICSE22]

• Results on 4

projects from

Defects4j 1.0

• Outperforming

both SBFL and

MBFL

• Time consumption

between SBFL and

MBFL

Bottleneck on Performance [In Submission]

• Traces are too long

• Probabilistic models would be too large for existing probabilistic

• Drop part of the traces

• Optimize the probabilistic inference algorithm

SmartFL Workflow [In Submission]

Inference Optimization

Dynamic Dependency Graph

Scaling

Probabilistic Graph Model

Inference Results

Faulty Program and Tests

Drop part of the traces

Steps

Dynamic Dependency Analysis

Probabilistic Modeling

Probabilistic Inference

Drop part of traces

Methods not covered by the

failing test

F

P1

P2

m1 m2 m3

m1 m4 m2

m4 m2 m5 m3

1k

2k

4k

8k

P1

P2

P3

P4

Drop large passing tests

m1 = 1k m2 = 9k m3 = 0.5k

Drop large methods in failing tests

Reducing Redundant Methods

S: a = untraced(b);

Atomic statement Side effects

𝑽𝒃

𝑽𝒂

𝑺𝟑

S1: List l = new ArrayList();

S2: l.add(1); // untraced lib method

S3: x = l.size(); // untraced lib method

𝑽𝒍

𝑺𝟏

𝑽𝒍_𝒐𝟏 𝑺𝟐

𝑽𝒍_𝒐𝟐 𝑺𝟑

𝑽𝒍_𝒐𝟑𝑽𝒙

Virtual call edge

S1: a = untracedlib(b);

overloaded "equals()" of b

"equals()" return

𝑺𝟏

𝑽𝒂

𝑽𝒓𝒆𝒕

𝑽𝒃

𝑽𝒑𝒂

equals()

𝑺𝟏

m

1
untracedlib()

m

1
equals()

m

1

𝑺𝟏

untracedlib()

Assuming access to and only to

the object referenced

Reducing Redundant Loops

Loop

S1: while(i<n){

S2: s = s+i;

S3: i = i +1;

}

𝑽𝒊_𝟎

𝑽𝒑_𝟏

𝑺𝟏𝑽𝒏

𝑺𝟐𝑽𝒔_𝟎

𝑽𝒔_𝟏 𝑺𝟑

𝑽𝒊_𝟏

Sequence

𝑆1 𝑆2 𝑆3 𝑛 𝑆1

Same graph structure

𝑽𝒊_𝟏

𝑽𝒑_𝟐

𝑺𝟏𝑽𝒏

𝑺𝟐𝑽𝒔_𝟏

𝑽𝒔_𝟐 𝑺𝟑

𝑽𝒊_𝟐

𝑽𝒑_𝟏

𝑆1 𝑆2 𝑆3 𝑆1

𝑆1 𝑆2 100 𝑆1𝑆3 𝑆1 𝑆2 100 ⇒ 𝑆1 𝑆2 𝑆1𝑆3 𝑆1 𝑆2

SmartFL Workflow

Inference Optimization

Dynamic Dependency Graph

Scaling

Probabilistic Graph Model

Inference Results

Faulty Program and Tests

Drop part of the traces

Steps

Dynamic Dependency Analysis

Probabilistic Modeling

Probabilistic Inference

Inference Optimization

complexity =𝑂 2𝑛

Tabular encoding

complexity =𝑂 𝑛

Local structure

𝑿 = 𝑥1 ∧ 𝑥2⋯∧ 𝑥𝑛 𝑝 𝑥𝑣 = 𝑡𝑟𝑢𝑒 𝑿) = ቊ
1, 𝑿 = 𝑡𝑟𝑢𝑒
𝑝0, 𝑿 = 𝑓𝑎𝑙𝑠𝑒

𝑝 𝑥𝑣 = 𝑡𝑟𝑢𝑒 𝑥1, 𝑥2, ⋯ , 𝑥𝑛) = ቊ
1, 𝑥1 ∧ 𝑥2⋯∧ 𝑥𝑛 = 𝑡𝑟𝑢𝑒
𝑝0, 𝑥1 ∧ 𝑥2⋯∧ 𝑥𝑛 = 𝑓𝑎𝑙𝑠𝑒

Effectiveness of SmartFL

Benchmark Results

Efficiency of SmartFL

a) Profiling (coarse-grained instrumentation to get method-level coverage)

b) Tracing (getting fine-grained traces of selected tests)

c) Modeling (building the probabilistic graph and probabilistic inference

On combining with LLMs

• Neural networks utilize informal information sources,

e.g., method names

• SmartFL better captures formal semantic connections

• Potential to be combined

• Attempts

• Use LLM scores as prior probabilities in SmartFL

• LLM scores are not really probabilities and tend to dominate

• Use SmartFL scores in LLMs

• LLMs do not know how to use them

Conclusion

1. A fault localization approach by efficient approximation of program semantics.

2. Novel techniques to reduce the size of the model and to efficiently infer posterior probabilities for

addressing the scalability challenge.

3. An evaluation on the Defects4J dataset to show the effectiveness and the efficiency of our approach.

https://github.com/toledosakasa/SMARTFL

Main Contributions

Tool and Data

https://github.com/toledosakasa/SMARTFL

	幻灯片 1: SmartFL: Semantics Based Probabilistic Fault Localization
	幻灯片 2: Status Update 1
	幻灯片 3: Status Update 2
	幻灯片 4: Fault Localization
	幻灯片 5: Coverage-based Fault Localization
	幻灯片 6: How a Buggy Element Causes the Failure
	幻灯片 7: Existing Research
	幻灯片 8: Our Approach: SmartFL
	幻灯片 9: Running Example
	幻灯片 10: Bayesian Network
	幻灯片 11: SmartFL Workflow [ICSE22]
	幻灯片 12: Results [ICSE22]
	幻灯片 13: Bottleneck on Performance [In Submission]
	幻灯片 14: SmartFL Workflow [In Submission]
	幻灯片 15: Drop part of traces
	幻灯片 16: Reducing Redundant Methods
	幻灯片 17: Reducing Redundant Loops
	幻灯片 18: SmartFL Workflow
	幻灯片 19: Inference Optimization
	幻灯片 20: Effectiveness of SmartFL
	幻灯片 21: Efficiency of SmartFL
	幻灯片 22: On combining with LLMs
	幻灯片 23: Conclusion

