Neural Code Generatio
Models with Programmi
Language Knowledge

Yingfei Xiong
Peking University

ﬂ

Two Approaches to Al

Formal
Methods

\\\'ll: () ‘
.p’é
&‘4

Deciding
Procedures

Symbolism Connectionism
Learn from humans Learn from human creators

Important LLM Application
Assisting Software Development

McKinsey CO d e
& Company G enera tIO n
The economic / \

potential of
generative Al

Code Code
Optimization Completion
&% , % ; . ._'-'n:f*’ ot
JU T {*i:’ Defect Defect
Repair Detecting
McKinsey: save 20%-45% development .

cost

SRS B RB 4 » Copilot

Baidu Comate deepseek

Mismatch: connectionism

How Secure is Code Generated by ChatGPT?

Raphail Khoury', Anderson R. Avila®, Jacob Brunelle', Baba Mamadou Camara’

and programs

Programs are symbolic

product, with symbolic

knowledge:

e Syntactic: ()+5(illegal

e Type: 1+true illegal

 Semantic: use without
initialization illegal

These symbolic knowledges
are difficult to be learned b
neural network

"Univer

¢ du Quebec en Outaouais, Quebec, Canada

“Ingtitut national de la recherche scientifique, Quebec, Canada
{raphael khoury, anderson.raymundoavila, bruj30, cambl2} @uqo.ca

Abstraci—In recent years, large language models have heen
responsible for great advances in the field of artificial intelligence
(. hatGPT in particular, an AL chatbot developed and
recently released by OpenAl, has taken the field to the next level.
The conversational model is able not only to process human-like
text, but also to translate natural language into code. However,
the safety of programs generated by ChatGPT should not be
overlooked. In this paper, we perform an experiment to address
this issue. Specifically, we ask ChatG! to generate a number
of program and evaluate the security of the resulting source
code. We further investigate whether ChatGPT can be prodded
to improve the sec by appropriate prompts, and discuss the
ethical aspects of using Al to Results suggest that
ChatGPT is aware of poten es, but nonetheless
often generates source code that are not robust to certain attacks.

Index Terms—Large language models, ChatGPT, code security,
automatic code generation

I. INTRODUCTION

For years, large language models (LLM) have been demon-
strating impressive performance on a number of natural lan-
guage processing (NLP) tasks, such as sentiment analysis,
natural language understanding (NLU), machine translation
(MT) to name a few. This has been possible specially by means
of increasing the model size, the training data and the model
complexity [T]. In 2020, for instance, OpenAl announced GPT-
3 [2]. a new LLM with 175B parameters, 100 times larger than
GPT-2 [3]. Two years later, ChatGPT [4), an artificial intel-
ligence (AI) chatbot capable of understanding and generating
human-like text, was released. The conversational Al model,
empowered in its core by an LLM based on the Transformer
architecture, has received great attention from both industry
and academis I to be applied in different
downstream tasks (e.g., medical reports [5], code generation
[B], educational tool [7], ete).

given its poten

Therefore, this paper is an attempt to answer the question
of how secure is the source code generated by ChatGPT.
Moreover, we investigate and propose follow-up questions
that can guide ChatGPT to assess and regenerate more secure
source code.

In this paper, we perform an experiment to evaluate the
security of code generated by ChatGPT, fine-tuned from a
model in the GPT-3.5 series. Specifically, we asked Chat-
GPT to generate 21 programs, in 5 different programming
languages: C, C++, Python, html and Java. We then evaluated
erated program and questioned ChatGPT about any vul-
ty present in the code. The results were worrisome. We
found that, in several cases, the code generated by ChatGPT
fell well below minimal security standards applicable in most
contexts. In fact, when prodded to whether or not the produced
code was secure, ChatGTP was able to recognize that it was
not. The chatbot, however, was able to provide a more secure
version of the code in many cases if explicitly asked to do so.

The remainder of this paper is org;
M describes our methodalogy as well as provides an overview
aset. Section [T details the security flaws we found in
gram. In Section [[V] we discuss our results, as w
as the ethical consideration of using Al models to generate
code. Section [VT] surveys related works. Section [V] discusses
threats to the validity of our results. Concluding remarks are
given in Section [VII

II. STupY SE

ic

nized as follows. Section

up
A. Methodology

In this study, we asked ChatGPT to generate 21 programs,
using a variety of progrs 5. The programs
generated serve a diversity of purpose, and each program
chosen to highlight risks of a specific vulnerability (eg.

mming langu

6% of the programs
generated by GPT
contain vulnerabilities

Symbolic PL knowledge is useful

* Correct code generation requires symbolic PL
knowledges

assignment is common

and should be used
NN that

bool and(bool a, bool b) { does not
know types

all parameters are

Boolean so ‘if’ is more
likely NN that
knows types

Can we guide neural
network to learn PL
knowledge?

== TreeGen [AAAI20]

Overview

eUsing transformer to implement L2S

*The first transformer-based code
generator
*SOTA 35m model

=l Grape [IJCAI22]

eGuiding NN to learn grammar rule
definitions

Implements

m ACS [ICSE17] —

e First program repair approach
whose precision > 70%

Tare [ICSE23]

eGuide NN to learn typing rules

GrammarT5 [ICSE24]

*Applying L2S to pretraining
¢SOTA 0.2B model at that time

L2S Framework [TOSEM22]

* Representing code as grammar
rule sequences

e Ensuring syntactic correctness
e Allowing easy symbolic analysis

ma Recoder [FSE23]

e First neural program repair
approach outperforming
traditional approaches

mm ET[APRCOMP24]

e 1st Place in APR-COMP

DeepSeek-Coder [arxiv]

eGuiding NN to learn Def-Use relations

*SOTA open-source code model at that
time

GrammarCoder [ACL25-Finding]

eApplying L2S to Decoder-only
¢SOTA 1.5B code model

Apply

s OCOR [ASE20]

» Code search engine significantly
outperforming existing ones

M | AN [ASE22]

e Mutation generation engine that
significantly outperforming
existing ones

Generating only safe code

* Attempt 1: Check after generation

LLM

try again
generate code

Compiler, program
analyzer

Inefficient, may keep generating code with the same fault

Generating only safe code

* Attempt 2: constrained decoding

Generated 9
tokens: 1+ trye
LLM > (Next Token
get
whilel

Difficulty: Generated tokens are defined by the BPE algorithm.
Lexical analysis is already difficult, let alone parsing.

L2S: representing by grammar
rule sequences [TOSEM?22]

Program X+y
Token Sequence X, +, Y
Grammar Rule Ty, Ty, Ta
Sequence
7‘1: E — E + E
rz: E — X
r3:E >y
E E E

E + E E + E E + E
x / T

10 X X y

Benefit: Constrained Decoding
Made Easy

* Ensuring syntactic correctness is trivial

* Type and semantic analysis can be performed on
partial AST

o, .7

e 1+ “x” +Expr //Type incorrect

* if (BoolExpr) then x else x //Semantically incorrect for
x=1 -2 ret=2

* Step:
* Pre-analysis on grammar rules: get all possibilities for a
non-terminal

e Abstract interpretation on partial program

Benefit: Better Alignment with
Semantics [ACL25-Finding]

e Same semantics

e Different semantics

12

* if (x<0) y=y+1;
o if (x<0){
y=y+1,
}

e foriinrange(l, 6):
X=Xx+1
sum =sum + X
e foriinrange(l, 6):
X=x+1
sum = sum + X

Similar in Grammar Rule Representation
Different in Token Representation

Different in Grammar Rule Representation
Similar in Token Representation

Edit Distance between
Semantically Different Code

160 -

o0 @ O

140 ~

120 ~

100 -

80

Edit Distance

60 -

]

20 A '
T 1

0_

Normal Token-Based Grammar-Based

13

== TreeGen [AAAI20]

Overview

eUsing transformer to implement L2S

*The first transformer-based code
generator
*SOTA 35m model

=l Grape [IJCAI22]

eGuiding NN to learn grammar rule
definitions

Tare [ICSE23]

eGuide NN to learn typing rules

GrammarT5 [ICSE24]

*Applying L2S to pretraining
¢SOTA 0.2B model at that time

Implements

L2S Framework [TOSEM22]

* Representing code as grammar
rule sequences

e Ensuring syntactic correctness
e Allowing easy symbolic analysis

m ACS [ICSE17] —

e First program repair approach
whose precision > 70%

ma Recoder [FSE23]

e First neural program repair
approach outperforming
traditional approaches

mm ET[APRCOMP24]

e 1st Place in APR-COMP

DeepSeek-Coder [arxiv]

eGuiding NN to learn Def-Use relations

*SOTA open-source code model at that
time

GrammarCoder [ACL25-Finding]

eApplying L2S to Decoder-only
¢SOTA 1.5B code model

14

Apply

s OCOR [ASE20]

» Code search engine significantly
outperforming existing ones

M | AN [ASE22]

e Mutation generation engine that
significantly outperforming
existing ones

Using Transformer to
implement L2S [AAAI20]

* The earliest work that applies Transformer for code
generation

* TreeGen: a Transformer model designed for grammar
rule sequences

| Model StrAce Acc+ BLEU

£ | LPN (Ling et al. 2016) 6.1 - 671
= | SEQ2TREE (Dong and Lapata 2016) 1.5 - 534
YNI17 (Yin and Neubig 2017) 16.2 ~18.2 75.8
ASN (Rabinovich, Stern, and Klein 2017) 18.2 - 77.6
ReCode (Hayati et al. 2018) 19.6 - 78.4

| TreeGen-A 258 258 79.3

3 ||ASN+SUPATT (Rabinovich, Stern, and Klein 2017) 227 - [792
;:-:J S/ZMIY (Sun et al. 2019) 271.3 30.5 79.6
£ |[TreeGen-B 318 333 [808

TreeGen has been widely applied to decompilation, program repair,
code search, automating editing by different researchers

15

== TreeGen [AAAI20]

Overview

eUsing transformer to implement L2S

*The first transformer-based code
generator
*SOTA 35m model

=l Grape [IJCAI22]

eGuiding NN to learn grammar rule
definitions

Tare [ICSE23]

eGuide NN to learn typing rules

GrammarT5 [ICSE24]

*Applying L2S to pretraining
¢SOTA 0.2B model at that time

Implements

L2S Framework [TOSEM22]

* Representing code as grammar
rule sequences

e Ensuring syntactic correctness
e Allowing easy symbolic analysis

m ACS [ICSE17] —

e First program repair approach
whose precision > 70%

ma Recoder [FSE23]

e First neural program repair
approach outperforming
traditional approaches

mm ET[APRCOMP24]

e 1st Place in APR-COMP

DeepSeek-Coder [arxiv]

eGuiding NN to learn Def-Use relations

*SOTA open-source code model at that
time

GrammarCoder [ACL25-Finding]

eApplying L2S to Decoder-only
¢SOTA 1.5B code model

16

Apply

s OCOR [ASE20]

» Code search engine significantly
outperforming existing ones

M | AN [ASE22]

e Mutation generation engine that
significantly outperforming
existing ones

Existing Neural Program Repair

* Treating a patch as a pair of code

— -
‘ Patch Set
‘ Training
e I
A Neural Translation N
) Model)
- / Repaired

B
uggy Code Code

A finding in bidirectional
transformation [Models’11 MIP]

 State-based representation is ineffective

cfa.createEdge(fromNode, Branch.UNCOND, finallyNode); 1. Need to learn diff
during training

cfa.createEdge(fromNode, Branch.ON_EX, finallyNode); 2. Repris long (13 tokens)

» Delta-based representation is more desirable

1. Change is directly given

modify(9, ON_EX) 2. Repr is short (3 tokens)

18

A grammar of change

1. Edits — Edit; Edits | end

2. Edit — Insert | Modify

3. Insert — insert((HLStatement))
4. Modify — modify(

(ID of an AST Node with a NTS),
(the same NTS as the above NTS))
5. (Any NTS in HL) —
copy({ID of an AST Node with the same NTS))
| (The original production rules in HL)
6. (HLIdentifier) — placeholder
| (Identifiers in the training set)

Ensuring the changed code is still syntactically correct.

19

Recoder [ESEC/FSE’21]

* TreeGen for generating changes

* Neural program repair outperformed traditional
approaches for the first time

Table 2: Comparison without Perfect Fault Localization

Project | jGenProg ‘ HDRepair | Nopol | CapGen | SketchFix | FixMiner | SimFix | TBar | DLFix ‘ PraPR | AVATAR ‘ Recoder

Chart 0/7 0/2 1/6 4/4 6/8 5/8 4/8 9/14 | 5/12 | 4/14 5/12 8/14
Closure 0/0 0/7 0/0 0/0 3/5 5/5 6/8 8/12 | 6/10 | 12/62 8/12 17/31
Lang 0/0 2/6 3/7 5/5 3/4 2/3 9/13 | 5/14 | 5/12 | 3/19 5/11 9/15
Math 5/18 4/7 1/21 12/16 7/8 12/14 14/26 | 18/36 | 12/28 | 6/40 6/13 15/30
Time 0/2 0/1 0/1 0/0 0/1 1/1 1/1 1/3 1/2 0/7 1/3 2/2
Mockito 0/0 0/0 0/0 0/0 0/0 0/0 0/0 1/2 1/1 1/6 2/2 2/2
Total | 527 | 623 | 535 | 2125 | 19/26 | 25531 | 34/56 | 42/81 | 30/65 | 26/148 | 27/53 || 53/94|
P(%) | 185 | 261 | 143 | 840 | 731 | 806 | 607 | 519 | 462 | 176 | 509 | 564

In the cells, x/y:x denotes the number of correct patches, and y denotes the number of patches that can pass all the test cases.

20

== TreeGen [AAAI20]

Overview

eUsing transformer to implement L2S

*The first transformer-based code
generator
*SOTA 35m model

=l Grape [IJCAI22]

eGuiding NN to learn grammar rule
definitions

Tare [ICSE23]

eGuide NN to learn typing rules

GrammarT5 [ICSE24]

*Applying L2S to pretraining
¢SOTA 0.2B model at that time

Implements

L2S Framework [TOSEM22]

* Representing code as grammar
rule sequences

e Ensuring syntactic correctness
e Allowing easy symbolic analysis

m ACS [ICSE17] —

e First program repair approach
whose precision > 70%

ma Recoder [FSE23]

e First neural program repair
approach outperforming
traditional approaches

mm ET[APRCOMP24]

e 1st Place in APR-COMP

DeepSeek-Coder [arxiv]

eGuiding NN to learn Def-Use relations

*SOTA open-source code model at that
time

GrammarCoder [ACL25-Finding]

eApplying L2S to Decoder-only
¢SOTA 1.5B code model

21

Apply

s OCOR [ASE20]

» Code search engine significantly
outperforming existing ones

M | AN [ASE22]

e Mutation generation engine that
significantly outperforming
existing ones

LEAM [ASE’22 Distinguished|]

* From Junjie Chen and Lingming Zhang’s group

* Exchange the input and output of Recoder

* Program Repairer -> Bug Seeder

Table 4: Overall effectiveness in mutation-based FL

FL Tech. | Top-1 | Top-3 | Top-5 | MFR | MAR
Major 35 92 114 | 956 | 12.42

Metallais | PIT 56 102 128 | 816 | 11.83
x DM 19 47 98 | 16.64 | 20.65

LEAM 118 182 188 | 3.86 | 4.57

Major 35 89 111 | 1099 | 13.11

PIT 52 97 124 | 915 | 11.72

MUSE DM 18 53 94 | 18.70 | 22.47
LEAM 126 181 189 | 3.88 | 5.05

22

== TreeGen [AAAI20]

Overview

eUsing transformer to implement L2S

*The first transformer-based code
generator
*SOTA 35m model

=l Grape [IJCAI22]

eGuiding NN to learn grammar rule
definitions

Tare [ICSE23]

eGuide NN to learn typing rules

GrammarT5 [ICSE24]

*Applying L2S to pretraining
¢SOTA 0.2B model at that time

Implements

L2S Framework [TOSEM22]

* Representing code as grammar
rule sequences

e Ensuring syntactic correctness
e Allowing easy symbolic analysis

m ACS [ICSE17] —

e First program repair approach
whose precision > 70%

ma Recoder [FSE23]

e First neural program repair
approach outperforming
traditional approaches

mm ET[APRCOMP24]

e 1st Place in APR-COMP

DeepSeek-Coder [arxiv]

eGuiding NN to learn Def-Use relations

*SOTA open-source code model at that
time

GrammarCoder [ACL25-Finding]

eApplying L2S to Decoder-only
¢SOTA 1.5B code model

23

Apply

s OCOR [ASE20]

» Code search engine significantly
outperforming existing ones

M | AN [ASE22]

e Mutation generation engine that
significantly outperforming
existing ones

Limit of L2S

* Force syntactical and other constraint from outside
* NN does not learn their definitions

ifstmt -> “if” ‘(" boolExpr ‘)" stmt 10
whilestat -> ‘while’ ‘(“ boolExpr ‘) stmt 11
boolExpr -> andExpr 12
boolExpr -> orExpr 13

Grammar rules are encoded as numbers without content.
NN could predict impossible sequences such as 10, 11.

24

Learning Grammar Rules [IJCAI22]

* Guide the NN to learn grammar definitions
* Word2Vec: assign each token a vector

* Grape: assign each grammar rule a vector, learned with
its definition structure

1:Root = Module
2:Module - body

1
I
3:body - If For Assign ... g N j '4_ I
5:1f - test body orelse I) ? hjh |
I
I
I
I

9:For - target iter body orelse v

|

|

I

Il 11:0relse > ...

1] l4:target - orelse ... 2 3 16 14
j| 16:Assign > ...

L

N e am e omm e o e e En o Em o o e D EE EmyEm o o e EE EE EE EE EE EE Ee Em Em Em Em = 7
(Knowledge 1
I Rulel(® @] Representation |
: Rule 2 [) Enhance :
; Rule3 (ee] B‘ I
ase
| Rule5 (@ @] Model J !
! Rule9 (@] Point — |
. Embedding C ook)

25

Learning Grammar Rules [[JCAI22

* Improve the performance of TreeGen up to 5

percentage points

* Qutperforms larger pre-training models

G &
= 7
“ w
w S
: ,V &,

189%

| Code Generation Semantic Parsing Regex Synthesis
| Method HearthStone Django Concode | Atis Job | StrReg
| Metric StrAcc BLEU Acc+ StrAce StrAce | ExeAcc ExeAce | DFAAcc
KCAZ13 [Kwiatkowski ef al., 2013] - - 89.0 -
WKZ14 [Wang ef al., 2014] - - 91.3 90.7
g SEQ2TREE [Dong and Lapata, 2016] - - - 84.6 90.0
§ ASN+SUPATT [Rabinovich et al., 20171 22.7 79.2 - 85.9 92.9
% | TRANX [Yin and Neubig, 2018] - - 73.7 - 86.3 90.0
Z | Tyer-Simp+200 idoms [Iyer et al., 2018] - - 12.20 - -
£ | GNN-Edge [Shaw er al., 2019] - - = 87.1 =
2 SoftReGex [Park et al., 2019] - . - - . . - 28.2
TreeGen [Sun et al., 2020] 30.3%1.061 80.8 33.3 76.4 16.6 89.6+0.329 91.5+0.586 22.5
GPT-2 [Radford et al., 2019] 16.7 71 18.2 62.3 17.3 84.4 92.1 24.6
CodeGPT [Lu ez al., 2021] 27.3 75.4 30.3 68.9 18.3 87.5 92.1 22.49
| TreeGen + Grape 33.6+1.255 854 36.3 77.3 17.6 \ 92.16+0.167 92.55+0.817 | 28.9

Parameters: TreeGen+Grape: 35M GPT-2, CodeGPT: 110M

26

== TreeGen [AAAI20]

Overview

eUsing transformer to implement L2S

*The first transformer-based code
generator

*SOTA 35m model

Grape [IJCAI22]

eGuiding NN to learn grammar rule
definitions

Tare [ICSE23]

eGuide NN to learn typing rules

GrammarT5 [ICSE24]

*Applying L2S to pretraining
¢SOTA 0.2B model at that time

Implements

L2S Framework [TOSEM22]

* Representing code as grammar
rule sequences

e Ensuring syntactic correctness
e Allowing easy symbolic analysis

m ACS [ICSE17] —

e First program repair approach
whose precision > 70%

ma Recoder [FSE23]

e First neural program repair
approach outperforming
traditional approaches

mm ET[APRCOMP24]

e 1st Place in APR-COMP

DeepSeek-Coder [arxiv]

eGuiding NN to learn Def-Use relations

*SOTA open-source code model at that
time

GrammarCoder [ACL25-Finding]

eApplying L2S to Decoder-only
¢SOTA 1.5B code model

27

Apply

s OCOR [ASE20]

» Code search engine significantly
outperforming existing ones

M | AN [ASE22]

e Mutation generation engine that
significantly outperforming
existing ones

Learning Typing Rules [ICSE23]

&

UNI P
6:*
'J
N
e
\".

/C
-
N~
@

<t

-189%

e Full type system is difficult to learn from data

Term typing
x:Cel
(T-VAR)
I'=x:C
I'-to:C jelds(Co) =C F
0 0 fields(Co) (T-FIELD)
I+ tu.f,: G
I'-to: Co
mtype(m, Co) = D—C
r-t:C C<:D (TIevE)
-INVK
' tg.m(t) : C
fields(C) =D T
I'-t:C ©C<:D
_ (T-NEW)
I''newC(t) : C
'-1to:D D<:C
(T-UJCAST)
' Oty = C

'-tp:D C<:D C+D

(T-DCAST)
' (COty: C
I'-tp:D C<&D D4&C
stupid warning
(T-SCAST)
' (Oty = C
Method typing MOK in C
X:C, this:C— to : Eo Ep <: Cp

CTiC) =class Cextends D {...}
override(m, D, C—Cy)

Com (CX) {return to;} 0KinC

Class typing C 0K

K=C{@g,CH
{super(@); this.F=F;}
fields(tD) =Dg MOKinC
class C extends D {C F; KM} 0K

Figure 19-4: Featherweight Java (typing)

* Only 30%-40% programs generated by Recoder is

typable

28

A
* A single rule is much easier to learn

* T-Graph: present the input of a typing rule to the NN

 T-Grammar: force NN to predict the output of a typing
rule

Learning Typing Rules [ICSE23] &

ABC
9

T-Graph: Representing typing relations T-Grammar:
e types of AST nodes E->E && E becomes
* types of variables [Bool]E -> [Bool]E && [Bool]E

.o * subtyping relations

Learning Typing Rules [ICSE23]

* Applying to program repair, forming Tare

d

ONIp

&
P
¢ 2]
-

-

-189%

Project | Bugs | CapGen | SimFix | TBar | DLFix | Hanabi | Recoder | Recoder-F | Recoder-T | Tare
Chart 26 4/4 4/8 9/14 5/12 3/5 8/14 9/15 8/16 11/16
Closure 133 0/0 6/8 8/12 6/10 -/- 13/33 14/36 15/31 15/29
Lang 64 5/5 9/13 5/14 5/12 4/4 9/15 9/15 11/23 13/22
Math 106 12/16 14/26 18/36 12/28 19/22 15/30 16/31 16/40 19/42
Time 26 0/0 1/1 1/3 1/2 2/2 2/2 2/2 2/4 2/4
Mockito 38 0/0 0/0 172 1/1 -/- 2/2 2/2 2/2 2/2
Total | 393 | 21225 | 34/56 | 42/81 | 30/65 | 28/33 | 49/9 | 52101 | 54/116 | 62/115

Tare+ExpressAPR(efficient patch validation tool) got the first place in the Java

functional bug track of APR-COMP’24.

30

== TreeGen [AAAI20]

Overview

eUsing transformer to implement L2S

*The first transformer-based code
generator
*SOTA 35m model

=l Grape [IJCAI22]

eGuiding NN to learn grammar rule
definitions

Tare [ICSE23]

eGuide NN to learn typing rules

GrammarT5 [ICSE24]

*Applying L2S to pretraining
¢SOTA 0.2B model at that time

Implements

L2S Framework [TOSEM22]

* Representing code as grammar
rule sequences

e Ensuring syntactic correctness
e Allowing easy symbolic analysis

m ACS [ICSE17] —

e First program repair approach
whose precision > 70%

ma Recoder [FSE23]

e First neural program repair
approach outperforming
traditional approaches

mm ET[APRCOMP24]

e 1st Place in APR-COMP

DeepSeek-Coder [arxiv]

eGuiding NN to learn Declare-Use relations

*SOTA open-source code model at that
time

GrammarCoder [ACL25-Finding]

eApplying L2S to Decoder-only
¢SOTA 1.5B code model

31

Apply

s OCOR [ASE20]

» Code search engine significantly
outperforming existing ones

M | AN [ASE22]

e Mutation generation engine that
significantly outperforming
existing ones

A Era of LLMs

L+ Bard 0Q Meta Al

LLMs (=pretrained large models) exhibit superior
performance

Can we use grammar-based representation in LLMs?

32

Challenges

* Big vocabulary

* User-defined identifiers can be added to the grammar
when the training set is small

* Pre-training sets are too large

* Heterogeneous grammars
e Existing models: One programming language
* Pretraining models: Many programming languages

* Pretraining Tasks
e Self-supervised training tasks are needed

* Tasks are expected to guide the neural network to learn
the grammar structure

Big vocabulary

 Existing approaches
e IDEN ->isodd | iseven

e Our approach
* Using BPE (Byte Pair Encoding) to find a small set of
subtokens
* is, odd, even
* Integrating them into the grammar

* |IDEN ->is IDEN | odd IDEN | even IDEN
| #is | #odd | #even

* #indicates the ending tokens

* Leads to significantly shorter encoding than the standard sequence
encoding

* |IDEN ->is IDEN | odd IDEN | even IDEN
| €

34

Heterogeneous grammars

* A hyper grammar that includes all grammars
e Root -> Root@Python | Root@Java | ...

* Experimentally has better performance than
sharing some of non-terminals

e While -> while ‘(“ BoolExpr ‘)’ Statements
* BoolExpr -> BoolExpr@Java | BoolExpr@C# | ...

35

Pretraining Tasks

* Given a rule sequence, predicting the parent of a

rule
root

* 123]10/11 13 6418|198 !
Module
'
- bod
* Predicting some T

subtree of an AST Assign

value

36

Learning Declare-Use Relation

* Existing pre-training models sort files randomly

* LLMs may see a function or a variable before its
declaration

* Dependency parsing:
e Extract declaration-use relationship from files
* Sort the files so that declarations appear before use

37

GrammarT5 [ICSE24]

Natural-Language-Based Code Generation

Models Concode Conala Django MBPP ‘ MathQA
Metric BLEU EM C-BLEU | BLEU EM |BLEU EM | pass@80 | pass@80
TreeGen + Grape(35M) 2645 17.60 30.05 | 20.16 2380 | 7586 7730 | 200 | 2658
GPT-C(110M) 30.85 19.85 33.10 | 3032 480 | 7256 6891 | 10.40 58.94
CodeGPT-adapted(110M) 3594 2015 3727 | 31.04 460 | 7124 7213 | 1260 55.90
CoTexT(220M) 1919 1972 3813 | 3145 620 | 7591 7843 | 14.00 58.18
PLBART(220M) 36.69 1875 3852 | 3244 510 | 7281 7912 | 12.00 57.25
CodeT5-small(60M) 3813 2155 4139 | 3123 6.00 | 7691 8177 | 19.20 61.58
CodeT5-base(220M) 4073 2230 432 | 3891 840 | 8140 84.04 | 24.00 71.52
CodeT5-large(770M) 42.66 22.65 4508 | 39.96 740 | 8211 8316 | 3240 83.14
Unixcoder(110M) 38.73 22.65 40.86 | 36.09 1020 | 7842 7535 | 22.40 70.16
GrammarT5-small(60M) ~ 38.68 21.25 4162 | 39.18 800 | 81.20 8277 | 26.00 84.91
GrammarT5-base(220M) ~ 4230 24.75 4538 | 4142 1040 | 82.20 84.27 | 33.20 87.46

SOTA 0.2B model in 2024
Standard L2S was applied

38

DeepSeek-Coder [arxiv24]

LeetCode Weekly Contest

40 ——- GPT-4-Turbo: 41.8
=== GPT-3.5-Turbo: 23.3

30 28.9

cdeepseeck

Cooperation with DeepSeek

SOTA open source code model in 2024, still widely used as a base model
for fine-tuning

Dependency parsing was applied

39

GrammarCoder [ACL25-Finding]

Model HumanEval HumanEval+ MBPP MBPP+
DeepSeek-Coder-1.3B-Instruct (Guo et al., 2024) 65.9 60.4 64.3 54.8
Qwen2.5-1.5B-Instruct (Team, 2024) 61.6 49 .4 63.2 55.6
OpenCoder-1.5B-Instruct (Huang et al., 2024) 72.5 67.7 72.7 61.9
Yi-Coder-1.5B-Chat (Al et al., 2025) 67.7 63.4 68.0 59.0
Phi-3-Mini-4K-3.8B-Instruct (Abdin et al., 2024) 64.6 59.1 65.9 54.2
CodeGemma-7B-Instruct (Team et al., 2024) 60.4 51.8 70.4 56.9
GrammarCoder-1.3B-Instruct 70.7 64.0 71.2 58.7
GrammarCoder-1.5B-Instruct 73.2 68.3 73.3 61.1

Cooperation with Kuaishou
SOTA 1.5B model
Standard L2S was applied

40

Conclusion

* Anxiety: what should we software researchers do if
LLMs learn everything by themselves?

* LLMs do not learn programming languages
knowledge by themselves

* Guiding them to learn improves their performance

e Future: more genetic ways to learn more software
knowledge

	幻灯片 1: Neural Code Generation Models with Programming Language Knowledge
	幻灯片 2: Two Approaches to AI
	幻灯片 3: Important LLM Application Assisting Software Development
	幻灯片 4: Mismatch: connectionism and programs
	幻灯片 5: Symbolic PL knowledge is useful
	幻灯片 6: Can we guide neural network to learn PL knowledge?
	幻灯片 7: Overview
	幻灯片 8: Generating only safe code
	幻灯片 9: Generating only safe code
	幻灯片 10: L2S: representing by grammar rule sequences [TOSEM22]
	幻灯片 11: Benefit: Constrained Decoding Made Easy
	幻灯片 12: Benefit: Better Alignment with Semantics [ACL25-Finding]
	幻灯片 13: Edit Distance between Semantically Different Code
	幻灯片 14: Overview
	幻灯片 15: Using Transformer to implement L2S [AAAI20]
	幻灯片 16: Overview
	幻灯片 17: Existing Neural Program Repair
	幻灯片 18: A finding in bidirectional transformation [Models’11 MIP]
	幻灯片 19: A grammar of change
	幻灯片 20: Recoder [ESEC/FSE’21]
	幻灯片 21: Overview
	幻灯片 22: LEAM [ASE’22 Distinguished]
	幻灯片 23: Overview
	幻灯片 24: Limit of L2S
	幻灯片 25: Learning Grammar Rules [IJCAI22]
	幻灯片 26
	幻灯片 27: Overview
	幻灯片 28: Learning Typing Rules [ICSE23]
	幻灯片 29: Learning Typing Rules [ICSE23]
	幻灯片 30: Learning Typing Rules [ICSE23]
	幻灯片 31: Overview
	幻灯片 32: A Era of LLMs
	幻灯片 33: Challenges
	幻灯片 34: Big vocabulary
	幻灯片 35: Heterogeneous grammars
	幻灯片 36: Pretraining Tasks
	幻灯片 37: Learning Declare-Use Relation
	幻灯片 38: GrammarT5 [ICSE24]
	幻灯片 39: DeepSeek-Coder [arxiv24]
	幻灯片 40: GrammarCoder [ACL25-Finding]
	幻灯片 41: Conclusion

