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Two Approaches to AI
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Learn from humans
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Important LLM Application
Assisting Software Development

Code 
Generation

Code 
Completion

Defect 
Detecting

Defect 
Repair

Code 
Optimization

McKinsey: save 20%-45% development 
cost



Mismatch: connectionism 
and programs 

Programs are symbolic 
product, with symbolic 
knowledge:

• Syntactic:  ()+5( illegal

• Type: 1+true illegal

• Semantic: use without 
initialization illegal

These symbolic knowledges 
are difficult to be learned by 
neural network

76% of the programs 
generated by GPT 
contain vulnerabilities



Symbolic PL knowledge is useful

• Correct code generation requires symbolic PL 
knowledges
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bool and(bool a, bool b) {
______________

}

assignment is common 
and should be used

all parameters are 
Boolean so ‘if’ is more 

likely

NN that 
does not 
know types

NN that 
knows types



Can we guide neural 
network to learn PL 

knowledge?
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Overview
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• First program repair approach 
whose precision > 70% 

ACS [ICSE17]

• First neural program repair 
approach outperforming 
traditional approaches 

Recoder [FSE23]

• 1st Place in APR-COMP

ET[APRCOMP24]

• Code search engine significantly 
outperforming existing ones

OCoR [ASE20]

• Mutation generation engine that 
significantly outperforming 
existing ones

LEAM [ASE22]

Implements

Apply

• Representing code as grammar 
rule sequences

• Ensuring syntactic correctness

• Allowing easy symbolic analysis

L2S Framework [TOSEM22]

•Using transformer to implement L2S

•The first transformer-based code 
generator

•SOTA 35m model

TreeGen [AAAI20]

•Guiding NN to learn grammar rule 
definitions

Grape [IJCAI22]

•Guide NN to learn typing rules

Tare [ICSE23]

•Applying L2S to pretraining

•SOTA 0.2B model at that time

GrammarT5 [ICSE24]

•Guiding NN to learn Def-Use relations

•SOTA open-source code model at that 
time

DeepSeek-Coder [arxiv]

•Applying L2S to Decoder-only

•SOTA 1.5B code model

GrammarCoder [ACL25-Finding]



Generating only safe code

• Attempt 1: Check after generation

LLM

Compiler, program 
analyzer

generate code
try again

Inefficient, may keep generating code with the same fault



Generating only safe code

• Attempt 2: constrained decoding

LLM

Difficulty：Generated tokens are defined by the BPE algorithm. 
Lexical analysis is already difficult, let alone parsing.

Generated 
tokens：1+

2
true

+
(

get
while(

……

Next Token



L2S: representing by grammar 
rule sequences [TOSEM22]
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x+y

x, +, y

𝑟1, 𝑟2, 𝑟3

𝑟1: 𝐸 → 𝐸 + 𝐸
𝑟2: 𝐸 → 𝑥
𝑟3: 𝐸 → 𝑦

Program

Token Sequence

Grammar Rule
Sequence

E

E    + E

x

E

E    + E

E

E    + E

x y



Benefit: Constrained Decoding
Made Easy

• Ensuring syntactic correctness is trivial

• Type and semantic analysis can be performed on 
partial AST
• 1 + “x” + Expr   //Type incorrect
• if (BoolExpr) then x else x  //Semantically incorrect for 

x=1 → ret=2

• Step:
• Pre-analysis on grammar rules: get all possibilities for a 

non-terminal
• Abstract interpretation on partial program
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Benefit: Better Alignment with 
Semantics [ACL25-Finding]

• Same semantics
• if (x<0) y=y+1;
• if (x < 0) {

y = y + 1;
}

• Different semantics
• for i in range(1, 6):

x =  x + 1
sum = sum + x

• for i in range(1, 6):
x = x + 1

sum = sum + x
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Similar in Grammar Rule Representation
Different in Token Representation

Different in Grammar Rule Representation
Similar in Token Representation



Edit Distance between 
Semantically Different Code
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Benefit: Easier Parsing 
[Submitted]
• The easier the language is to parse, the better the 

performance of the neural model.
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Benefit: Easier Parsing 
[Submitted]
• The easier the language is to parse, the better the 

performance of the neural model.
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Benefit: Easier Parsing 
[Submitted]
• Grammar rule representation is in LL(1)

• Significantly easier than most languages
• Python: not context-free

• Java: LR

16



Overview

17

• First program repair approach 
whose precision > 70% 

ACS [ICSE17]

• First neural program repair 
approach outperforming 
traditional approaches 

Recoder [FSE23]

• 1st Place in APR-COMP

ET[APRCOMP24]

• Code search engine significantly 
outperforming existing ones

OCoR [ASE20]

• Mutation generation engine that 
significantly outperforming 
existing ones

LEAM [ASE22]

Implements

Apply

• Representing code as grammar 
rule sequences

• Ensuring syntactic correctness

• Allowing easy symbolic analysis

L2S Framework [TOSEM22]

•Using transformer to implement L2S

•The first transformer-based code 
generator

•SOTA 35m model

TreeGen [AAAI20]

•Guiding NN to learn grammar rule 
definitions

Grape [IJCAI22]

•Guide NN to learn typing rules

Tare [ICSE23]

•Applying L2S to pretraining

•SOTA 0.2B model at that time

GrammarT5 [ICSE24]

•Guiding NN to learn Def-Use relations

•SOTA open-source code model at that 
time

DeepSeek-Coder [arxiv]

•Applying L2S to Decoder-only

•SOTA 1.5B code model

GrammarCoder [ACL25-Finding]



Using Transformer to 
implement L2S [AAAI20]
• The earliest work that applies Transformer for code 

generation
• TreeGen: a Transformer model designed for grammar 

rule sequences
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TreeGen has been widely applied to decompilation, program repair, 
code search, automating editing by different researchers
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Existing Neural Program Repair

• Treating a patch as a pair of code
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Patch Set

Training

Neural Translation 
Model

Buggy Code
Repaired 

Code



A finding in bidirectional 
transformation [Models’11 MIP]

• State-based representation is ineffective

• Delta-based representation is more desirable

21

cfa.createEdge(fromNode, Branch.UNCOND, finallyNode);

cfa.createEdge(fromNode, Branch.ON_EX, finallyNode);

1. Need to learn diff 
during training
2. Repr is long (13 tokens)

modify(9, ON_EX) 
1. Change is directly given
2. Repr is short (3 tokens)



A grammar of change
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Ensuring the changed code is still syntactically correct.



Recoder [ESEC/FSE’21]

• TreeGen for generating changes

• Neural program repair outperformed traditional 
approaches for the first time 
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LEAM [ASE’22 Distinguished]

• From Junjie Chen and Lingming Zhang’s group

• Exchange the input and output of Recoder

• Program Repairer -> Bug Seeder
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Limit of L2S

• Force syntactical and other constraint from outside

• NN does not learn their definitions
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ifstmt -> ‘if’ ‘(‘ boolExpr ‘)’ stmt 10
whilestat -> ‘while’ ‘(‘ boolExpr ‘)’ stmt 11
boolExpr -> andExpr 12
boolExpr -> orExpr 13

Grammar rules are encoded as numbers without content.
NN could predict impossible sequences such as 10, 11.



Learning Grammar Rules [IJCAI22]

• Guide the NN to learn grammar definitions
• Word2Vec: assign each token a vector 
• Grape: assign each grammar rule a vector, learned with 

its definition structure
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1:Root →Module
2:Module → body
3:body → If  For  Assign  …
5:If → test body orelse
9:For → target iter body orelse
11:orelse → …
14:target → orelse …
16:Assign →…
…

1

2 3

5

9

16

11

14

Rule 1  

Rule 2  

Rule 3  

Rule 5  

Rule 9  

Embedding

Grammar Relation Graph

Rule 1 

Rule 2  

Rule 3  

Rule 5 

Rule 9  
Grammar Vector

Base

Model

Enhance

GNN

Knowledge

Representation

Extract 

Graph

Gating

Neighbor Encode

Gating

Input 

Graph
N×

Point

Code



• Improve the performance of TreeGen up to 5 
percentage points 

• Outperforms larger pre-training models
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Parameters：TreeGen+Grape: 35M GPT-2、CodeGPT：110M

Learning Grammar Rules [IJCAI22]
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Learning Typing Rules [ICSE23] 

• Full type system is difficult to learn from data

• Only 30%-40% programs generated by Recoder is 
typable
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Learning Typing Rules [ICSE23] 

• A single rule is much easier to learn
• T-Graph: present the input of a typing rule to the NN

• T-Grammar: force NN to predict the output of a typing 
rule
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T-Graph: Representing typing relations
• types of AST nodes
• types of variables
• subtyping relations

T-Grammar:
E -> E && E becomes
[Bool]E -> [Bool]E && [Bool]E



Learning Typing Rules [ICSE23] 

• Applying to program repair, forming Tare
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Tare+ExpressAPR(efficient patch validation tool) got the first place in the Java 
functional bug track of APR-COMP’24.
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A Era of LLMs

LLMs (=pretrained large models) exhibit superior 
performance

Can we use grammar-based representation in LLMs?
35



Challenges

• Big vocabulary
• User-defined identifiers can be added to the grammar 

when the training set is small
• Pre-training sets are too large

• Heterogeneous grammars
• Existing models: One programming language
• Pretraining models: Many programming languages

• Pretraining Tasks
• Self-supervised training tasks are needed
• Tasks are expected to guide the neural network to learn 

the grammar structure
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Big vocabulary

• Existing approaches
• IDEN -> isodd | iseven

• Our approach
• Using BPE (Byte Pair Encoding) to find a small set of 

subtokens
• is, odd, even

• Integrating them into the grammar
• IDEN -> is IDEN | odd IDEN | even IDEN

|  #is | #odd | #even
• # indicates the ending tokens
• Leads to significantly shorter encoding than the standard sequence 

encoding
• IDEN -> is IDEN | odd IDEN | even IDEN

|  𝜖
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Heterogeneous grammars

• A hyper grammar that includes all grammars
• Root -> Root@Python | Root@Java | …

• Experimentally has better performance than 
sharing some of non-terminals
• While -> while ‘(‘ BoolExpr ‘)’ Statements

• BoolExpr -> BoolExpr@Java | BoolExpr@C# | …
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Pretraining Tasks

• Given a rule sequence, predicting the parent of a 
rule
• 1 2 3 10 11 13 64 18 19 8

• Predicting some 
subtree of an AST

39

root

Module

body

Assign

targets

Name

id

length

Num

n

10

value



Learning Declare-Use Relation

• Existing pre-training models sort files randomly

• LLMs may see a function or a variable before its 
declaration

• Dependency parsing: 
• Extract declaration-use relationship from files

• Sort the files so that declarations appear before use
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GrammarT5 [ICSE24]
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SOTA 0.2B model in 2024
Standard L2S was applied



DeepSeek-Coder [arxiv24]

Cooperation with DeepSeek

SOTA open source code model in 2024, still widely used as a base model 
for fine-tuning

Dependency parsing was applied 
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GrammarCoder [ACL25-Finding]

Cooperation with Kuaishou
SOTA 1.5B model
Standard L2S was applied
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GrammarCoder [ACL25-Finding]

Cooperation with Kuaishou
SOTA 1.5B model
Standard L2S was applied
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Conclusion

• Code has structure
• Syntax

• Types

• Semantics

• These structures are defined by symbolic rules

• LLMs do not learn the symbolic rules well

• Guiding them to learn improves their performance

• Future: more genetic ways to learn more software 
knowledge
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