
Neural Code Generation
Models with Programming

Language Knowledge

Yingfei Xiong

Peking University

Logic

Formal
Methods

Deciding
Procedures

Two Approaches to AI

Symbolism
Learn from humans

Connectionism
Learn from human creators

Important LLM Application
Assisting Software Development

Code
Generation

Code
Completion

Defect
Detecting

Defect
Repair

Code
Optimization

McKinsey: save 20%-45% development
cost

Mismatch: connectionism
and programs

Programs are symbolic
product, with symbolic
knowledge:

• Syntactic: ()+5(illegal

• Type: 1+true illegal

• Semantic: use without
initialization illegal

These symbolic knowledges
are difficult to be learned by
neural network

76% of the programs
generated by GPT
contain vulnerabilities

Symbolic PL knowledge is useful

• Correct code generation requires symbolic PL
knowledges

5

bool and(bool a, bool b) {

}

assignment is common
and should be used

all parameters are
Boolean so ‘if’ is more

likely

NN that
does not
know types

NN that
knows types

Can we guide neural
network to learn PL

knowledge?

6

Overview

7

• First program repair approach
whose precision > 70%

ACS [ICSE17]

• First neural program repair
approach outperforming
traditional approaches

Recoder [FSE23]

• 1st Place in APR-COMP

ET[APRCOMP24]

• Code search engine significantly
outperforming existing ones

OCoR [ASE20]

• Mutation generation engine that
significantly outperforming
existing ones

LEAM [ASE22]

Implements

Apply

• Representing code as grammar
rule sequences

• Ensuring syntactic correctness

• Allowing easy symbolic analysis

L2S Framework [TOSEM22]

•Using transformer to implement L2S

•The first transformer-based code
generator

•SOTA 35m model

TreeGen [AAAI20]

•Guiding NN to learn grammar rule
definitions

Grape [IJCAI22]

•Guide NN to learn typing rules

Tare [ICSE23]

•Applying L2S to pretraining

•SOTA 0.2B model at that time

GrammarT5 [ICSE24]

•Guiding NN to learn Def-Use relations

•SOTA open-source code model at that
time

DeepSeek-Coder [arxiv]

•Applying L2S to Decoder-only

•SOTA 1.5B code model

GrammarCoder [ACL25-Finding]

Generating only safe code

• Attempt 1: Check after generation

LLM

Compiler, program
analyzer

generate code
try again

Inefficient, may keep generating code with the same fault

Generating only safe code

• Attempt 2: constrained decoding

LLM

Difficulty：Generated tokens are defined by the BPE algorithm.
Lexical analysis is already difficult, let alone parsing.

Generated
tokens：1+

2
true

+
(

get
while(

……

Next Token

L2S: representing by grammar
rule sequences [TOSEM22]

10

x+y

x, +, y

𝑟1, 𝑟2, 𝑟3

𝑟1: 𝐸 → 𝐸 + 𝐸
𝑟2: 𝐸 → 𝑥
𝑟3: 𝐸 → 𝑦

Program

Token Sequence

Grammar Rule
Sequence

E

E + E

x

E

E + E

E

E + E

x y

Benefit: Constrained Decoding
Made Easy

• Ensuring syntactic correctness is trivial

• Type and semantic analysis can be performed on
partial AST
• 1 + “x” + Expr //Type incorrect
• if (BoolExpr) then x else x //Semantically incorrect for

x=1 → ret=2

• Step:
• Pre-analysis on grammar rules: get all possibilities for a

non-terminal
• Abstract interpretation on partial program

11

Benefit: Better Alignment with
Semantics [ACL25-Finding]

• Same semantics
• if (x<0) y=y+1;
• if (x < 0) {

y = y + 1;
}

• Different semantics
• for i in range(1, 6):

x = x + 1
sum = sum + x

• for i in range(1, 6):
x = x + 1

sum = sum + x

12

Similar in Grammar Rule Representation
Different in Token Representation

Different in Grammar Rule Representation
Similar in Token Representation

Edit Distance between
Semantically Different Code

13

Benefit: Easier Parsing
[Submitted]
• The easier the language is to parse, the better the

performance of the neural model.

14

Benefit: Easier Parsing
[Submitted]
• The easier the language is to parse, the better the

performance of the neural model.

15

Benefit: Easier Parsing
[Submitted]
• Grammar rule representation is in LL(1)

• Significantly easier than most languages
• Python: not context-free

• Java: LR

16

Overview

17

• First program repair approach
whose precision > 70%

ACS [ICSE17]

• First neural program repair
approach outperforming
traditional approaches

Recoder [FSE23]

• 1st Place in APR-COMP

ET[APRCOMP24]

• Code search engine significantly
outperforming existing ones

OCoR [ASE20]

• Mutation generation engine that
significantly outperforming
existing ones

LEAM [ASE22]

Implements

Apply

• Representing code as grammar
rule sequences

• Ensuring syntactic correctness

• Allowing easy symbolic analysis

L2S Framework [TOSEM22]

•Using transformer to implement L2S

•The first transformer-based code
generator

•SOTA 35m model

TreeGen [AAAI20]

•Guiding NN to learn grammar rule
definitions

Grape [IJCAI22]

•Guide NN to learn typing rules

Tare [ICSE23]

•Applying L2S to pretraining

•SOTA 0.2B model at that time

GrammarT5 [ICSE24]

•Guiding NN to learn Def-Use relations

•SOTA open-source code model at that
time

DeepSeek-Coder [arxiv]

•Applying L2S to Decoder-only

•SOTA 1.5B code model

GrammarCoder [ACL25-Finding]

Using Transformer to
implement L2S [AAAI20]
• The earliest work that applies Transformer for code

generation
• TreeGen: a Transformer model designed for grammar

rule sequences

18

TreeGen has been widely applied to decompilation, program repair,
code search, automating editing by different researchers

Overview

19

• First program repair approach
whose precision > 70%

ACS [ICSE17]

• First neural program repair
approach outperforming
traditional approaches

Recoder [FSE23]

• 1st Place in APR-COMP

ET[APRCOMP24]

• Code search engine significantly
outperforming existing ones

OCoR [ASE20]

• Mutation generation engine that
significantly outperforming
existing ones

LEAM [ASE22]

Implements

Apply

• Representing code as grammar
rule sequences

• Ensuring syntactic correctness

• Allowing easy symbolic analysis

L2S Framework [TOSEM22]

•Using transformer to implement L2S

•The first transformer-based code
generator

•SOTA 35m model

TreeGen [AAAI20]

•Guiding NN to learn grammar rule
definitions

Grape [IJCAI22]

•Guide NN to learn typing rules

Tare [ICSE23]

•Applying L2S to pretraining

•SOTA 0.2B model at that time

GrammarT5 [ICSE24]

•Guiding NN to learn Def-Use relations

•SOTA open-source code model at that
time

DeepSeek-Coder [arxiv]

•Applying L2S to Decoder-only

•SOTA 1.5B code model

GrammarCoder [ACL25-Finding]

Existing Neural Program Repair

• Treating a patch as a pair of code

20

Patch Set

Training

Neural Translation
Model

Buggy Code
Repaired

Code

A finding in bidirectional
transformation [Models’11 MIP]

• State-based representation is ineffective

• Delta-based representation is more desirable

21

cfa.createEdge(fromNode, Branch.UNCOND, finallyNode);

cfa.createEdge(fromNode, Branch.ON_EX, finallyNode);

1. Need to learn diff
during training
2. Repr is long (13 tokens)

modify(9, ON_EX)
1. Change is directly given
2. Repr is short (3 tokens)

A grammar of change

22

Ensuring the changed code is still syntactically correct.

Recoder [ESEC/FSE’21]

• TreeGen for generating changes

• Neural program repair outperformed traditional
approaches for the first time

23

Overview

24

• First program repair approach
whose precision > 70%

ACS [ICSE17]

• First neural program repair
approach outperforming
traditional approaches

Recoder [FSE23]

• 1st Place in APR-COMP

ET[APRCOMP24]

• Code search engine significantly
outperforming existing ones

OCoR [ASE20]

• Mutation generation engine that
significantly outperforming
existing ones

LEAM [ASE22]

Implements

Apply

• Representing code as grammar
rule sequences

• Ensuring syntactic correctness

• Allowing easy symbolic analysis

L2S Framework [TOSEM22]

•Using transformer to implement L2S

•The first transformer-based code
generator

•SOTA 35m model

TreeGen [AAAI20]

•Guiding NN to learn grammar rule
definitions

Grape [IJCAI22]

•Guide NN to learn typing rules

Tare [ICSE23]

•Applying L2S to pretraining

•SOTA 0.2B model at that time

GrammarT5 [ICSE24]

•Guiding NN to learn Def-Use relations

•SOTA open-source code model at that
time

DeepSeek-Coder [arxiv]

•Applying L2S to Decoder-only

•SOTA 1.5B code model

GrammarCoder [ACL25-Finding]

LEAM [ASE’22 Distinguished]

• From Junjie Chen and Lingming Zhang’s group

• Exchange the input and output of Recoder

• Program Repairer -> Bug Seeder

25

Overview

26

• First program repair approach
whose precision > 70%

ACS [ICSE17]

• First neural program repair
approach outperforming
traditional approaches

Recoder [FSE23]

• 1st Place in APR-COMP

ET[APRCOMP24]

• Code search engine significantly
outperforming existing ones

OCoR [ASE20]

• Mutation generation engine that
significantly outperforming
existing ones

LEAM [ASE22]

Implements

Apply

• Representing code as grammar
rule sequences

• Ensuring syntactic correctness

• Allowing easy symbolic analysis

L2S Framework [TOSEM22]

•Using transformer to implement L2S

•The first transformer-based code
generator

•SOTA 35m model

TreeGen [AAAI20]

•Guiding NN to learn grammar rule
definitions

Grape [IJCAI22]

•Guide NN to learn typing rules

Tare [ICSE23]

•Applying L2S to pretraining

•SOTA 0.2B model at that time

GrammarT5 [ICSE24]

•Guiding NN to learn Def-Use relations

•SOTA open-source code model at that
time

DeepSeek-Coder [arxiv]

•Applying L2S to Decoder-only

•SOTA 1.5B code model

GrammarCoder [ACL25-Finding]

Limit of L2S

• Force syntactical and other constraint from outside

• NN does not learn their definitions

27

ifstmt -> ‘if’ ‘(‘ boolExpr ‘)’ stmt 10
whilestat -> ‘while’ ‘(‘ boolExpr ‘)’ stmt 11
boolExpr -> andExpr 12
boolExpr -> orExpr 13

Grammar rules are encoded as numbers without content.
NN could predict impossible sequences such as 10, 11.

Learning Grammar Rules [IJCAI22]

• Guide the NN to learn grammar definitions
• Word2Vec: assign each token a vector
• Grape: assign each grammar rule a vector, learned with

its definition structure

28

1:Root →Module
2:Module → body
3:body → If For Assign …
5:If → test body orelse
9:For → target iter body orelse
11:orelse → …
14:target → orelse …
16:Assign →…
…

1

2 3

5

9

16

11

14

Rule 1

Rule 2

Rule 3

Rule 5

Rule 9

Embedding

Grammar Relation Graph

Rule 1

Rule 2

Rule 3

Rule 5

Rule 9
Grammar Vector

Base

Model

Enhance

GNN

Knowledge

Representation

Extract

Graph

Gating

Neighbor Encode

Gating

Input

Graph
N×

Point

Code

• Improve the performance of TreeGen up to 5
percentage points

• Outperforms larger pre-training models

29
Parameters：TreeGen+Grape: 35M GPT-2、CodeGPT：110M

Learning Grammar Rules [IJCAI22]

Overview

30

• First program repair approach
whose precision > 70%

ACS [ICSE17]

• First neural program repair
approach outperforming
traditional approaches

Recoder [FSE23]

• 1st Place in APR-COMP

ET[APRCOMP24]

• Code search engine significantly
outperforming existing ones

OCoR [ASE20]

• Mutation generation engine that
significantly outperforming
existing ones

LEAM [ASE22]

Implements

Apply

• Representing code as grammar
rule sequences

• Ensuring syntactic correctness

• Allowing easy symbolic analysis

L2S Framework [TOSEM22]

•Using transformer to implement L2S

•The first transformer-based code
generator

•SOTA 35m model

TreeGen [AAAI20]

•Guiding NN to learn grammar rule
definitions

Grape [IJCAI22]

•Guide NN to learn typing rules

Tare [ICSE23]

•Applying L2S to pretraining

•SOTA 0.2B model at that time

GrammarT5 [ICSE24]

•Guiding NN to learn Def-Use relations

•SOTA open-source code model at that
time

DeepSeek-Coder [arxiv]

•Applying L2S to Decoder-only

•SOTA 1.5B code model

GrammarCoder [ACL25-Finding]

Learning Typing Rules [ICSE23]

• Full type system is difficult to learn from data

• Only 30%-40% programs generated by Recoder is
typable

31

Learning Typing Rules [ICSE23]

• A single rule is much easier to learn
• T-Graph: present the input of a typing rule to the NN

• T-Grammar: force NN to predict the output of a typing
rule

32

T-Graph: Representing typing relations
• types of AST nodes
• types of variables
• subtyping relations

T-Grammar:
E -> E && E becomes
[Bool]E -> [Bool]E && [Bool]E

Learning Typing Rules [ICSE23]

• Applying to program repair, forming Tare

33

Tare+ExpressAPR(efficient patch validation tool) got the first place in the Java
functional bug track of APR-COMP’24.

Overview

34

• First program repair approach
whose precision > 70%

ACS [ICSE17]

• First neural program repair
approach outperforming
traditional approaches

Recoder [FSE23]

• 1st Place in APR-COMP

ET[APRCOMP24]

• Code search engine significantly
outperforming existing ones

OCoR [ASE20]

• Mutation generation engine that
significantly outperforming
existing ones

LEAM [ASE22]

Implements

Apply

• Representing code as grammar
rule sequences

• Ensuring syntactic correctness

• Allowing easy symbolic analysis

L2S Framework [TOSEM22]

•Using transformer to implement L2S

•The first transformer-based code
generator

•SOTA 35m model

TreeGen [AAAI20]

•Guiding NN to learn grammar rule
definitions

Grape [IJCAI22]

•Guide NN to learn typing rules

Tare [ICSE23]

•Applying L2S to pretraining

•SOTA 0.2B model at that time

GrammarT5 [ICSE24]

•Guiding NN to learn Declare-Use relations

•SOTA open-source code model at that
time

DeepSeek-Coder [arxiv]

•Applying L2S to Decoder-only

•SOTA 1.5B code model

GrammarCoder [ACL25-Finding]

A Era of LLMs

LLMs (=pretrained large models) exhibit superior
performance

Can we use grammar-based representation in LLMs?
35

Challenges

• Big vocabulary
• User-defined identifiers can be added to the grammar

when the training set is small
• Pre-training sets are too large

• Heterogeneous grammars
• Existing models: One programming language
• Pretraining models: Many programming languages

• Pretraining Tasks
• Self-supervised training tasks are needed
• Tasks are expected to guide the neural network to learn

the grammar structure

36

Big vocabulary

• Existing approaches
• IDEN -> isodd | iseven

• Our approach
• Using BPE (Byte Pair Encoding) to find a small set of

subtokens
• is, odd, even

• Integrating them into the grammar
• IDEN -> is IDEN | odd IDEN | even IDEN

| #is | #odd | #even
• # indicates the ending tokens
• Leads to significantly shorter encoding than the standard sequence

encoding
• IDEN -> is IDEN | odd IDEN | even IDEN

| 𝜖

37

Heterogeneous grammars

• A hyper grammar that includes all grammars
• Root -> Root@Python | Root@Java | …

• Experimentally has better performance than
sharing some of non-terminals
• While -> while ‘(‘ BoolExpr ‘)’ Statements

• BoolExpr -> BoolExpr@Java | BoolExpr@C# | …

38

Pretraining Tasks

• Given a rule sequence, predicting the parent of a
rule
• 1 2 3 10 11 13 64 18 19 8

• Predicting some
subtree of an AST

39

root

Module

body

Assign

targets

Name

id

length

Num

n

10

value

Learning Declare-Use Relation

• Existing pre-training models sort files randomly

• LLMs may see a function or a variable before its
declaration

• Dependency parsing:
• Extract declaration-use relationship from files

• Sort the files so that declarations appear before use

40

GrammarT5 [ICSE24]

41

SOTA 0.2B model in 2024
Standard L2S was applied

DeepSeek-Coder [arxiv24]

Cooperation with DeepSeek

SOTA open source code model in 2024, still widely used as a base model
for fine-tuning

Dependency parsing was applied

42

GrammarCoder [ACL25-Finding]

Cooperation with Kuaishou
SOTA 1.5B model
Standard L2S was applied

43

GrammarCoder [ACL25-Finding]

Cooperation with Kuaishou
SOTA 1.5B model
Standard L2S was applied

44

Conclusion

• Code has structure
• Syntax

• Types

• Semantics

• These structures are defined by symbolic rules

• LLMs do not learn the symbolic rules well

• Guiding them to learn improves their performance

• Future: more genetic ways to learn more software
knowledge

45

	幻灯片 1: Neural Code Generation Models with Programming Language Knowledge
	幻灯片 2: Two Approaches to AI
	幻灯片 3: Important LLM Application Assisting Software Development
	幻灯片 4: Mismatch: connectionism and programs
	幻灯片 5: Symbolic PL knowledge is useful
	幻灯片 6: Can we guide neural network to learn PL knowledge?
	幻灯片 7: Overview
	幻灯片 8: Generating only safe code
	幻灯片 9: Generating only safe code
	幻灯片 10: L2S: representing by grammar rule sequences [TOSEM22]
	幻灯片 11: Benefit: Constrained Decoding Made Easy
	幻灯片 12: Benefit: Better Alignment with Semantics [ACL25-Finding]
	幻灯片 13: Edit Distance between Semantically Different Code
	幻灯片 14: Benefit: Easier Parsing [Submitted]
	幻灯片 15: Benefit: Easier Parsing [Submitted]
	幻灯片 16: Benefit: Easier Parsing [Submitted]
	幻灯片 17: Overview
	幻灯片 18: Using Transformer to implement L2S [AAAI20]
	幻灯片 19: Overview
	幻灯片 20: Existing Neural Program Repair
	幻灯片 21: A finding in bidirectional transformation [Models’11 MIP]
	幻灯片 22: A grammar of change
	幻灯片 23: Recoder [ESEC/FSE’21]
	幻灯片 24: Overview
	幻灯片 25: LEAM [ASE’22 Distinguished]
	幻灯片 26: Overview
	幻灯片 27: Limit of L2S
	幻灯片 28: Learning Grammar Rules [IJCAI22]
	幻灯片 29
	幻灯片 30: Overview
	幻灯片 31: Learning Typing Rules [ICSE23]
	幻灯片 32: Learning Typing Rules [ICSE23]
	幻灯片 33: Learning Typing Rules [ICSE23]
	幻灯片 34: Overview
	幻灯片 35: A Era of LLMs
	幻灯片 36: Challenges
	幻灯片 37: Big vocabulary
	幻灯片 38: Heterogeneous grammars
	幻灯片 39: Pretraining Tasks
	幻灯片 40: Learning Declare-Use Relation
	幻灯片 41: GrammarT5 [ICSE24]
	幻灯片 42: DeepSeek-Coder [arxiv24]
	幻灯片 43: GrammarCoder [ACL25-Finding]
	幻灯片 44: GrammarCoder [ACL25-Finding]
	幻灯片 45: Conclusion

